Orientation

What we have seen:

@ MPC can be understood as a model of the optimal action-value function Q* of
real-world MDPs and/or of the optimal policy 7*

MPC cost (and constraints) become part of that model
Model that best fits the real-world does not (necessarily) yield the best policy
RL is a toolbox to tune the MPC as a model of the MDP solution

MPC state space should match the real world, strong assumption that can be
alleviated
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Orientation

What we have seen:

@ MPC can be understood as a model of the optimal action-value function Q* of
real-world MDPs and/or of the optimal policy 7*

MPC cost (and constraints) become part of that model
Model that best fits the real-world does not (necessarily) yield the best policy
RL is a toolbox to tune the MPC as a model of the MDP solution

MPC state space should match the real world, strong assumption that can be
alleviated

What we will do next: RL over MPC
@ Safe & Stable RL over MPC (In the afternoon)
@ RL over MPC with belief states — a future prospect (In the afternoon)
@ Beyond MPC — Model-based Decisions and Al for decisions (Tomorrow)
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Outline

@ Safe RL via MPC

© Exploration with MPC

© Stability-constrained Learning with MPC

@ Explored questions

© Future Prospect — Belief State in RLMPC??: ¥ “% h
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@ Safe RL via MPC
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Robust MPC - Uncertainty model

True system:
Deterministic model:

sy ~P[-[s,a]
8+ :fg(s,a)

o = = = RTINS
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Robust MPC - Uncertainty model

True system: s, ~P[-[s,a]

Deterministic model: §; = fg (s, a)

s,a
Dispersion: fg (s,a) + Wy contains the support of
P[-s,a], i.e.
sy € fg(s,a) + Wy (1)

with probability 1
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Robust MPC - Uncertainty model

True system: s, ~P[-[s,a]

Deterministic model: §; = fg (s, a)

s,a
Dispersion: fg (s,a) + Wy contains the support of
P[-s,a], i.e.
sy € fg(s,a) + Wy (1)

with probability 1

Remarks:

@ lIdentifying Wy is a set-membership
identification problem, well studied

@ Obviously Wy is not unique

@ Ensuring probability 1 from data is impossible
— probabilistic guarantees

@ Model parameters @ must be such that (1)
holds on every known data point
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Robust MPC - Uncertainty model

True system: s, ~P[-[s,a]

Deterministic model:  §; = fg (s, a)

s,a
Dispersion: fg (s,a) + We contains the support of
P[-|s,a], i.e.
sy € fg(s,a) + Wy (1) Condition

with probability 1 sy —fo(s,a) € W

Remarks: for all observed triplets (s, a,s;)

@ lIdentifying Wy is a set-membership — @ensiEins on @
identification problem, well studied

@ Obviously Wy is not unique

@ Ensuring probability 1 from data is impossible
— probabilistic guarantees

@ Model parameters @ must be such that (1)
holds on every known data point
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Robust MPC - Uncertainty model

True system: s, ~P[-[s,a]

Deterministic model:  §; = fg (s, a)

s,a
Dispersion: fg (s,a) + We contains the support of
P[-|s,a], i.e.
sy € fg(s,a) + Wy (1) Condition

with probability 1 sy —fo(s,a) € W

for all observed triplets (s, a,s;)

Remarks:
® Identif.ying W is a set-membership — @ensiEins on @
identification problem, well studied
@ Obviously We is not unique Containing the model-system
@ Ensuring probability 1 from data is impossible ~ mismatch becomes constraints in
—s probabilistic guarantees the parameters 0. Constraints can
be readily formulated in terms of

@ Model parameters @ must be such that (1)
holds on every known data point

data.
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Safe policies via Robust (N)MPC

Robust (N)MPC delivers policy mg(x0) = ug from
N—1
u* = arg min max To (xn) + Z Lo (%k,ux)
t o weWe k=0
s.t. w,..vn€U

@ Xo,...n is the propagation of the state dispersion

@ max cost treats worst-case scenario, required for stability arguments (classical
stability)

@ w = {wo,...,wy} is the disturbance with w, € Wy
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Safe policies via Robust (N)MPC

Robust (N)MPC delivers policy mg(x0) = ug from

u’ = argmin e, To (xn) + > Lo (xk,m)

N—-1

k=0
s.t. w,..vn€U

x1,.n-1(w,s,0,w)eX, Vwe WVt

@ Xo,...n is the propagation of the state dispersion

@ max cost treats worst-case scenario, required for stability arguments (classical

stability)

@ w = {wo,...,wy} is the disturbance with w, € Wy

@ x1,... n-1(u,s,0,w) are the trajectories subject to w and fg

X is the “safe” set where the state should be at all time
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Safe policies via Robust (N)MPC
Robust (N)MPC delivers policy mwg(x0) = ug from

N—-1

u* = arg min wrgﬁ;(N To (xn) + kz:; Lo (xk,ux)

st. u,. . neEU
x1, nvo1(ws,0,w)eX, Vwe W,V
xn (u,s,0,w) € To, Ywe W "?

@ Xo,...n is the propagation of the state dispersion

@ max cost treats worst-case scenario, required for stability arguments (classical
stability)

@ w = {wo,...,wy} is the disturbance with wy, € Wy

@ x1.. n-1(u,s,0,w) are the trajectories subject to w and fg

@ X is the “safe” set where the state should be at all time

@ Terminal set Ty (required for recursive feasibility & stability)
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Safe policies via Robust (N)MPC
Robust (N)MPC delivers policy mwg(x0) = ug from

N—-1

ut = arg min w?f;(/v To (xn) + kz:; Lo (xk,ux)

st. u,. . neEU
x1,..n-1(w,8,0,w) €X, Vwe W1
xn (u,s,0,w) € To, Ywe W "?

@ Xo,...n is the propagation of the state dispersion

@ max cost treats worst-case scenario, required for stability arguments (classical
stability)

@ w = {wo,...,wy} is the disturbance with wy, € Wy

@ x1.. n-1(u,s,0,w) are the trajectories subject to w and fg

@ X is the “safe” set where the state should be at all time

@ Terminal set Ty (required for recursive feasibility & stability)

@ If O is such that Wy encloses true state dispersion, MPC yields safe policy
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Safe policies via Robust (N)MPC
Robust (N)MPC delivers policy mwg(x0) = ug from

N—-1

u* = arg min wren?z,v To (xn) + kz:; Lo (xk,ux)

st. u,. . neEU
x1,..n-1(w,8,0,w) €X, Vwe W1
xn (u,s,0,w) € To, Ywe W "?

@ Xo,...n is the propagation of the state dispersion

@ max cost treats worst-case scenario, required for stability arguments (classical
stability)

@ w = {wo,...,wy} is the disturbance with wy, € Wy

@ x1.. n-1(u,s,0,w) are the trajectories subject to w and fg

@ X is the “safe” set where the state should be at all time

@ Terminal set Ty (required for recursive feasibility & stability)

@ If O is such that Wy encloses true state dispersion, MPC yields safe policy

Closed-loop stability under some conditions on 8 (not trivial), need v =1
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Robust (N)MPC delivers policy mwg(x0) = ug from

N—-1

u* = arg min wren?z,v To (xn) + kz:; Lo (xk,ux)

st. w,. v €U
x1, nvo1(ws,0,w)eX, Vwe W,V
xyv (u,s,0,w) € Tg, VwEe WeM 1 Vel =E[VemoVaiAr,]

@ Xo,...n is the propagation of the state dispersion

@ max cost treats worst-case scenario, required for stability arguments (classical
stability)

@ w = {wo,...,wy} is the disturbance with wy, € Wy

@ x1.. n-1(u,s,0,w) are the trajectories subject to w and fg

@ X is the “safe” set where the state should be at all time

@ Terminal set Ty (required for recursive feasibility & stability)

@ If O is such that Wy encloses true state dispersion, MPC yields safe policy

Closed-loop stability under some conditions on 8 (not trivial), need v =1
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Safe Learning via Robust MPC
Robust NMPC parameters 6

Policy gradient Condition
VeoJ = E[VemoVaAnr,] sy —f(s,a,0) € Wo

adjusts @ for performance enforces safety through 6
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Safe Learning via Robust MPC
Robust NMPC parameters 6

Policy gradient Condition
VeoJ = E[VemoVaAnr,] sy —f(s,a,0) € Wo

adjusts @ for performance enforces safety through 6
@ No clear connection to SYSID

@ Sometimes does opposite of SYSID
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Safe Learning via Robust MPC
Robust NMPC parameters 6

Policy gradient Condition
Vel =E [Veﬂ'gVaA-,re] sy —f (S, a, 0) € Wo
adjusts @ for performance enforces safety through 6
@ No clear connection to SYSID @ Can be interpreted as a form of

@ Sometimes does opposite of SYSID SYSID (set-membership)
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Safe Learning via Robust MPC
Robust NMPC parameters 6

Policy gradient Condition
Vel =E [Veﬂ'gVaAﬂ-e] sy —f (S7 a, 0) € Wo
adjusts @ for performance enforces safety through 6
@ No clear connection to SYSID @ Can be interpreted as a form of

@ Sometimes does opposite of SYSID SYSID (set-membership)

How to do Safe RL?
Classic RL steps: 8 < 0 — aVgJ
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Safe Learning via Robust MPC
Robust NMPC parameters 6

Policy gradient Condition
Vel =E [Veﬂ'gVaAﬂ-e] sy —f (S7 a, 0) € Wo
adjusts @ for performance enforces safety through 6
@ No clear connection to SYSID @ Can be interpreted as a form of

@ Sometimes does opposite of SYSID SYSID (set-membership)

How to do Safe RL?
Classic RL steps: 8 < 0 — aVgJ

Also reads as:
0+ 0+ A0

A6 = arg min — || A6]7 + VeI AO
A6 20
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Safe Learning via Robust MPC
Robust NMPC parameters 6

Policy gradient Condition
Vel =E [Veﬂ'gvaAﬂ-e] st —f (S, a, 0) € Wo
adjusts @ for performance enforces safety through 6
@ No clear connection to SYSID @ Can be interpreted as a form of

@ Sometimes does opposite of SYSID SYSID (set-membership)

How to do Safe RL?
Classic RL steps: 8 < 0 — aVgJ Safe RL steps 6 < 6 + AB:

Also reads as: 1 ) -
AO = arg min %0 |AB||° + VoJ A6
0 0+A0 ae ca

s.t. s —f (S, a, 0+ AO) € Woine

.1 2 T
A6 = arg e e |A0]" + Vo A6 V(s,a,s;) in data set
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Safe Learning via Robust MPC
Robust NMPC parameters 6

Policy gradient Condition
Vel =E [Veﬂ'gVaAﬂ-e] st —f (S, a, 0) € Wy
adjusts @ for performance enforces safety through 6
@ No clear connection to SYSID @ Can be interpreted as a form of

@ Sometimes does opposite of SYSID SYSID (set-membership)

How to do Safe RL?
Classic RL steps: 8 < 0 — aVgJ Safe RL steps 6 < 6 + AB:

Also reads as: 1 . =
AO = arg min T |AB||” + VoJ A6
0+ 6+A8 80 s
s.t. s —f(s,a,0 + AB) € Wo,no

.1 2 T
A6 = arg e e |A0]" + Vo A6 V(s,a,s;) in data set

Safe RL steps seek performance under safety constraints
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Safe Learning via Robust MPC
Robust NMPC parameters 6

Policy gradient Condition
Vel =E [Veﬂ'gVaAﬂ-e] st —f (S, a, 0) € Wy
adjusts @ for performance enforces safety through 6
@ No clear connection to SYSID @ Can be interpreted as a form of

@ Sometimes does opposite of SYSID SYSID (set-membership)

How to do Safe RL?
Classic RL steps: 8 < 0 — aVgJ Safe RL steps 6 < 6 + AB:

Also reads as: 1 . =
AO = arg min T |AB||” + VoJ A6
0+ 6+A8 80 s
s.t. s —f(s,a,0 + AB) € Wo,no

.1 2 T
A6 = arg e e |A0]" + Vo A6 V(s,a,s;) in data set

Safe RL steps seek performance under safety constraints
Difficulty: differentiating through the effect of Wy, big data in Safe RL steps
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[llustrative example

@ Real system

Xk+1 = Arealxk + Brealuk +n

Noise n in a ball
Robust MPC model

X1 = Aoxk + Boux @ W

W is a square

Quadratic stage cost

Constraint ||x||> < 1
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[llustrative example

@ Real system

Xk4+1 = Arealxk + Brealuk +n

Noise n in a ball
Robust MPC model

Xk+1 = Aoxk + Boux @ W

W is a square

Quadratic stage cost

Constraint ||x||> < 1

Let’s adjusts:
@ Set W, while containing process noise
@ State and input reference in MPC cost function

@ Internal linear feedback (robust MPC internal control)

S. Gros (NTNU) MPC & RL

Fall 2025

via Safe RL
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[llustrative example
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Scenario Tree MPC

Key idea: approximate distribution P [s. s, a] with a
finite set of point predictions, develop in a tree of
possible future outcomes, with associated decisions.

Optimize over the tree.

o (=) = E £ Dar
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Scenario Tree MPC

Key idea: approximate distribution P [s. s, a] with a
finite set of point predictions, develop in a tree of
possible future outcomes, with associated decisions.
Optimize over the tree.

E.g. pick two scenarios

S. Gros (NTNU) MPC & RL

Fall 2025
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Scenario Tree MPC X2,1,U2,1 X3,1

Key idea: approximate distribution P [s. s, a] with a
finite set of point predictions, develop in a tree of
possible future outcomes, with associated decisions. X1,1,U1,1

Optimize over the tree.

X3,2

X33

X2,2,U22 X34
,

X
X2,3,U2,3 3,5

X3,6
X1,2,U1,2

X3,7

X2,4,U2,4 X338

E.g. pick two scenarios

S. Gros (N MPC & RL Fall 2025 10/33




Scenario Tree MPC

X2,1,U2,1 X3,1
Key idea: approximate distribution P [s. s, a] with a
0o 0 O o 5 X3.2
finite set of point predictions, develop in a tree of ’
possible future outcomes, with associated decisions. X1,1, 01,1 <
. 3,3
Optimize over the tree.
X2,2,U2,2 X34
Scenario-Tree MPC gives 77 (s) = u§ from S, W
’ X2,3,U2,3 X35
n N
min E g w;L(xL,uL) X3,6
o i=1 k=0 X1,2,U1,2
i PP i i X3,7
st Xpqr = fi (xk,uk) , Xo=S§
X3,8

. X2,4,U24
h; (xL,u}() <0 ’

where we need to select
@ f! to form the scenarios
@ w1, to build E[]

S. Gros (N
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Scenario Tree MPC X2,1,U2,1 X3,1

Key idea: approximate distribution P [s. s, a] with a
finite set of point predictions, develop in a tree of
possible future outcomes, with associated decisions. X1,1,U1,1

Optimize over the tree.

X3,2

X3,3

X2,2,U22 X34
,

Scenario-Tree MPC gives 7#™MFC (s) = u§ from
g 0 s, o x
X2,3,U2,3 3,5
n N
min E g wi L (x}(, uL) X3,6
ot i=1 k=0 X1,2, U1,2

i i(i i i X3,7
st Xpqr = fi (xk,uk) , Xo=S§

. X2,4,U24
h; (xL,u}() <0 ’

o <‘1;1<n) —0 Difficulties

@ Pick “good” scenarios

X3,8

where we need to select

: ) @ # scenarios explode with
@ f} to form the scenarios horizon (e.g. n = oN here)

@ wi,....n to build E[.
b [] Often shallow trees are used
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RL over Scenario Tree

MPC

Scenario-Tree MPC

i=1 k=0

n N
min E Ew;L(xL,uL)
X,u

t PR T (R, i
S X1 = Ig | Xy, W), Xg =S8

hi (X;(,ll;() S 0
( 1,...,n)
Ck 11,<

=0
Difficulties

@ Pick "good” scenarios

@ Exploding complexity

=] (=) = E £ Dar
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RL over Scenario Tree MPC
Scenario-Tree MPC

S, a n N o
' min wi L (x] u')
i 3t (s

i=1 k=0
i _ fi i i
s.t. Xk+1 = Lp | X, Uy ) Xp =S
1 i <
st hi (%), ) <0
1,...
; Ck (uk’ ’") =0
P4

RL can do:
@ Optimize scenarios f}
@ Optimize weights w;
@ Can work on shallow trees
Difficulties
® Pick “good” scenarios for real-world performance of policy

@ Exploding complexity
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RL over Scenario Tree MPC
Scenario-Tree MPC
S, a n N o
' Tlﬂn ZZw;L (xL,uL)
’ i=1 k=0
s.t. x}‘(+1 = f}‘( (x}‘(,u}‘() , xf) =s
1 h (x. ul) < 0
S+ i\ Xk, Uk | >

1,...,n
2 ok (“k ) =0

RL can do:
@ Optimize scenarios f}
@ Optimize weights w;

@ Can work on shallow trees

Difficulties
® Pick “good” scenarios for real-world performance of policy

@ Exploding complexity Even a depth-1 tree provides a finer representation than
a deterministic model. Theory applies.
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Outline

© Exploration with MPC
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“Safe” (feasible) exploration with MPC

Learning requires exploration. E.g. apply
a = g (s) +d to the real system where d is a
“disturbance”

S. Gros (NTNU) MPC & RL Fall 2025 13/33



“Safe” (feasible) exploration with MPC

Learning requires exploration. E.g. apply
a = g (s) +d to the real system where d is a
“disturbance”

Explore while keeping feasibility?
@ Clearly an arbitrary “policy disturbance” g (s) + d is a poor idea...

@ NLP-based policy: “disturb” the cost function instead! (different options)
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“Safe” (feasible) exploration with MPC

Learning requires exploration. E.g. apply
a = g (s) +d to the real system where d is a
“disturbance”

Explore while keeping feasibility?
@ Clearly an arbitrary “policy disturbance” g (s) + d is a poor idea...

@ NLP-based policy: “disturb” the cost function instead! (different options)

Feasible exploration: g (s) = ug:

N—-1

rQin To (xn) —d ' up + Z Lo (xk,ux)
o k=0

s.t. xky1 = fo (Xkyuk)

ho (xx,ux) <0, Xo=s

satisfies the constraints by construction
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“Safe” (feasible) exploration with MPC

Learning requires exploration. E.g. apply
a = g (s) +d to the real system where d is a
“disturbance”

Explore while keeping feasibility?
@ Clearly an arbitrary “policy disturbance” g (s) + d is a poor idea...

@ NLP-based policy: “disturb” the cost function instead! (different options)

Feasible exploration: g (s) = ug:

N—1
min  To (xn) —d' uo + Lo (xx, ux)
X, kZ:O o d
s.t. xky1 =fo (Xk, uk)

ho (xx,ux) <0, Xo=s

satisfies the constraints by construction
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“Safe” (feasible) exploration with MPC

Learning requires exploration. E.g. apply
a = g (s) +d to the real system where d is a
“disturbance”

Explore while keeping feasibility?
@ Clearly an arbitrary “policy disturbance” g (s) + d is a poor idea...

@ NLP-based policy: “disturb” the cost function instead! (different options)

Feasible exploration: g (s) = ug:

N—1
r?in To (xn) — d uo + Z Lo (xx, ux)
o k=0

s.t. xky1 = fo (Xkyuk)
hg (xx,uk) <0, Xo=s

satisfies the constraints by construction
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“Safe” (feasible) exploration with MPC

Learning requires exploration. E.g. apply
a = g (s) +d to the real system where d is a
“disturbance”

Explore while keeping feasibility?
@ Clearly an arbitrary “policy disturbance” g (s) + d is a poor idea...

@ NLP-based policy: “disturb” the cost function instead! (different options)

Feasible exploration: g (s) = ug:

N—-1
rQin To (xn) —d ' up + Z Lo (xx, ux)
o k=0
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“Safe” (feasible) exploration with MPC

Learning requires exploration. E.g. apply
a =g (s) + d to the real system where d is a
“disturbance”

Explore while keeping feasibility?
@ Clearly an arbitrary “policy disturbance” g (s) + d is a poor idea...

@ NLP-based policy: “disturb” the cost function instead! (different options)

Remarks:

Feasible exploration: mg(s) = uj: . .
P 6(s) = ug @ Exploration e = w§ — g is not

N—1 centred-isotopric
min  To (xn) — d o + Z Lo (xk,ux) s .
A ? @ Can create some technical issues with
k=0 actor-critic methods using linear
st Xir = fo (%, wi) compatible A™¢ yields biased policy
ho (xx,ux) <0, x0=s gradient estimation

@ Bias seems small in practice + linear
compatible A™® does not seem to be
much used in RL

satisfies the constraints by construction
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MPC as a Stochastic Policy

Stochastic policy g [ - |s] = u5 (0, s, d):

N—-1

min  To (xn,d) + Y Lo (X, u, d)
" k=0

s.t.  xky1 = fo (xk,uk, d)
hg (xx,uk,d) <0, x0=s

where d ~ p[]
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MPC as a Stochastic Policy

Stochastic policy g [ - |s] = u5 (0, s, d):

Remarks
N—1
Tiun To (xn,d) + Z Lo (xk, u, d) @ Chose p easy to sample from
’ k=0 @ Typ. bounded support
st Xk = fo (x4, 0k, d) @ Special case: 8 =0 +d

ho (xi, i, d) <0, xo0 =5 @ To ensure feasibility, leave fg,hg “alone”

where d ~ p[']
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MPC as a Stochastic Policy

Stochastic policy g [ - |s] = u5 (0, s, d):

Remarks
N—1
Tiun To (xn,d) + Z Lo (xk, u, d) @ Chose p easy to sample from
’ k=0 @ Typ. bounded support

st Xk = fo (x4, 0k, d) @ Special case: 8 =0 +d

he (xk,uk,d) <0, x0 =5 @ To ensure feasibility, leave fg,hg “alone”

where d ~ p[]
Performance

_ i B . _ A a, =uj (0,s,d)

J(m9) =Erg | DV L(soak) | ak ~mo [ [si] | =Ep | D v L(sk, 1) d ~ p[]
k=0 k=0
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MPC as a Stochastic Policy

Stochastic policy g [ - |s] = u5 (0, s, d):

Remarks
N—1
Tiun To (xn,d) + Z Lo (xk, u, d) @ Chose p easy to sample from
’ k=0 @ Typ. bounded support

st Xk = fo (x4, 0k, d) @ Special case: 8 =0 +d

he (xk,uk,d) <0, x0 =5 @ To ensure feasibility, leave fg,hg “alone”

where d ~ p[]
Performance

_ o~ & ) _ — K ax = ug (0,54, d)

J(m0) = Erg | > 7VL(sk,an) | ax ~mo[-[sk]| =Ep | D ¥ L (skrak) d~ p[]
k=0 k=0

Stochastic Policy Gradient
VgJ(ﬂ'e) =E [V@ |0g o - Qﬂe]

... but what about Vg log m¢?
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MPC as a Stochastic Policy & Policy Gradient

Illustration — Linear MPC with scalar a, d normal centered

£} .
; : i)
e é =
> i >
* O i k
2
d a
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MPC as a Stochastic Policy & Policy Gradient

Illustration — Linear MPC with scalar a, d normal centered

ug(f,s,d)

p

mplals|

S. Gros (NTNU)

MPC & RL

Fall 2025

15 /33



MPC as a Stochastic Policy & Policy Gradient

Illustration — Linear MPC with scalar a, d normal centered

0
£°) .
-~ n
e =
< <
* QO &
]
d a

For d — uj bijective & differentiable

mo [als] = |det (Vaug (6,s,d))| ™" p[d]
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MPC as a Stochastic Policy & Policy Gradient

Illustration — Linear MPC with scalar a, d normal centered

0
£°) .
-~ n
e =
< <
* QO &
]
d a

@ Even for the “simplest” form of MPC,

For d — uj bijective & differentiable
there are challenges

mo [als] = |det (Vaug (6,s,d))| ™" p[d]
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MPC as a Stochastic Policy & Policy Gradient

Illustration — Linear MPC with scalar a, d normal centered

0
o —
w 0
: <
S =
* O &

=
d a
For d — u bijective & differentiable @ Even for the "simplest” form of MPC,
there are challenges
* -1
mo [afs] = |det (Vaug (6,5, d))|" p[d] @ Smoothing the MPC, e.g. leveraging

on IP methods, solves (many of) them
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MPC as a Stochastic Policy & Policy Gradient

Illustration — Linear MPC with scalar a, d normal centered

0
o —
w 0
: <
S =
* O &

=
d a
For d — u bijective & differentiable @ Even for the "simplest” form of MPC,
there are challenges
* -1
mo [afs] = |det (Vaug (6,5, d))|" p[d] @ Smoothing the MPC, e.g. leveraging

on IP methods, solves (many of) them

What about Vg log 7o [a|s]? Ok to compute, but needs 2"%-order sensitivities of u}
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MPC as a Stochastic Policy & Policy Gradient

Illustration — Linear MPC with scalar a, d normal centered

p

ug(0,s, d)

mplals|

d

a

Reparametrization trick gives (smoothing is still theoretically good...)

Vel (me) =E[Velogme - Q] = E[Veug (0,s,d) - VaQ™ (s,a)]
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MPC as a Stochastic Policy & Policy Gradient

Illustration — Linear MPC with scalar a, d normal centered

P

£°) .

o .

- 5}

< =
* O k

]

d a

Reparametrization trick gives (smoothing is still theoretically good...)

Vel (me) =E[Velogme - Q] = E[Veug (0,s,d) - VaQ™ (s,a)]

Open questions on estimation variance w.r.t. sharp variations in Q™° and 7

S. Gros (NTNU) MPC & RL Fall 2025
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Stability of MPC - Introduction

Policy mvipc from

N-1

min T (sy) + Z L (sk,ax)
s,a =

s.t.

skr1 = £ (sk, ax)
h(sk,ak) <0, syeT

o = = = RTINS
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Stability of MPC - Introduction

Policy mvpc from

N—1
ns1in T(sN)—l—ZL(sk,ak)
* k=0

s.t. sk = £ (sk, ax)
h(sk,a) <0, syeT

If for some Koo function & (“bowl-shaped”):
L(s,a) > k(||ls—ss|]), Vs,a

holds, then MPC scheme is stabilizing (+conditions on T)
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Stability of MPC - Introduction

Policy mvpc from

N—1
ns1in T(sN)—l—ZL(sk,ak)
* k=0

s.t. sk = £ (sk, ax)
h(Sk,ak)SO, sy €T

For L not lower bounded by K, we need A such that
L(s,a) = L(s,a)+A(s) — A(f(s,a)) > k(l|]s—ss]]), Vs,a

then MPC scheme is stabilizing (+conditions on T)
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Stability of MPC - Introduction

Policy mypc from Equivalent MPC -

N—1 -
min T(sN)—I—ZL(sk,ak) min — A(s0) + T(SN)+ZE(Skvak)
s,a = ’ k=0
s.t. sk =f (Sk, ak) st sk =1 (Sk7 ak)
h(si,a0) <0, syeT h(sk,ax) <0, syeT

where £(s,a) > k(||s —ss|]), Vs,a

For L not lower bounded by K, we need A such that
L(s,a) = L(s,a)+A(s) — A(f(s,a)) > k(l|]s—ss]]), Vs,a

then MPC scheme is stabilizing (+conditions on T)
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Stability of MPC - Introduction

Policy mypc from Equivalent MPC -

N—1 -
min T(sN)—I—ZL(sk,ak) min — A(s0) + T(SN)+ZE(Skvak)
s,a = ’ k=0
s.t. sk =f (Sk, ak) st sk =1 (Sk7 ak)
h(si,a0) <0, syeT h(sk,ax) <0, syeT

where £(s,a) > k(||s —ss|]), Vs,a

For L not lower bounded by K, we need A such that
L(s,a) = L(s,a)+A(s) — A(f(s,a)) > k(l|]s—ss]]), Vs,a
then MPC scheme is stabilizing (+conditions on T)
Remarks:

@ No discount v =1

@ Exact model, deterministic
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Stability of MPC - Introduction

Policy mypc from Equivalent MPC -

N—-1 =
min T(sN)—|—ZL(sk,ak) min — A(s0) + T(SN)+ZE(SI<731<)
s,a = ’ —o
s.t. sk =f (Sk, ak) st sk =1 (Sk7 ak)
h(sk,ak)go, sy €T h(Sk,ak)SO, sy €T

where £(s,a) > k(||s —ss|]), Vs,a

For L not lower bounded by K, we need A such that
L(s,a) = L(s,a)+A(s) — A(f(s,a)) > k(l|]s—ss]]), Vs,a

then MPC scheme is stabilizing (+conditions on T)

Remarks:

Theory does not apply to MDPs
Can we extend to v < 1 and stochastic
@ Exact model, deterministic dynamics?

@ No discount v =1

S. Gros (NTNU) MPC & RL Fall 2025 17 /33



Stability of MPC - Connection to RLMPC

Policy 7™€ from

N—1
min T (xn) + Z L (xx, uk)
X,u =
st. X1 =f (X, 1), Xo =s
h(xk, llk) S O

o = = = DA
S. Gros (NTNU) MPC & RL



Stability of MPC - Connection to RLMPC

Policy 7M€ from
N—1

r}r?in T (xn) + Z L (xx, uk)
" k=0

st. X1 =f (X, 1), Xo =s
h(xk,uk) S 0

MPC scheme is (nominally) stabilizing if there is A such that

£(s,a) :=L(s,a) + A(s) — A(f(s,a)) > k(|ls—ss]|), Vs,a

where k is Ko (+conditions on T)
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Stability of MPC - Connection to RLMPC

Policy 7M€ from Equivalent MPC

N—1
N—1 . =
r}r?iun T (xn) + Z L (xx,ux) T Als)+ T (xw) + kz:o £ (xi ue)

k=0
st Xkp1 =f (%, uk), X0 =s

h(xk,uk) <0

st. X1 =f (X, 1), Xo =s
h(xk,uk) S 0

MPC scheme is (nominally) stabilizing if there is A such that

£(s,a) :=L(s,a) + A(s) — A(f(s,a)) > k(|ls—ss]|), Vs,a

where k is Ko (+conditions on T)
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Stability of MPC - Connection to RLMPC

Policy 7M€ from

Equivalent MPC

is stable

N—1
N—1 ) -
rQin T (xn) + Z L (xk, ) min  — A(s) + T (xn) + kzof(th)
,u P —
St Xepr =f (%, w), X0 =s st X = F(xow), xo=s
h(Xk,llk)SO h(Xk,llk)SO
MPC scheme is (nominally) stabilizing if there is A such that
E(S, a) =1L (Sa a) + )\(S) —A (f (s,a)) Z ’%(”S - SS||)7 sta
where K is Koo (+conditions on T)
Remarks

@ Modifying the MPC cost is a concept already present in dissipativity theory!

@ Aligned with modifying the cost for MPC performance

@ — Merge the RL & stability modifications for “stability by design”
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Stability-constrained Learning-based MPC - Deterministic case

Given arbitrary stage cost L (s, a), build a
stable policy 75*C minimizing:

( MPC) il_ (sk, )

=0
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Stability-constrained Learning-based MPC - Deterministic case

Given arbitrary stage cost L (s,a), build a  Parametrized policy w3*° from:
stable policy 75*C minimizing: N=1
min g (s)+ Te (XN)-I-ZLG (%, u)

MPC = k=0
L (s«,
J(m"C) = 2oL em) St R = _

i Xk+1 —fe (xk,uk), Xpo =S
ho (x4, ux) <0
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Stability-constrained Learning-based MPC - Deterministic case

Given arbitrary stage cost L (s,a), build a  Parametrized policy w3*° from:

stable policy 75*C minimizing: N=1
min - — g (s) + To ( XN)-I—ZLB (%, u)
o0 X,u —o
MPC) L (i, a
( Z ) st Xup1 = fo (Xk,uk), X0 =s

=0
he (xk,uk) S 0
@ Learning based on L

@ Impose constraint:
LQ(S,a)Z:‘i(”S—SS”), Vs, a

throughout the learning

@ Lo different than L due to stability
+ model error
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Stability-constrained Learning-based MPC - Deterministic case

Given arbitrary stage cost L (s, a), build a
stable policy 75*C minimizing:

( MPC) gl‘ (sk, )

@ Learning based on L

@ Impose constraint:

Parametrized policy 73'7C from:
N—1

Tin — o (s)+ To (xn) + Z Lo (xk,ux)
. k=0

S.t. Xky1 = fo (xk,uk), X0 =S8
hg (xk,uk) S 0

Theorem: under some conditions
Lo(s,a) > s (lls —ssl), Vs,a o 7MPC &, if m, is stabilizing
throughout the learning @ w3PC 5 best stabilizing policy
o Ly different than L due to stability otherwise
+ model error
S. Gros (NTNU) MPC & RL Fall 2025 19/33



Stability-constrained Learning-based MPC - Deterministic case

Given arbitrary stage cost L (s,a), build a  Parametrized policy w3*° from:

stable policy 75*C minimizing: ) N=1
min  — g (s) + Te (xN)—|—ZL9 (xx, uk)
oo X,u s
MPC) L (i, a =
( kz:; ’ ) S.t. Xky1 = fo (Xk7 uk), X0 =S8

hg (Xk,llk) S 0
@ Learning based on L

@ Impose constraint:
Theorem: under some conditions

Lo(s,a) 2 s (lls —ssll), Vsa o 7wHPC 5 7, if m, is stabilizing
throughout the learning @ w3PC 5 best stabilizing policy
o Ly different than L due to stability otherwise

+ model error Change of philosophy from “classic”

dissipativity framework:
stability analysis — stable design
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Stability-constrained Learning-based MPC - Deterministic case

Given arbitrary stage cost L (s, a), build a

stable policy 75*C minimizing:
o0
MPC
( ) Z L Sk, ak
k=0
Constraint

Lo (s,a) > k(|ls—ss]]), Vs,a

is semi-infinite programming, not trivial
Some solutions:

@ Sum-of-Squares (SOS) prog.

@ Convex Lg (+ radially unbounded)

@ Something else?

S. Gros (NTNU)

MPC & RL

Parametrized policy w3 C from:
N—1

rQin — Xo (s) + To (xn) + Z Lo (xk,ux)
. k=0

S.t. Xky1 = fo (xk,uk), X0 =S8
hg (xk,uk) S 0

Theorem: under some conditions

o mwyC 5 &, if m, is stabilizing

o ;MPC —_ .
g ~ — best stabilizing policy
otherwise

Change of philosophy from “classic”
dissipativity framework:
stability analysis — stable design

Fall 2025 19/33



Stability-constrained Learning-based MPC - Deterministic case

Given arbitrary stage cost L (s,a), build a  Parametrized policy w3*° from:
stable policy 75*C minimizing: ) N=1
min  — g (s) + Te (XN)+ZL9 (%, u)
oo X, =
MPC) L (s, ax =
( kz:; ’ ) S.t. Xky1 = fo (Xk7 llk)7 X0 =S8
ho (x4, ux) <0

Note that Ag is redundant for policy
gradient, needed for Q-learning... Theorem: under some conditions

MPC

@ wg ~ — m, if w, is stabilizing

@ w3PC 5 best stabilizing policy

otherwise

Change of philosophy from “classic”
dissipativity framework:
stability analysis — stable design
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Stability-constrained Learning-based MPC - Deterministic case

Given arbitrary stage cost L (s, a), build a
stable policy 75*C minimizing:

( MPC) ZL (sk, )

Extension to stable policy for MDPs?
@ Need stability with discount
@ Need “stochastic dissipativity”

S. Gros (NTNU)

MPC & RL

Parametrized policy w3 C from:
N—1

rQiun — Xo (s) + To (xn) + Z Lo (%, ux)

k=0

S.t. Xky1 = fo (xk,uk), X0 =S8
hg (Xk7 llk) S 0
Theorem: under some conditions
o wiPC 5 &, if m, is stabilizing
@ w3PC 5 best stabilizing policy
otherwise

Change of philosophy from “classic”

dissipativity framework:
stability analysis — stable design

Fall 2025
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Stability-constrained Learning-based

Given arbitrary stage cost L (s, a), build a
stable policy 75*C minimizing:

( MPC) ZL Sk, )

Extension to stable policy for MDPs?
@ Need stability with discount
@ Need “stochastic dissipativity”

MDP dissipativity: (2x Automatica '22)

@ Use Strong Discounted Strict
Dissipativity conditions

@ Form the dissipativity equations in
the measure space of the MDP

S. Gros (NTNU)

MPC & RL

MPC - Deterministic case

Parametrized policy 73'7C from:

N—1

rQin —Xo(s)+ Te (XN)+ZL9 (%, u)
M k=0
S.t. Xky1 = fo (xk,uk), X0 =S8

hg (Xk7 uk) S 0

Theorem: under some conditions

o mwyC 5 &, if m, is stabilizing

o ;MPC - .
g ~ — best stabilizing policy
otherwise

Change of philosophy from “classic”
dissipativity framework:
stability analysis — stable design
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Stability-constrained Learning-based

Given arbitrary stage cost L (s, a), build a
stable policy 75*C minimizing:

( MPC) ZL Sk, )

Extension to stable policy for MDPs?
@ Need stability with discount
@ Need “stochastic dissipativity”

MDP dissipativity: (2x Automatica '22)

@ Use Strong Discounted Strict
Dissipativity conditions

@ Form the dissipativity equations in
the measure space of the MDP

MPC - Deterministic case

Parametrized policy 73'7C from:

N—1

rQin —Xo(s)+ Te (XN)+ZL9 (xk, uk)
M k=0
S.t. Xky1 = fo (xk,uk), X0 =S8

hg (Xk7 uk) S 0

Theorem: under some conditions

o mwyC 5 &, if m, is stabilizing

o ;MPC - .
g ~ — best stabilizing policy
otherwise

Change of philosophy from “classic”
dissipativity framework:
stability analysis — stable design

We have the maths to treat this, not yet the algorithms for the stochastic case...

S. Gros (NTNU)

MPC & RL
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Explored questions - Fundamentals

RLMPC

o = = = RTINS
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Explored questions - Fundamentals

RLMPC

MPC as a
solution to MDPs

@ aMPC — p* o
QMPC — Q*

@ Optimality conditions

@ Discounting (or not)

@ Storage function
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Explored questions - Fundamentals

RLMPC
MPC as a
solution to MDPs Safe RL
@ 7MPC _ x o @ RL + Robust MPC
@0 = @ @ Safety of updating
@ Optimality conditions parameters
. . “on-the-fly"”
@ Discounting (or not)
) @ Role of the model
@ Storage function
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Explored questions - Fundamentals

MPC as a
solution to MDPs

@ aMPC — p* o
QMPC — Q*

@ Optimality conditions

@ Discounting (or not)

@ Storage function

RLMPC

Safe RL

RL + Robust MPC
Safety of updating

Stable Learning

@ MPC dissipativity
"“by design”

S. Gros (NTNU)

parameters @ Stability of updating
“on-the-fly” parameters
Role of the model “on-the-fly”
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Explored questions - Fundamentals

MPC as a
solution to MDPs

@ 7wMPC — zx or
QMPC — Q*

@ Optimality conditions

@ Discounting (or not)

@ Storage function

Constrained policy

RLMPC @ Safe exploration
@ Impact on learning
Safe RL Stable Learning

RL + Robust MPC
Safety of updating

@ MPC dissipativity
"“by design”

S. Gros (NTNU)

parameters @ Stability of updating
“on-the-fly” parameters
Role of the model “on-the-fly”

MPC & RL Fall 2025

21/33



Explored questions - Types of MPC & Learning

RLMPC

o = = = RTINS
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Explored questions - Types of MPC & Learning

Robust MPC
@ Tube-based

@ Scenario trees

RLMPC

o = = = DA
S. Gros (NTNU) MPC & RL



Explored questions - Types of MPC & Learning

Robust MPC
@ Tube-based RLMPC

@ Scenario trees

Output-based
@ Observer in the loop

@ Input-output model
@ Multi-step PC
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Explored questions - Types of MPC & Learning

Robust MPC
@ Tube-based

@ Scenario trees

Output-based
@ Observer in the loop

@ Input-output model
@ Multi-step PC

S. Gros (NTNU)

RLMPC

SYSID + RL for MPC

@ Combinations
retaining optimality
@ Benefits:

regularization,
alignment

MPC & RL Fall 2025
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Explored questions - Types of MPC & Learning

Robust MPC
@ Tube-based

@ Scenario trees

RLMPC

Output-based

@ Observer in the loop
@ Input-output model

Mixed-Integer MPC

@ How to do RL over
MI problems

SYSID + RL for MPC

@ Combinations
retaining optimality

. @ Benefits:
. @ Recently: blending larizati
@ Multi-step PC RL into B&B regularization,
alignment
S. Gros (NTNU) MPC & RL Fall 2025
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Explored questions - Types of MPC & Learning

Robust MPC
@ Tube-based

@ Scenario trees

—

RLMPC [ —

Event-based MPC

@ Learn when to
“refresh” the MPC
solution

@ Performance vs.
computational
resources

Output-based

@ Observer in the loop

Mixed-Integer MPC

@ How to do RL over

SYSID + RL for MPC

@ Combinations
retaining optimality

MI problems
@ Input-output model @ Benefits:
. @ Recently: blending larizati
@ Multi-step PC RL into B&B regularization,
alignment
S. Gros (NTNU) MPC & RL Fall 2025
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Explored questions - Algorithms

RLMPC

o = = = RTINS
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Explored questions - Algorithms

RLMPC with big data

@ Working with (large)
existing data sets

RLMPC
@ Computationally

intensive

@ Early methods...
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Explored questions - Algorithms

RLMPC with big data
@ Working with (large)
existing data sets

@ Computationally
intensive

@ Early methods...

S. Gros (NTNU)

RLMPC

MPC & RL

MPC as its own critic

@ Critic “from scratch”
is demanding

@ Leverage prior
knowledge of MPC

Fall 2025 23/33



Explored questions - Algorithms

RLMPC with big data
@ Working with (large)
existing data sets

@ Computationally
intensive

@ Early methods...

Second-order steps

@ Approximation of

v3J (m3rC)

S. Gros (NTNU)

RLMPC

MPC & RL

MPC as its own critic

@ Critic “from scratch”
is demanding

@ Leverage prior
knowledge of MPC

Fall 2025 23/33



Explored questions - Algorithms

RLMPC with big data

MPC as its own critic
@ Working with (large)

existing data sets o .Critic “fro'm scratch”
) RLMPC is demanding
@ Computationally .
intensive @ Leverage prior

knowledge of MPC

@ Early methods...

Second-order steps Theoretical by-products

@ Approximation of @ MPC-MDP equivalencies

@ Extension of dissipativity theory to MDPs
v2 (ﬂ,MPC)
9 © @ Al models for Decision Making (tomorrow)
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Explored questions - Algorithms

RLMPC with big data

MPC as its own critic
@ Working with (large)

existing data sets o .Critic “fro'm scratch”
) RLMPC is demanding
@ Computationally .
intensive @ Leverage prior

knowledge of MPC

@ Early methods...

Second-order steps Theoretical by-products

@ Approximation of @ MPC-MDP equivalencies

@ Extension of dissipativity theory to MDPs
v2 (ﬂ,MPC>
9 © @ Al models for Decision Making (tomorrow)

- J

>50 papers, but most aspects could use more developments, algorithms, software,
applications. Welcome onboard!
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Belief States — What is it about?

In Regular MDPs, state s is known
Policy a = 7™ (s)
Can work with s =raw recent data

Often there is a latent space construction

Markovian property more or less explicitly
promoted

Estimate sk from observations oo,... «

@ Estimation og,... x — 8k yields

imperfect knowledge of si
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Belief States — What is it about?

In Regular MDPs, state s is known
Policy a = 7* (s)
Can work with s =raw recent data

Often there is a latent space construction

Markovian property more or less explicitly
promoted

Estimate sk from observations oo,... «

@ Estimation og,... x — 8k yields
imperfect knowledge of si

How to “encode” that imperfect knowledge in decision making?

@ Belief state: s ~ ¢k ()
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Belief States — What is it about?

In Regular MDPs, state s is known
Policy a = 7* (s)
Can work with s =raw recent data

Often there is a latent space construction

Markovian property more or less explicitly
promoted

Estimate sk from observations oo,... «

@ Estimation og,... x — 8k yields

imperfect knowledge of si

How to “encode” that imperfect knowledge in decision making?
@ Belief state: s ~ ¢k ()

@ Bayesian perspective: ¢y represents imperfect knowledge, it is not frequentist
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Belief States — What is it about?

In Regular MDPs, state s is known
Policy a = 7* (s)
Can work with s =raw recent data

Often there is a latent space construction

Markovian property more or less explicitly
promoted

Estimate sk from observations oo,... «

@ Estimation og,... x — 8k yields

imperfect knowledge of si

How to “encode” that imperfect knowledge in decision making?
@ Belief state: s ~ ¢k ()
@ Bayesian perspective: ¢y represents imperfect knowledge, it is not frequentist

@ Kalman filter: o is Gaussian, described via mean and covariance
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Belief State Dynamics — How does it work?

Dynamics model
k1 ~ P[] sk, a4
Observation model
o ~ O |sk]
State sy is “partially known”, i.e.

sk ~ @k(+) is a belief state
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[llustrative example - Belief state dynamics

Dynamics model A:{l 1 B:[O} M:{O 1}
Skt1 ~ N (Ask + Bay, ¥5) 0 1]’ 1] 10
1
Observation model (nonlinear) Y= gly 0o=1

o ~ N (SZ Msy, Uo)
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[llustrative example - Policy & belief state

Dynamics model
1 1 0 0 1
Sk41 NN(Ask+Bak, ZS) A= o 1| — 1 M = 1o
Observation model 5. — %I, oo =1

ok ~ N (skT Msy, oo)

Policy: e.g. DLQR over expected state, i.e. ax = —K - Eq, [s] (— Kalman filter)
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Policy: e.g. DLQR over expected state, i.e. ax = —K - Eq, [s] (— Kalman filter)
Pi(sk) N Prr1]1(Sk41) H Pr+1(Sk1)
s % 7
n [ ] N
wn 0
1 1 1
Sk Sk+1 Sk+1

True state and o = (0, 0)
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MDPs with Belief States

Policy 7 should select actions a, for the
belief state o

J(w)=E [Z Y¥L (s, ax)

k=0

ak =1 (w)]
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MDPs with Belief States

Policy 7 should select actions a, for the
belief state o

J(w)=E [Z Y¥L (s, ax)

k=0

ak =1 (w)]

Underlying value functions

Q" (<Pk7 ak) = Esinpn [L (skv ak)]
+VE[V* (@rt1) | @k, ax]
V* (k) = ";i" Q" (¢, ax)

7" () = argmin Q" (¢px, ak)
ay
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MDPs with Belief States

Policy 7 should select actions a, for the A belief state MDP is not only accounting
belief state o for the uncertainty on s. It also selects
actions that optimize “information
gathering”, conducive to taking better
decisions later.

J(w)=E [Z Y¥L (s, ax)

k=0

ak =1 (wk)]

Underlying value functions

Q" (¢k,ak) = Egmipy [L (5, ak)]
+VE[V* (@rt1) | @k, ax]
v (k) = ";"(n Q” (¢, ak)

7" (o) = argmin Q" (k. ax)
ak
where
E[V* (prs1) [ on,ai] :/V* (B (¢, 041, a)) p [0k11 | Pk, ak] dokia
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MDPs with Belief States

Policy 7 should select actions a, for the
belief state o

J(ﬂ') =E |:Z fykL(sk,ak)

k=0

ak =1 (@k)]

Underlying value functions

Q" (¢k,ak) = Egmipy [L (5, ak)]
+YE[ V™ (ors1) | ok, a]
v (k) = ”;Ln Q” (¢, ak)

7 (k) = argmin Q™ (¢« ax)
ag

where

A belief state MDP is not only accounting
for the uncertainty on s. It also selects
actions that optimize “information
gathering”, conducive to taking better
decisions later.

Can we carry the MDP solution in a
repeated planning framework
(MPC-like)?

E[V* (@rr1) |0k, ak] Z/V* (B (¢, 0k+1,ak)) p [0k+1 | Pk, ak] doks1

S. Gros (NTNU)
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Belief States & MPC

World MDP .

RLMPC theoretical pathway

o = = = RTINS
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Belief States & MPC

4 Equivalent MDPs)

World MDP.

N\ J

RLMPC theoretical pathway
@ Establish the set of equivalent MDPs
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Belief States & MPC

[

Equivalent M DPs)

World MDP. °

CDeterministic MDPs )
\S J

RLMPC theoretical pathway

@ Establish the set of equivalent MDPs

@ Find a deterministic subset in that set

That subset gives your MPC structure

S. Gros (NTNU) MPC & RL

Remarks:
Belief state MDPs have a set of

equivalent MDPs (same structure as

regular MDPs)

“Degrade” the stochasticity of

©kt1 = B (@k, 0k11, ak)
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Belief States & MPC

-~

Equivalent M DPs)

RLMPC theoretical pathway

@ Establish the set of equivalent MDPs

@ Find a deterministic subset in that set

Remarks:

Belief state MDPs have a set of

equivalent MDPs (same structure as

regular MDPs)
World MDP. @ "“Degrade” the stochasticity of
Vkt1 = B(@k, 0x11,ak) ?
\(Deterministic MDPs ) ) Deterministic model e.g.

@ Work in expected values:

Pry1 = E[B(Pk,0k11,a)] = Tay P ?

@ Expected observation:

Pry1 = B(Pk, E [0x41] , ax)

@ ML of observation:

That subset gives your MPC structure

Prr1 = B(Px, ML [0x11] , ax)

@ Generic model 8441 = M (¢k)?

S. Gros (NTNU) MPC & RL

Fall 2025

?
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Belief States & MPC Remarks:
@ Belief state MDPs have a set of

4 Equivalent MDPs) equivalent MDPs (same structure as
regular MDPs)
World MDP. @ "“Degrade” the stochasticity of

Vi1 = B (¢k,0641,ak) ?

Dr(sk)

\(Deterministic MDPs ) )

RLMPC theoretical pathway

@ Establish the set of equivalent MDPs 2 o
@ Find a deterministic subset in that set
That subset gives your MPC structure
P41 = Ta, Pi
Sk
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RLMPC theoretical pathway
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Belief States & MPC Remarks:
@ Belief state MDPs have a set of

4 Equivalent MDP3s) equivalent MDPs (same structure as
regular MDPs)
World MDP. @ "“Degrade” the stochasticity of
orr1 = B ok, 0k41,ak) 7
Pr(sK)
CDeterministic MDPs )
S J
RLMPC theoretical pathway
o o

@ Establish the set of equivalent MDPs

@ Find a deterministic subset in that set

That subset gives your MPC structure

Pry1 = B(Pk, E [ox41],ax)
1
Sk
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Pr(sK)
CDeterministic MDPs )
S J
RLMPC theoretical pathway
@ Establish the set of equivalent MDPs 2 o
@ Find a deterministic subset in that set
That subset gives your MPC structure
Prtr1 = B(Pk, E [ox41] s ax)

1
Sk
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Belief States & MPC

[

Equivalent M DPs)

World MDP. °

CDeterministic MDPs )
\S J

RLMPC theoretical pathway

@ Establish the set of equivalent MDPs

@ Find a deterministic subset in that set

That subset gives your MPC structure

Remarks:

Belief state MDPs have a set of
equivalent MDPs (same structure as
regular MDPs)

“Degrade” the stochasticity of
Vkt1 = B(@k, 0x11,ak) ?

Dr(sk)

O

O
%

Pry1 = B(Pk, E [ox41],ax)
1
Sk

What is the best choice? Is there a good choice? Open question

S. Gros (NTNU) MPC & RL
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MPC over Belief State MDPs

MPC model
Prr1 = Bo (@, ax)

“resolving” stochasticity over o Gr(si)

&

Pr1 = Bo (Pr, w)
Sk

&

O
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MPC over Belief State MDPs

MPC model
Prs1 = Bo (Px, ax)

“resolving” stochasticity over o Pr(sK)

MPC scheme gives 7™%° (¢) = uf from

&

r;)fg To (Pn) + Z Lo (Px,uk) =

k=0 @ @
0

st Grri=Bo (Pow), Po=¢
Pr1 = Bo (Pr, w)

1
Sk
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MPC over Belief State MDPs

Remark: optimal £g is nonlinear in @ i.e.
MPC model Lo (sﬁk, uk) 7& Es~¢k[L9 (S, uk)]
Prs1 = Bo (Px, ax)

“resolving” stochasticity over ok Pr(sK)

MPC scheme gives 7™%° (¢) = uf from

&

r(r;igl To (Pn) + Z Lo (Px,uk) =

k=0 @ @
0

st Grri=Bo (Pow), Po=¢
Pr1 = Bo (Pr, w)

1
Sk
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MPC over Belief State MDPs

MPC model

Prs1 = Bo (Px, ax)

Remark: optimal £g is nonlinear in @ i.e.

Lo ((ﬁk, uk) 7£ Es~¢k[L9 (Sv uk)]

“resolving” stochasticity over ok Pr(sK)

MPC scheme gives 7™%° (¢) = uf from

N—-1

in To (¢ Lo (Px,
min o (@n) + ) o (P, )

s.t.

k=0

Prsr = Bo (Gr, i)

Questions

@ Algorithmic to carry ¢o,....n in optimization?

BPo=¢

@ And to evaluate £g (Pk, uk)?
@ Good choice of Bg?
°

Integration with state observer?

S. Gros (NTNU)

0

Pr1 = Bo (Pr, w)

1
Sk

MPC & RL Fall 2025
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Orientation

What we have seen:
@ Robust MPC can provide a safe policy, RL can tune that policy for performance
Some (standard) limitations apply
MPC enables safe (as in feasible) exploration, some challenges though
RL over MPC provides a pathway to enforcing stability in the learning process

Some open research questions for MDPs

RL over MPC with belief states — Theory seems to add up, implementation is an
open question
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Orientation

What we have seen:
@ Robust MPC can provide a safe policy, RL can tune that policy for performance
Some (standard) limitations apply
MPC enables safe (as in feasible) exploration, some challenges though
RL over MPC provides a pathway to enforcing stability in the learning process

Some open research questions for MDPs

RL over MPC with belief states — Theory seems to add up, implementation is an
open question

What we will do next: RL over MPC
@ Beyond MPC — Model-based Decisions and Al for decisions (Tomorrow)

S. Gros (NTNU) MPC & RL Fall 2025 32/33



Thanks for your attention!
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