
Orientation

What we have seen:

MPC can be understood as a model of the optimal action-value function Q⋆ of
real-world MDPs and/or of the optimal policy π

⋆

MPC cost (and constraints) become part of that model

Model that best fits the real-world does not (necessarily) yield the best policy

RL is a toolbox to tune the MPC as a model of the MDP solution

MPC state space should match the real world, strong assumption that can be
alleviated
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⋆

MPC cost (and constraints) become part of that model

Model that best fits the real-world does not (necessarily) yield the best policy

RL is a toolbox to tune the MPC as a model of the MDP solution

MPC state space should match the real world, strong assumption that can be
alleviated

What we will do next: RL over MPC

Safe & Stable RL over MPC (In the afternoon)

RL over MPC with belief states – a future prospect (In the afternoon)

Beyond MPC – Model-based Decisions and AI for decisions (Tomorrow)
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Outline

1 Safe RL via MPC

2 Exploration with MPC

3 Stability-constrained Learning with MPC

4 Explored questions

5 Future Prospect – Belief State in RLMPC?
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Robust MPC - Uncertainty model

True system: s+ ∼ P [ · |s, a ]

Deterministic model: ŝ+ = fθ (s, a)
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Identifying Wθ is a set-membership
identification problem, well studied

Obviously Wθ is not unique

Ensuring probability 1 from data is impossible
→ probabilistic guarantees
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Condition

s+ − fθ (s, a) ∈Wθ

for all observed triplets (s, a, s+)

→ constraints on θ
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s+ ∈ fθ (s, a) +Wθ (1)

with probability 1

Remarks:

Identifying Wθ is a set-membership
identification problem, well studied

Obviously Wθ is not unique

Ensuring probability 1 from data is impossible
→ probabilistic guarantees

Model parameters θ must be such that (1)
holds on every known data point

s, a

ŝ+

Wθ

Condition

s+ − fθ (s, a) ∈Wθ

for all observed triplets (s, a, s+)

→ constraints on θ

Containing the model-system
mismatch becomes constraints in
the parameters θ. Constraints can
be readily formulated in terms of

data.
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Safe policies via Robust (N)MPC

Robust (N)MPC delivers policy πθ(x0) = u
⋆

0 from

u
⋆ = argmin

u

max
w∈Wθ

N
Tθ (xN) +

N−1∑

k=0

Lθ (xk , uk)

s.t. u0,...,N ∈ U

x0,...,N is the propagation of the state dispersion

max cost treats worst-case scenario, required for stability arguments (classical
stability)

w = {w0, . . . ,wN} is the disturbance with wk ∈Wθ
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Safe Learning via Robust MPC

Robust NMPC parameters θ

Policy gradient

∇θJ = E [∇θπθ∇aAπθ
]

adjusts θ for performance

Condition

s+ − f (s, a,θ) ∈Wθ

enforces safety through θ
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]
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Can be interpreted as a form of
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Also reads as:

θ ← θ +∆θ

∆θ = argmin
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1
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‖∆θ‖2 +∇θJ

⊤∆θ

Safe RL steps θ ← θ +∆θ:

∆θ = argmin
∆θ

1

2α
‖∆θ‖2 +∇θJ

⊤∆θ

s.t. s+ − f (s, a,θ +∆θ) ∈Wθ+∆θ

∀ (s, a, s+) in data set

Safe RL steps seek performance under safety constraints
Difficulty: differentiating through the effect of Wθ, big data in Safe RL steps
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Illustrative example

Real system

xk+1 = Arealxk + Brealuk + n

Noise n in a ball

Robust MPC model

xk+1 = A0xk + B0uk ⊕W

W is a square

Quadratic stage cost

Constraint ‖x‖2 ≤ 1
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Illustrative example

Real system

xk+1 = Arealxk + Brealuk + n

Noise n in a ball

Robust MPC model

xk+1 = A0xk + B0uk ⊕W

W is a square

Quadratic stage cost

Constraint ‖x‖2 ≤ 1

Let’s adjusts:

Set W, while containing process noise

State and input reference in MPC cost function

Internal linear feedback (robust MPC internal control)

via Safe RL
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Illustrative example
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Scenario Tree MPC

Key idea: approximate distribution P [s+|s, a] with a
finite set of point predictions, develop in a tree of
possible future outcomes, with associated decisions.

Optimize over the tree.

s+

s, a
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Scenario Tree MPC

Key idea: approximate distribution P [s+|s, a] with a
finite set of point predictions, develop in a tree of
possible future outcomes, with associated decisions.

Optimize over the tree.

Scenario-Tree MPC gives π
MPC (s) = u

⋆

0 from

min
x,u

n∑

i=1

N∑

k=0

ωi L
(

x
i
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i
k

)

s.t. x
i
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i
k

(

x
i
k , u

i
k

)

, x
i
0 = s

hi

(

x
i
k , u

i
k
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≤ 0

ck

(

u
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f
i
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ω1,...,n to build E[.]
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Difficulties

Pick “good” scenarios

# scenarios explode with
horizon (e.g. n = 2N here)

Often shallow trees are used
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RL over Scenario Tree MPC
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RL can do:

Optimize scenarios f ik

Optimize weights ωi

Can work on shallow trees

for real-world performance of policy
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)

= 0

RL can do:

Optimize scenarios f ik

Optimize weights ωi

Can work on shallow trees

for real-world performance of policy

Even a depth-1 tree provides a finer representation than
a deterministic model. Theory applies.
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Outline

1 Safe RL via MPC

2 Exploration with MPC

3 Stability-constrained Learning with MPC

4 Explored questions

5 Future Prospect – Belief State in RLMPC?
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“Safe” (feasible) exploration with MPC

Learning requires exploration. E.g. apply
a = πθ (s) + d to the real system where d is a

“disturbance”
πθ(s)
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Learning requires exploration. E.g. apply
a = πθ (s) + d to the real system where d is a

“disturbance”
πθ(s)

Explore while keeping feasibility?

Clearly an arbitrary “policy disturbance” πθ (s) + d is a poor idea...

NLP-based policy: “disturb” the cost function instead! (different options)
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Learning requires exploration. E.g. apply
a = πθ (s) + d to the real system where d is a

“disturbance”
πθ(s)

Explore while keeping feasibility?

Clearly an arbitrary “policy disturbance” πθ (s) + d is a poor idea...

NLP-based policy: “disturb” the cost function instead! (different options)

Feasible exploration: π
e

θ(s) = u
⋆

0 :

min
x,u

Tθ (xN)− d
⊤
u0 +

N−1∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk ) ≤ 0, x0 = s

satisfies the constraints by construction
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πθ(s)

Explore while keeping feasibility?

Clearly an arbitrary “policy disturbance” πθ (s) + d is a poor idea...

NLP-based policy: “disturb” the cost function instead! (different options)

Feasible exploration: π
e

θ(s) = u
⋆

0 :

min
x,u

Tθ (xN)− d
⊤
u0 +

N−1∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk ) ≤ 0, x0 = s

satisfies the constraints by construction
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Learning requires exploration. E.g. apply
a = πθ (s) + d to the real system where d is a

“disturbance”

πθ(s)

Explore while keeping feasibility?

Clearly an arbitrary “policy disturbance” πθ (s) + d is a poor idea...

NLP-based policy: “disturb” the cost function instead! (different options)

Feasible exploration: π
e

θ(s) = u
⋆

0 :

min
x,u

Tθ (xN)− d
⊤
u0 +

N−1∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk ) ≤ 0, x0 = s

satisfies the constraints by construction

Remarks:

Exploration e = π
e

θ − πθ is not
centred-isotopric

Can create some technical issues with
actor-critic methods using linear
compatible Aπθ , yields biased policy
gradient estimation

Bias seems small in practice + linear
compatible Aπθ does not seem to be
much used in RL
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MPC as a Stochastic Policy

Stochastic policy πθ [ · |s] ≡ u
⋆

0 (θ, s, d):

min
x,u

Tθ (xN , d) +

N−1∑

k=0

Lθ (xk , uk , d)

s.t. xk+1 = fθ (xk , uk , d)

hθ (xk , uk , d) ≤ 0, x0 = s

where d ∼ ρ[·]
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Stochastic policy πθ [ · |s] ≡ u
⋆

0 (θ, s, d):

min
x,u

Tθ (xN , d) +

N−1∑

k=0

Lθ (xk , uk , d)

s.t. xk+1 = fθ (xk , uk , d)

hθ (xk , uk , d) ≤ 0, x0 = s

where d ∼ ρ[·]

Remarks

Chose ρ easy to sample from

Typ. bounded support

Special case: θ = θ̄ + d

To ensure feasibility, leave fθ, hθ “alone”
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where d ∼ ρ[·]

Remarks

Chose ρ easy to sample from

Typ. bounded support

Special case: θ = θ̄ + d

To ensure feasibility, leave fθ, hθ “alone”

Performance

J (πθ) = Eπθ

[

∞
∑

k=0

γ
kL (sk , ak)

∣

∣

∣

∣

∣

ak ∼ πθ [ · |sk ]

]

= Eρ

[

∞
∑

k=0

γ
kL (sk , ak)

∣

∣

∣

∣

∣

ak = u
⋆

0 (θ, sk , d)
d ∼ ρ[·]

]
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γ
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∣

∣

∣

∣

∣

ak = u
⋆

0 (θ, sk , d)
d ∼ ρ[·]

]

Stochastic Policy Gradient

∇θJ (πθ) = E [∇θ log πθ ·Q
πθ ]

... but what about ∇θ log πθ?
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MPC as a Stochastic Policy & Policy Gradient
Illustration – Linear MPC with scalar a, d normal centered

d

u
∗ 0
(θ
,s
,d

)

a
π
θ
[a
|s
]
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For d→ u
⋆

0 bijective & differentiable

πθ [a|s] = |det (∇du
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0 (θ, s, d))|
−1

ρ [d]
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MPC as a Stochastic Policy & Policy Gradient
Illustration – Linear MPC with scalar a, d normal centered

d

u
∗ 0
(θ
,s
,d

)

ρ

a
π
θ
[a
|s
]

For d→ u
⋆

0 bijective & differentiable

πθ [a|s] = |det (∇du
⋆

0 (θ, s, d))|
−1

ρ [d]

Even for the “simplest” form of MPC,
there are challenges

Smoothing the MPC, e.g. leveraging
on IP methods, solves (many of) them

What about ∇θ log πθ [a|s]? Ok to compute, but needs 2nd-order sensitivities of u⋆

0
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MPC as a Stochastic Policy & Policy Gradient
Illustration – Linear MPC with scalar a, d normal centered

d

u
∗ 0
(θ
,s
,d

)

ρ

a
π
θ
[a
|s
]

Reparametrization trick gives (smoothing is still theoretically good...)

∇θJ (πθ) = E [∇θ log πθ · Q
πθ ] = E [∇θu

⋆

0 (θ, s, d) · ∇aQ
πθ (s, a)]
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MPC as a Stochastic Policy & Policy Gradient
Illustration – Linear MPC with scalar a, d normal centered

d

u
∗ 0
(θ
,s
,d

)

ρ

a
π
θ
[a
|s
]

Reparametrization trick gives (smoothing is still theoretically good...)

∇θJ (πθ) = E [∇θ log πθ · Q
πθ ] = E [∇θu

⋆

0 (θ, s, d) · ∇aQ
πθ (s, a)]

Open questions on estimation variance w.r.t. sharp variations in Qπθ and πθ
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Outline

1 Safe RL via MPC

2 Exploration with MPC

3 Stability-constrained Learning with MPC

4 Explored questions

5 Future Prospect – Belief State in RLMPC?
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Stability of MPC - Introduction

Policy πMPC from

min
s,a

T (sN) +
N−1∑

k=0

L (sk , ak)

s.t. sk+1 = f (sk , ak)

h (sk , ak) ≤ 0, sN ∈ T
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Policy πMPC from

min
s,a

T (sN) +
N−1∑

k=0

L (sk , ak)

s.t. sk+1 = f (sk , ak)

h (sk , ak) ≤ 0, sN ∈ T

If for some K∞ function κ (“bowl-shaped”):

L (s, a) ≥ κ (‖s− ss‖) , ∀ s, a

holds, then MPC scheme is stabilizing (+conditions on T )
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then MPC scheme is stabilizing (+conditions on T )

Remarks:

No discount γ = 1

Exact model, deterministic
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s.t. sk+1 = f (sk , ak)

h (sk , ak) ≤ 0, sN ∈ T

where ℓ (s, a) ≥ κ (‖s− ss‖) , ∀ s, a

For L not lower bounded by K∞, we need λ such that

ℓ (s, a) = L (s, a) + λ (s)− λ (f (s, a)) ≥ κ (‖s− ss‖) , ∀ s, a

then MPC scheme is stabilizing (+conditions on T )

Remarks:

No discount γ = 1

Exact model, deterministic

Theory does not apply to MDPs
Can we extend to γ < 1 and stochastic

dynamics?
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Stability of MPC - Connection to RLMPC

Policy π
MPC from

min
x,u

T (xN) +

N−1∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk) , x0 = s

h (xk , uk) ≤ 0
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Stability of MPC - Connection to RLMPC

Policy π
MPC from

min
x,u

T (xN) +

N−1∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk) , x0 = s

h (xk , uk) ≤ 0

Equivalent MPC

min
s,a

− λ (s) + T̃ (xN) +

N−1∑

k=0

ℓ (xk , uk)

s.t. xk+1 = f (xk , uk ) , x0 = s

h (xk , uk) ≤ 0

is stable

MPC scheme is (nominally) stabilizing if there is λ such that

ℓ (s, a) := L (s, a) + λ (s)− λ (f (s, a)) ≥ κ (‖s− ss‖), ∀ s, a

where κ is K∞ (+conditions on T )

Remarks

Modifying the MPC cost is a concept already present in dissipativity theory!

Aligned with modifying the cost for MPC performance

→ Merge the RL & stability modifications for “stability by design”
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Stability-constrained Learning-based MPC - Deterministic case

Given arbitrary stage cost L (s, a), build a
stable policy π

MPC

θ minimizing:

J
(

π
MPC

θ

)

=

∞∑

k=0

L (sk , ak)
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Learning based on L

Impose constraint:

Lθ (s, a) ≥ κ (‖s− ss‖) , ∀ s, a
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Theorem: under some conditions

π
MPC

θ → π⋆ if π⋆ is stabilizing

π
MPC

θ → best stabilizing policy
otherwise
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Given arbitrary stage cost L (s, a), build a
stable policy π

MPC

θ minimizing:

J
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θ

)

=
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>50 papers, but most aspects could use more developments, algorithms, software,
applications. Welcome onboard!
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Belief States – What is it about?

In Regular MDPs, state s is known

Policy a = π
⋆ (s)

Can work with s =raw recent data

Often there is a latent space construction

Markovian property more or less explicitly
promoted

Estimate sk from observations o0,...,k

Estimation o0,...,k → ŝk yields

imperfect knowledge of sk
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imperfect knowledge of sk
s
1
9

s
2 9

ϕ9

How to “encode” that imperfect knowledge in decision making?

Belief state: sk ∼ ϕk ( · )

Bayesian perspective: ϕk represents imperfect knowledge, it is not frequentist

Kalman filter: ϕk is Gaussian, described via mean and covariance

Belief state has its own dynamics ϕk → ϕk+1, tied to ak and o0,...,k+1 (and ϕ0)

S. Gros (NTNU) MPC & RL Fall 2025 25 / 33



Belief State Dynamics – How does it work?

Dynamics model

sk+1 ∼ P [ · | sk , ak ]

Observation model

ok ∼ O [ · | sk ]

State sk is “partially known”, i.e.

sk ∼ ϕk ( · ) is a belief state

S. Gros (NTNU) MPC & RL Fall 2025 26 / 33



Belief State Dynamics – How does it work?

Dynamics model

sk+1 ∼ P [ · | sk , ak ]

Observation model

ok ∼ O [ · | sk ]

State sk is “partially known”, i.e.

sk ∼ ϕk ( · ) is a belief state

Prior to observation ok+1, ϕk+1 is

ϕk+1|k ( · ) =

∫

P [ · | sk , ak ]ϕk (sk)dsk

:= Takϕk

s
1

s
2

sk
ϕk

P [sk+1|sk, ak]

S. Gros (NTNU) MPC & RL Fall 2025 26 / 33



Belief State Dynamics – How does it work?

Dynamics model

sk+1 ∼ P [ · | sk , ak ]

Observation model

ok ∼ O [ · | sk ]

State sk is “partially known”, i.e.

sk ∼ ϕk ( · ) is a belief state

Prior to observation ok+1, ϕk+1 is

ϕk+1|k ( · ) =

∫

P [ · | sk , ak ]ϕk (sk)dsk

:= Takϕk

s
1

s
2

ϕk

ϕk+1|k

ϕk → ϕk+1|k

S. Gros (NTNU) MPC & RL Fall 2025 26 / 33



Belief State Dynamics – How does it work?

Dynamics model

sk+1 ∼ P [ · | sk , ak ]

Observation model

ok ∼ O [ · | sk ]

State sk is “partially known”, i.e.

sk ∼ ϕk ( · ) is a belief state

Prior to observation ok+1, ϕk+1 is

ϕk+1|k ( · ) =

∫

P [ · | sk , ak ]ϕk (sk)dsk

:= Takϕk

s
1

s
2

ϕk

ϕk+1|k

ϕk → ϕk+1|k

Posterior to observation ok+1, new info corrects ϕk+1|k → ϕk+1:

ϕk+1( · ) = B (ϕk , ok+1, ak ) = αO [ok+1| · ] ϕk+1|k ( · )
︸ ︷︷ ︸

Bayesian inference

α is a normalization

S. Gros (NTNU) MPC & RL Fall 2025 26 / 33



Belief State Dynamics – How does it work?

Dynamics model

sk+1 ∼ P [ · | sk , ak ]

Observation model

ok ∼ O [ · | sk ]

State sk is “partially known”, i.e.

sk ∼ ϕk ( · ) is a belief state

Prior to observation ok+1, ϕk+1 is

ϕk+1|k ( · ) =

∫

P [ · | sk , ak ]ϕk (sk)dsk

:= Takϕk

s
1

k+1

s
2 k
+
1

ok+1 = −1.0

O(ok+1|sk+1)

s
1

k+1

s
2 k
+
1

ϕk+1|k(sk+1)

s
1

k+1

s
2 k
+
1

ϕk+1(sk+1)

Posterior to observation ok+1, new info corrects ϕk+1|k → ϕk+1:

ϕk+1( · ) = B (ϕk , ok+1, ak ) = αO [ok+1| · ] ϕk+1|k ( · )
︸ ︷︷ ︸

Bayesian inference

α is a normalization

S. Gros (NTNU) MPC & RL Fall 2025 26 / 33



Belief State Dynamics – How does it work?

Dynamics model

sk+1 ∼ P [ · | sk , ak ]

Observation model

ok ∼ O [ · | sk ]

State sk is “partially known”, i.e.

sk ∼ ϕk ( · ) is a belief state

Prior to observation ok+1, ϕk+1 is

ϕk+1|k ( · ) =

∫

P [ · | sk , ak ]ϕk (sk)dsk

:= Takϕk

s
1

k+1

s
2 k
+
1

ok+1 = −0.33

O(ok+1|sk+1)

s
1

k+1

s
2 k
+
1

ϕk+1|k(sk+1)

s
1

k+1

s
2 k
+
1

ϕk+1(sk+1)

Posterior to observation ok+1, new info corrects ϕk+1|k → ϕk+1:

ϕk+1( · ) = B (ϕk , ok+1, ak ) = αO [ok+1| · ] ϕk+1|k ( · )
︸ ︷︷ ︸

Bayesian inference

α is a normalization

S. Gros (NTNU) MPC & RL Fall 2025 26 / 33



Belief State Dynamics – How does it work?

Dynamics model

sk+1 ∼ P [ · | sk , ak ]

Observation model

ok ∼ O [ · | sk ]

State sk is “partially known”, i.e.

sk ∼ ϕk ( · ) is a belief state

Prior to observation ok+1, ϕk+1 is

ϕk+1|k ( · ) =

∫

P [ · | sk , ak ]ϕk (sk)dsk

:= Takϕk

s
1

k+1

s
2 k
+
1

ok+1 = 0.33

O(ok+1|sk+1)

s
1

k+1

s
2 k
+
1

ϕk+1|k(sk+1)

s
1

k+1

s
2 k
+
1

ϕk+1(sk+1)

Posterior to observation ok+1, new info corrects ϕk+1|k → ϕk+1:

ϕk+1( · ) = B (ϕk , ok+1, ak ) = αO [ok+1| · ] ϕk+1|k ( · )
︸ ︷︷ ︸

Bayesian inference

α is a normalization

S. Gros (NTNU) MPC & RL Fall 2025 26 / 33



Belief State Dynamics – How does it work?

Dynamics model

sk+1 ∼ P [ · | sk , ak ]

Observation model

ok ∼ O [ · | sk ]

State sk is “partially known”, i.e.

sk ∼ ϕk ( · ) is a belief state

Prior to observation ok+1, ϕk+1 is

ϕk+1|k ( · ) =

∫

P [ · | sk , ak ]ϕk (sk)dsk

:= Takϕk

s
1

k+1

s
2 k
+
1

ok+1 = 1.0

O(ok+1|sk+1)

s
1

k+1

s
2 k
+
1

ϕk+1|k(sk+1)

s
1

k+1

s
2 k
+
1

ϕk+1(sk+1)

Posterior to observation ok+1, new info corrects ϕk+1|k → ϕk+1:

ϕk+1( · ) = B (ϕk , ok+1, ak ) = αO [ok+1| · ] ϕk+1|k ( · )
︸ ︷︷ ︸

Bayesian inference

α is a normalization

S. Gros (NTNU) MPC & RL Fall 2025 26 / 33



Belief State Dynamics – How does it work?

Dynamics model

sk+1 ∼ P [ · | sk , ak ]

Observation model

ok ∼ O [ · | sk ]

State sk is “partially known”, i.e.

sk ∼ ϕk ( · ) is a belief state

Prior to observation ok+1, ϕk+1 is

ϕk+1|k ( · ) =

∫

P [ · | sk , ak ]ϕk (sk)dsk

:= Takϕk

Remarks state transition

ϕk+1 = B (ϕk , ok+1, ak)

Is in general nonlinear

Posterior to observation ok+1, new info corrects ϕk+1|k → ϕk+1:

ϕk+1( · ) = B (ϕk , ok+1, ak ) = αO [ok+1| · ] ϕk+1|k ( · )
︸ ︷︷ ︸

Bayesian inference

α is a normalization

S. Gros (NTNU) MPC & RL Fall 2025 26 / 33



Belief State Dynamics – How does it work?

Dynamics model

sk+1 ∼ P [ · | sk , ak ]

Observation model

ok ∼ O [ · | sk ]

State sk is “partially known”, i.e.

sk ∼ ϕk ( · ) is a belief state

Prior to observation ok+1, ϕk+1 is

ϕk+1|k ( · ) =

∫

P [ · | sk , ak ]ϕk (sk)dsk

:= Takϕk

Remarks state transition

ϕk+1 = B (ϕk , ok+1, ak)

Is in general nonlinear

Is deterministic for ok+1 known

Posterior to observation ok+1, new info corrects ϕk+1|k → ϕk+1:

ϕk+1( · ) = B (ϕk , ok+1, ak ) = αO [ok+1| · ] ϕk+1|k ( · )
︸ ︷︷ ︸

Bayesian inference

α is a normalization

S. Gros (NTNU) MPC & RL Fall 2025 26 / 33



Belief State Dynamics – How does it work?

Dynamics model

sk+1 ∼ P [ · | sk , ak ]

Observation model

ok ∼ O [ · | sk ]

State sk is “partially known”, i.e.

sk ∼ ϕk ( · ) is a belief state

Prior to observation ok+1, ϕk+1 is

ϕk+1|k ( · ) =

∫

P [ · | sk , ak ]ϕk (sk)dsk

:= Takϕk

Remarks state transition

ϕk+1 = B (ϕk , ok+1, ak)

Is in general nonlinear

Is deterministic for ok+1 known

Is stochastic prior to ok+1 known, with

Eok+1|ϕk ,ak
[ϕk+1] = ϕk+1|k

Posterior to observation ok+1, new info corrects ϕk+1|k → ϕk+1:

ϕk+1( · ) = B (ϕk , ok+1, ak ) = αO [ok+1| · ] ϕk+1|k ( · )
︸ ︷︷ ︸

Bayesian inference

α is a normalization

S. Gros (NTNU) MPC & RL Fall 2025 26 / 33



Illustrative example - Belief state dynamics

Dynamics model

sk+1 ∼ N (Ask + Bak , Σs)

Observation model (nonlinear)

ok ∼ N
(

s
⊤
k Msk , σo

)

A =

[
1 .1
0 .1

]

, B =

[
0
.1

]

, M =

[
0 1
1 0

]

Σs =
1

5
I , σo = 1
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Illustrative example - Policy & belief state

Dynamics model

sk+1 ∼ N (Ask + Bak , Σs)

Observation model

ok ∼ N
(

s
⊤
k Msk , σo

)

A =

[
1 .1
0 .1

]

, B =

[
0
.1

]

, M =

[
0 1
1 0

]

Σs =
1

5
I , σo = 1

Policy: e.g. DLQR over expected state, i.e. ak = −K · Es∼ϕk
[s] (→ Kalman filter)
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MDPs with Belief States

Policy π should select actions ak for the
belief state ϕk

J (π) = E

[
∞∑

k=0

γ
kL (sk , ak )

∣
∣
∣
∣
∣
ak = π (ϕk )

]
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for the uncertainty on s. It also selects
actions that optimize “information

gathering”, conducive to taking better
decisions later.
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Can we carry the MDP solution in a
repeated planning framework

(MPC-like)?
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Belief States & MPC

World MDP

RLMPC theoretical pathway
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Remarks:

Belief state MDPs have a set of
equivalent MDPs (same structure as
regular MDPs)
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ϕ̂k+1 = B (ϕ̂k ,E [ok+1] , ak)

What is the best choice? Is there a good choice? Open question
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MPC over Belief State MDPs

MPC model

ϕ̂k+1 = B̂θ (ϕ̂k , ak)

“resolving” stochasticity over ok
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ϕ̂k+1 = B̂θ (ϕ̂k , uk )
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Questions

Algorithmic to carry ϕ̂0,...,N in optimization?

And to evaluate ℓθ (ϕ̂k , uk )?

Good choice of B̂θ?

Integration with state observer?
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Orientation

What we have seen:

Robust MPC can provide a safe policy, RL can tune that policy for performance

Some (standard) limitations apply

MPC enables safe (as in feasible) exploration, some challenges though

RL over MPC provides a pathway to enforcing stability in the learning process

Some open research questions for MDPs

RL over MPC with belief states – Theory seems to add up, implementation is an
open question
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What we will do next: RL over MPC

Beyond MPC – Model-based Decisions and AI for decisions (Tomorrow)
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Thanks for your attention!

ResearchGate Google Scholar
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