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What we will discuss: parametrized / hierarchical RL over MPC
@ The theory that supports it and what does it tell us? (Now)
Safe & stable RL over MPC (In the afternoon)

(]
@ RL over MPC with belief states — a future prospect (In the afternoon)
o

Beyond MPC — Model-based Decisions and Al for decisions
(Tomorrow)
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Normal thinking when using MPC
e Fit MPC model to reality as good as possible (SYSID)
@ MPC cost is what we want to minimize (energy, time, money, reference)

@ MPC state constraints are what we need to respect (safety)

S. Gros (NTNU) Intro to RL-MPC Fall 2025 2/29



Focus of today's lectures (Leap-c structure)

\
MPC
Hierarchical NN Vy , 2
S wo(s) _¢_> mzinLd,(z) s.t. go(258) >0 —»
|_) arameterized MPC
b y
Parameterized MPC A
| z*
[’ )
S 5 minLg(2) s-t. go(z;8) >0 >
z
MPC
)

Normal thinking when using MPC
e Fit MPC model to reality as good as possible (SYSID)
@ MPC cost is what we want to minimize (energy, time, money, reference)

o MPC state constraints are what we need to respect (safety)
We are talking about changing everything!!
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Model Predictive Control (MPC)

Optimize a plan over finite horizon, apply first move, repeat

MPC: at current state s sf
N—1 §
min T (xn) + E L (xx,ux) 3
X, c
k=0 c

o\
a

st Xepr = f (xk, wk)
h(xk,uk) <0

X =S8

apply action a = u; to the system

State prediction

Future time
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Model Predictive Control (MPC)

Optimize a plan over finite horizon, apply first move, repeat

MPC: at current state s s
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MPC . .
) What an odd thing to do: we build and
@ is based on planning the future throw away plans all the time knowing that
@ Policy from repeated planning they are wrong all along, but kinda use

them anyway...
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Model Predictive Control (MPC)

Optimize a plan over finite horizon, apply first move, repeat
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apply action a = ug to the system

State prediction

Future time

MPC
@ is based on planning the future MPC is a powerful tool to control
constrained systems, increasingly used as
a practical way of building optimal

o MPC (s) = ug policies

@ Policy from repeated planning
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Theoretical Framework to connect RL and MPC

Model Predictive Control Reinforcement Learning (RL)
@ Model driven @ Data driven
@ Policies from planning @ Optimal policies from learning
@ Constraints oriented @ Performance oriented
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Theoretical Framework to connect RL and MPC

Model Predictive Control Reinforcement Learning (RL)
@ Model driven Connection? @ Data driven
@ Policies from planning @ Optimal policies from learning
@ Constraints oriented @ Performance oriented
Connection? Solves MDP from data

Markov Decision Process (MDP)
@ Framework to understand optimal policies
@ Stochastic, discrete-time problems
@ Extremely permissive mathematics

@ Powerful abstraction of real-world problems

We have connected MPC and RL from an “implementation” point of view
But understanding what we are doing is about connecting MPC to MDPs!!
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Markov Decision Processes (MDP)
Stochastic state transitions (real world) Cost function (instant performance)
L(s,a) € R
s,a — st

(state-action — next state)

A (fairly) general way of describing optimal control
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Markov Decision Processes (MDP)
Stochastic state transitions (real world)
s,a — st
(state-action — next state)

@ Policy
a = m(s)
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@ Closed-loop performance
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with discount v € [0, 1]

@ Optimal policy: ©* from
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Cost function (instant performance)
L(s,a) € R
Impose hard constraints h (s, a) < 0?

[ £(s,a) if h(s,a) <0
L(s,a)_{ 00 if h(s,a)>0

| will use the same view in MPC for a bit
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Markov Decision Processes (MDP)
Stochastic state transitions (real world)
s,a — st
(state-action — next state)

@ Policy
a = m(s)
is how we act on the system

@ Closed-loop performance

J(m) = |:Z'y L (sk,ak)

with discount 7 € [0, 1]

d

@ Optimal policy: ©* from

m7in J ()

Cost function (instant performance)
L(s,a) € R

Impose hard constraints h (s, a) < 0?

[ £(s,a) if h(s,a) <0
L(s,a)_{ 00 if h(s,a)>0

| will use the same view in MPC for a bit

MDP is a go-to framework when
considering general optimal control
problems, useful for applications with
stochastic dynamics.

Solution of an MDP is described by
“simple” equations, but solving them is
very challenging

A (fairly) general way of describing optimal control

S. Gros (NTNU)
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From Policy to Repeated Planning (MPC)

Policy 7t : state — action
] belongs to a function space

Infinite horizon & discounted

oo
75, =argminE |:Z <L (%, ax)
" k=0

Let’s transform an MDP into an MPC and
understand the approximations we make
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From Policy to Repeated Planning (MPC)
Infinite horizon & discounted Policy mr : state — action
] belongs to a function space

Let’s transform an MDP into an MPC and

o0
* . k
T = argminE E 3" L(xk, ak
oo - |: ( ) )
understand the approximations we make

k=0

Finite-horizon equivalent:

N—1
76...n-1 = argmin E [T(sN) + Z%L(sk,ak)]
k=0

If T= V*, then 71'6,”‘,,\[_1 = ﬂ';o

5025:|
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From Policy to Repeated Planning (MPC)

Infinite horizon & discounted Policy mr : state — action
] belongs to a function space

Let’s transform an MDP into an MPC and

o0
* . k
T = argminE E ~* L(Xk, ak
oo - |: ( ) )
understand the approximations we make

k=0

Finite-horizon equivalent:

N—1
7. N—1 = argmin E [T(SN) + nykL(sk,ak):|
k=0

If T=V~*, then g y_1 =75

Planning instead of a policy: Deterministic model, policy
N—1
N—1 ] .
min E | T(sn) + E Y¥L(sk,ak) | so =s "Om"’b_lT(SN) + Z v"L(sk, ak)
a9, . N—1 - | 1 T k=0

. . .. . s.t Sk+1 = f(sk,ak)
i.e. restrict policies to fixed ao,... n—1
So = S

i.e. adopt deterministic model
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From Policy to Repeated Planning (MPC)

Infinite horizon & discounted Policy 7 : state — action
belongs to a function space

oo = argmlnE [ZV x"’ak)} Let’s transform an MDP into an MPC and
k=0 understand the approximations we make

Finite-horizon equivalent:

N_1 = argmin E [T(SN) + Z’Ykl-(skyak)] Why attacking the problem in

To,...,
0, N-1 =0 these ways?
If T=V~*, then g y_1 =75
Planning instead of a policy: Deterministic model planning

N—1
min E | T(sy) + kLs,a
i [ (sw) + > 7 L(sk, ax)

,,,,, — =0

sozs] . mln T(sN —i—Z’y (sk, ax)
k=0

. . .. . s.t Sk+1 = f(sk,ak)
i.e. restrict policies to fixed ao,... n—1
So = S

i.e. adopt deterministic model
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MPC as a policy

Deterministic MPC:

N—1
min T(xn) + KI(x ,u
Up,...,N—1 (N) kz:;’y (k k)
s.t Xk+1 = f(xk,uk)

Xpo =S

Defines policy:

MPC (

T s) = ug

How does #™P€ relate to 7w*?

No reason to match:
@ Planning rather than policing

@ Model approximates
stochasticity, often deterministic

S. Gros (NT!
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MPC as a policy

Deterministic MPC: Infinite horizon & discounted
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MPC as a policy

Deterministic MPC:

N—1
i T L%k,
mins (xn) + ny (xx, uk)

ug, .

N =0
s.t Xk+1 = f(Xk, llk)

Xpo =S
Defines policy:

7‘_MPC (

s) =

How does 7#™P€ relate to 7w*?

No reason to match:
@ Planning rather than policing

@ Model approximates
stochasticity, often deterministic

S. Gros (NTNU)

Infinite horizon & discounted

T, = argminE |:Z 'ykL(sk,ak):|

k=0

MPC: PLANNING OR POLICING?

-

What the'helllis'this?
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MPC as a policy

Deterministic MPC: Infinite horizon & discounted
N—1 oo
min  T(xn) + Z R L(xk, ug) 75, =argminE [Z ¥ L (s, ak)]
Up,...,N—1 —o ™ =0

s.t Xk+1 = f(Xk, llk)
X0 =5 MPC: PLANNING OR POLICING?

Defines policy:

7‘_MPC (

s) =
How does 7#™P€ relate to 7w*?

No reason to match:

-

What the'helllis'this?

@ Planning rather than policing

@ Model approximates

o . Can we clarify the relationship?
stochasticity, often deterministic

S. Gros (NTNU) Intro to RL-MPC Fall 2025
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Some more context on MPC for performance

Historically MPC focuses on constraints
satisfaction & stability. Cost is for
reference tracking, not representative of
the system performance.

S. Gros (NTNU) Intro to RL-MPC Fall 2025 10/29



Some more context on MPC for performance

Historically MPC focuses on constraints
satisfaction & stability. Cost is for
reference tracking, not representative of
the system performance.

“Tracking MPC"
@ Classic stability theory

@ Uncertainty via

» Robust MPC
» Stochastic MPC

@ “MPC is for constraints
satisfaction” (undisclosed speaker)
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the system performance. representative of the system performance.
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Some more context on MPC for performance

Historically MPC focuses on constraints More recently, focus shifted to
satisfaction & stability. Cost is for closed-loop performance, e.g. energy,
reference tracking, not representative of time, money. Cost is generic,
the system performance. representative of the system performance.
@ ‘“Tracking MPC" @ "“Economic MPC”
@ Classic stability theory @ Dissipativity theory
@ Uncertainty via @ Uncertainty via
» Robust MPC » Robust MPC
» Stochastic MPC » Stochastic MPC
@ “MPC is for constraints @ MPC can optimize the system
satisfaction” (undisclosed speaker) performance...
MPC for closed-loop performance Soft claim: MPC can be used as a

practical toolbox to model the solution of

L ) MDPs. This view is the “best way" for
@ ‘“historical robustness’ of MPC does understanding what we are doing with

not hold.ip the presence of economic MPC
stochasticity

@ is not a very old topic
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Outline =

© MPC as a solution to MDPs
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Learning for MPC - Machine Learning in-the-loop

MPC policy
e |

from model*, e.g.

X1 = fo(xk, uk)

[}

S

=] = = = E DA
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Learning for MPC - Machine Learning in-the-loop
(7]

MPC policy Machine-Learning
MPC N . .

e (s) a NN s..s,a |2diust O to fit model
from model*, e.g Xit1 = fo(xk, uk)
X1 = fo(%k, uk)

£
s

to data Sii1, Sk, ak

=] = = = Dar
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Learning for MPC - Machine Learning in-the-loop

0
MPC policy Machine-Learning
w5 C(s) adjust @ to fit model

from model”, e.g. Xpp1 = fo(Xk, ux)

to data Sii1, Sk, ak

Xiy1 = fo(xk, ux)

X
S

“Machine-Learning” in-the-loop fg from
@ Physics-based: first principles + SYSID
@ Neural Network: DNN, LSTM, TFT, ...
@ Statistical: GP, GPC, Probabilistic Al ...
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Learning for MPC - Machine Learning in-the-loop

(7]
MPC policy Machine-Learning
ﬂ'glpc(s) a s:,8,a adjust 0 to fit model
from model”, e.g. Xpp1 = fo(Xk, ux)
Xit1 = fo(xk, ux) to data Sii1, Sk, ak
+
S
“Machine-Learning” in-the-loop fg from
@ Physics-based: first principles + SYSID
@ Neural Network: DNN, LSTM, TFT, ...
@ Statistical: GP, GPC, Probabilistic Al ...
*can replace “model” by any prediction strategies:
input-output predictors, multi-step predictors, etc...
Intro to RL-MPC Fall 2025 12/29
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Learning for MPC - Machine Learning in-the-loop

(7]
MPC policy Machine-Learning
ﬂ'g/IPC(S) a s+,8,a adjust 0 to fit model
from model*, e.g. Xpp1 = fo(Xk, ux)
Xi+1 = fo (%, ux) to data Sii1, Sk, ak
[}
S
Paradi
“Machine-Learning” in-the-loop fo from aracism
@ Perf tied t dicti
@ Physics-based: first principles + SYSID RIS WS ) el
accuracy
@ Neural Network: DNN, LSTM, TFT, ... O T eaiEey v ML
@ Statistical: GP, GPC, Probabilistic Al ... O e i MPE s 5 pelie

*can replace “model” by any prediction strategies:
input-output predictors, multi-step predictors, etc...
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Learning for MPC - Machine Learning in-the-loop

(7]
MPC policy Machine-Learning
© . .
o () a s+,8,a adjust 0 to fit model
from model”, e.g. Xpp1 = fo(Xk, ux)
Xi+1 = fo (%, ux) to data siy1, Sk, ak
£
S
Paradigm
“Machine-Learning” in-the-loop fo from B
. L. @ Performance tied to prediction
@ Physics-based: first principles + SYSID >
accuracy
@ Neural Network: DNN, LSTM, TFT, ... © Tt seanaey e ML
@ Statistical: GP, GPC, Probabilistic Al ... O e i MPE s 5 pelie
*can replace “model” by any prediction strategies: We focus on “breaking” this
input-output predictors, multi-step predictors, etc... 5
paradigm

Learning / RL plays a key role
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How can MPC model an MDP?

MDP optimal policy MPC policy 7P (s) = uf from
* . = k N—-1
T argﬂmlnIE Z’Y L we) min T (xy) + Z VL (%, 1)
k=0 X,u
k=0
is entirely described by Q™ (s, a) st xkq1 = f(xk,uk), X0 =s

h(Xk, llk) <0

o e B



How can MPC model an MDP?

MDP optimal policy MPC policy 7P (s) = uf from
x inE E K N—1
m" = arg min kZ—OfY (%K, uk) min  T(xn) + 3 4L (e, )
= ,u —o
is entirely described by Q™ (s, a) st xep1 =f(xk,m), x0=s
MPC as a model of the MDP h (%, ) < 0
N—1
VMPC (5) := min T(xn) + Z AR L (%K, ug)
" k=0

st xkp1 = f(xk,uk), X0 =s
h(xk,uk) <0
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How can MPC model an MDP?

MDP optimal policy MPC policy 7P (s) = uf from
* . S k N—-1
T = argﬂmmIE kz_ofy L(xk,uk) Tin T(xn) + Z ’ykL(xk,uk)
= ,u —o
is entirely described by Q™ (s, a) st xep1 =f(xk,m), x0=s
MPC as a model of the MDP h (%, ) < 0
N—1
VMPC (5) := min T(xn) + Z AR L (%K, ug)
’" k=0

st xkp1 = f(xk,uk), X0 =s
h(xk,uk) <0

@ Solving MDP < building model of @*
@ E.g. Q-learning does that from data

@ MPC can model a value function...

@ Can it model an action-value function?
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How can MPC model an MDP?

MDP optimal policy MPC policy 7P (s) = uf from

7* =argminE [Z fykL(xk,uk):|

k=0
is entirely described by Q™ (s, a)
MPC as a model of the MDP

N—1
VMPC (5) .= Tin T(xn) + Z AR L(xk, uk)
" k=0
st xkp1 = f(xk,uk), X0 =s
h(xk,uk) <0

N-1
QMFC (s,a) := min T(xn)+ Z AR L (xk, uk)
X,u =0
st xup1r = f(xk, uk)
h(xk,uk) <0

Xp =S8, U =a

X,u

N—1
min  T(xn) + Z AR L(xk, ug)
k=0

st xkq1 = f(xk,uk), X0 =s
h(xk,uk) <0
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How can MPC model an MDP?

MDP optimal policy MPC policy 7P (s) = uf from
x inE E K N—1
m" = arg min > AL (i we) min  TGw) + > 7 Lx )
k=0 X,u =
is entirely described by Q™ (s, a) st xep1 =f(xk,m), x0=s
MPC as a model of the MDP b (xi, ue) <0
N—1
VMPC (5) := min T(xn) + Z ~* L (xk, uk) MPC is consistent (for correct T):
o (= MPC . AMPC
V =
st X = f(Xe, W), Xo=s (s) = min Q" (s,2)
h (xk,u) <0 M9 (s) = argmin QT (s,a)
N—1
QMFC (s,a) := min T(xn)+ Z YL (xk, ux)
" k=0

st xup1r = f(xk, uk)
h(xk,uk) <0
X0 =S8, Up=a
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How can MPC model an MDP?

MDP optimal policy MPC policy 7P (s) = uf from

7* =argminE [Z fykL(xk,uk):|

k=0
is entirely described by Q™ (s, a)
MPC as a model of the MDP

N—1
VMPC (5) .= r?in T(xn) + Z AR L(xk, uk)
" k=0
st xkp1 = f(xk,uk), X0 =s
h(xk,llk) <0

N-1
QMFC (s,a) := r?in T(xn) + nykL(xk,uk)
" k=0
st xup1r = f(xk, uk)
h(Xk,llk) <0

Xp=S8, U =a

N—1
rQin T(xn) + Z <L (%, k)
" k=0

st xkq1 = f(xk,uk), X0 =s
h(Xk,llk) <0

MPC is consistent (for correct T):
VMPC (g) — main QYIPC (5, a)

M (s) = argmin QMC (s, a)
MPC is a complete model of MDP if:
QY"C (s,a) = Q* (s,2)

for all s,a. Then optimality holds:

7MPC () — * (g)
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Modelling the MDP solution with MPC? Paradigm shifts...
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Modelling the MDP solution with MPC? Paradigm shifts...

Shift 1: focus on performance instead of fitting
@ from: fy is a model for the system dynamics

@ to: MPC is a model of the MDP solution
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Modelling the MDP solution with MPC? Paradigm shifts...

Shift 1: focus on performance instead of fitting
@ from: fy is a model for the system dynamics
@ to: MPC is a model of the MDP solution

Classic view...

MPC: at current state s solve

min T (xn) + i L (xx,ux)

X,u
k=0
s.t. xky1 = fo (Xkyuk)
h(xx,ux) <0

Xo = S
gives policy w5 (s) = ug

Find 6 such that prediction
“fits” the data

S. Gros (NTNU) Intro to RL-MPC Fall 2025

14 /29
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Shift 1: focus on performance instead of fitting
@ from: fy is a model for the system dynamics

@ to: MPC is a model of the MDP solution

Classic view... Shift to...
MPC: at current state s solve Find 6 that “fits MPC to optimality”
N—1 according to the data
min T (xn) + Z L (xk,uk) (QMPC — Q* or at least #MPC — 7v*)
X,u
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Modelling the MDP solution with MPC? Paradigm shifts...

Shift 1: focus on performance instead of fitting
@ from: fy is a model for the system dynamics

@ to: MPC is a model of the MDP solution

Classic view... Shift to...
MPC: at current state s solve Find 6 that “fits MPC to optimality”
N—1 according to the data
min T (xn) + Z L (xk,uk) (QMPC — Q* or at least #MPC — 7v*)
X,u
k=0
@ — Best model for closed-loop performance
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) !
B (xy, 1) < 0 # Best model to fit the data
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Modelling the MDP solution with MPC? Paradigm shifts...

Shift 1: focus on performance instead of fitting

@ from: fy is a model for the system dynamics

@ to: MPC is a model of the MDP solution

Classic view...

MPC: at current state s solve

N—1
rQiun T (xn) + Z L (xx,ux)

k=0
s.t. xky1 = fo (Xk,llk)
h(Xk,llk) <0

Xo = S
gives policy w5 (s) = ug

Find @ such that prediction
“fits” the data
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Shift to...

Find 6 that “fits MPC to optimality”

(QMPC — @* or at least 7MPC 5 )

according to the data

@ — Best model for closed-loop performance

@ # Best model to fit the datal

But =MP¢

Intro to RL-MPC

= 7* places “high demands” on fy

Can we do better?
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k=0
s.t. xky1 = fo (Xk,llk)
h(Xk,llk) <0

Xo = S
gives policy w5 (s) = ug

Find @ such that prediction
“fits” the data

S. Gros (NTNU)

Shift to...

Find 6 that “fits MPC to optimality”

(QMPC — @* or at least 7MPC 5 )

according to the data

@ — Best model for closed-loop performance

@ # Best model to fit the datal

But =MP¢

Intro to RL-MPC

= 7* places “high demands” on fy

Can we do better? Yes!

Fall 2025

14 /29



Modelling the MDP solution with MPC? Paradigm shifts...

Shift 1: focus on performance instead of fitting

@ from: fy is a model for the system dynamics

@ to: MPC is a model of the MDP solution

Classic view...

MPC: at current state s solve

N—1
rQiun T (xn) + Z L (xx,ux)

k=0
s.t. xky1 = fo (Xk,llk)
h(Xk,llk) <0

Xo = S
gives policy w5 (s) = ug

Find @ such that prediction
“fits” the data

S. Gros (NTNU)

Shift to...

Find 6 that “fits MPC to optimality”

according to the data

(QMPC — @* or at least 7MPC 5 )

Shift 2: “holistic” parametrization

min
X,u

S.t.

N—-1

To (xn) + Z Lo (%, ux)

k=0
X1 = fo (xk, uk),
ho (xx,ux) <0

Xo = S

i.e. cost and constraints are part of the model

Intro to RL-MPC

Fall 2025

14 /29



Modelling the MDP solution with MPC? Paradigm shifts...

Shift 1: focus on performance instead of fitting
@ from: fy is a model for the system dynamics

@ to: MPC is a model of the MDP solution

Classic view... Shift to...
MPC: at current state s solve Find 6 that “fits MPC to optimality”
N—1 according to the data
min T (xn) + Z L (xk,uk) (QMPC — Q* or at least #MPC — 7v*)
X,u
k=0
s.t. xky1 = fo (Xk,llk)
h(xk, llk) <0
Xo = S

gives policy w5 (s) = ug

Find @ such that prediction
“fits” the data

S. Gros (NTNU) Intro to RL-MPC Fall 2025 14 /29



“Holistic” parametrization - Is that formally justified? Yes...

Full MPC parametrization:

N-1
min  To (xn) + Z Lo (%, uk)

X,u
k=0

S.t. Xky1 = fo (Xk, llk)
hg (xx,ux) <0

Xo =S

gives policy w5'FC (s) = uj

S. Gros (NTNU) Intro to RL-MPC Fall 2025 15/29



“Holistic” parametrization - Is that formally justified? Yes...

Theorem: under some technical conditions and

Full MPC parametrization: . . .
" S for a “rich” parametrization of the MPC, there is
N—1 a 0 such that
min Ty (xn) + > Lo (x«,uk)
ou kZ:O QQ/IPC (Sv a) =Q" (S, a)
sb. Xkp1 = fo (Xk, uk) wytC (s) = 7" (s)
heo (Xk, llk) <0 . .
even if the model fy cannot describe the real
W =FE system accurately
MPC *

gives policy wg~ = (s) = ug

S. Gros (NTNU) Intro to RL-MPC Fall 2025 15 /29



“Holistic” parametrization - Is that formally justified? Yes...

Full MPC parametrization:

N-1
min  To (xn) + Z Lo (xx,ux)

xu —

st Xkp1 = fo (xk, k)
hg (x4, uc) <0
X0 =8

gives policy w5'FC (s) = uj

S. Gros (NTNU)

Theorem: under some technical conditions and
for a “rich” parametrization of the MPC, there is
a 0 such that
MPC
Qo ~(s,a) = Q" (s,a)
mp C(s) =" (s)
even if the model fy cannot describe the real
system accurately
Remarks

@ Compensate MPC model deficiencies in the
cost + constraints

Intro to RL-MPC Fall 2025 15 /29



“Holistic” parametrization - Is that formally justified? Yes...

Full MPC parametrization:

N-1
min  To (xn) + Z Lo (xx,ux)

X,u
k=0
S.t. Xky1 = fo (Xk,llk)
hg (xx,ux) <0

Xo =S

gives policy w5'FC (s) = uj

S. Gros (NTNU)

Theorem: under some technical conditions and
for a “rich” parametrization of the MPC, there is
a 0 such that
MPC
Qo ~(s,a) = Q" (s,a)
mp C(s) =" (s)
even if the model fy cannot describe the real
system accurately
Remarks

@ Compensate MPC model deficiencies in the
cost + constraints

@ Generic: works for robust MPC, stochastic
MPC, economic MPC, Multi-Step PC, etc.
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“Holistic” parametrization - Is that formally justified? Yes...

Full MPC parametrization:

N-1
min  To (xn) + Z Lo (xx,ux)

X,u
k=0

S.t. Xky1 = fo (Xk,llk)
hg (xx,ux) <0

Xo =S

gives policy w5'FC (s) = uj

S. Gros (NTNU)

Theorem: under some technical conditions and
for a “rich” parametrization of the MPC, there is
a 0 such that
MPC
Qo ~(s,a) = Q" (s,a)
mp C(s) =" (s)
even if the model fy cannot describe the real
system accurately
Remarks

@ Compensate MPC model deficiencies in the
cost + constraints

@ Generic: works for robust MPC, stochastic
MPC, economic MPC, Multi-Step PC, etc.

@ Sanity check: technical conditions are mild
but forbid MPC model to be “very absurd”

Intro to RL-MPC Fall 2025 15 /29



“Holistic” parametrization - Is that formally justified? Yes...

Full MPC parametrization:

N-1
min  To (xn) + Z Lo (xx,ux)

xu —

st Xkp1 = fo (xk, k)
hg (x4, uc) <0
Xo =S

gives policy w5'FC (s) = uj

MPC is a model of the
optimal policy
not a policy approximation using
open-loop (model-based)
predictions

S. Gros (NTNU)

Theorem: under some technical conditions and
for a “rich” parametrization of the MPC, there is
a 0 such that
MPC
Qo ~(s,a) = Q" (s,a)
mp C(s) =" (s)
even if the model fy cannot describe the real
system accurately
Remarks

@ Compensate MPC model deficiencies in the
cost + constraints

@ Generic: works for robust MPC, stochastic
MPC, economic MPC, Multi-Step PC, etc.

@ Sanity check: technical conditions are mild
but forbid MPC model to be “very absurd”

Intro to RL-MPC Fall 2025 15 /29



How to use this? Reinforcement Learning

Policy 73'FC (s) = ug from

N—1
r?i“n To (xn) + Z Lo (xx,uk)

k=0
s.t. Xkp1 = fo (Xk7 uk)

ho (x4, ux) <0, Xo=s

® ming J (m}'"C) using data
® 0 — J(my"C) very implicit

@ J(.) is the real-system!

S. Gros (NTNU) Intro to RL-MPC Fall 2025 16 /29



How to use this? Reinforcement Learning

Reinforcement Learning

Tools to approximate 7* from data
This is not (necessarily) about DNNs

Policy 73'FC (s) = ug from
N—1
min  Tp (xn) + Z Lo (xk,ux)
" k=0

s.t. Xkp1 = fo (Xka uk)

hg (x4, uk) <0, x0=s5s

@ ming J (mj'"C) using data

@ 0—J (wgﬂ’c) very implicit

@ J(.) is the real-system!

S. Gros (NT!
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How to use this? Reinforcement Learning

Reinforcement Learning

Tools to approximate 7* from data

This is not (necessarily) about DNNs
MPC

Policy vy~ (s) = ug from
For MPC: tools to find best 0, e.g.

N—1
Tin To (xu) + Z Lo (xk, ux) @ Policy Gradient: estimations of
" k=0
v J(ﬂMPC), ossibly  V2J (wMPC)
s.t. Xkp1 = fo (Xk, uk) o o 3 v 0 ¢

hg (x4, uk) <0, x0=s5s

@ Q-learning: direct “shaping”’ of MPC

@ ming J (mj'"C) using data

@ 0—J (w?,“’c) very implicit

@ J(.) is the real-system!

S. Gros (N

Intro to RL-MPC Fall 2025 16 /29



Reinforcement Learning & MPC
0 Classical Reinforcement Learning
¥

e given by

RL adjusts 0 to achieve
Vod (m3¢) =0

from data

o e )



Reinforcement Learning & MPC

0 Reinforcement Learning over MPC

i
MPC policy

w3 FC (s) = uf from

N—1

min o (xn) + kZ—D Lo (x, uk)

st xpp1 = fo (xk, ug)
ho (x4, uk) <0, x=s

[}

RL adjusts 0 to achieve
Vod (m3¢) =0

from data

S

S. Gros (NTNU) Intro to RL-MPC
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Reinforcement Learning & MPC

0 Reinforcement Learning over MPC
¥

MPC policy

w3 FC (s) = uf from

RL adjusts 6 to achieve

_ ne Vod (m3¢) =0
min o (xn) + kZ—D Lo (x, uk)
st Xk = fo (%k,uk) from data
ho (x4, uk) <0, x=s
¥
S
Why is it useful?
V' Tunes your optimization model for
real-world performance
v MPC: 25 years of results on formal
guarantees & methods
v Easy to inject knowledge
v Learning does not start from scratch
v Planning provides explainability
v Software now available
S. Gros (NTNU) Intro to RL-MPC Fall 2025 17 /29



Reinforcement Learning & MPC
o

Reinforcement Learning over MPC

¥
MPC policy

w3 FC (s) = uf from

RL adjusts 6 to achieve
Vod (m3¢) =0

from data

N—1
min o (xn) + > Lo (xur ug)
k=0
st Xk = fo (%k,uk)
ho (x4, uk) <0, x=s
¥
S
Why is it useful?
V' Tunes your optimization model for

real-world performance

EN

MPC: 25 years of results on formal
guarantees & methods

Easy to inject knowledge

Planning provides explainability

EIENEENEEN

Software now available
S. Gros (NTNU)

Learning does not start from scratch

Why can it be difficult?

X Optimization is computationally more
expensive than a DNN

X Deployment on GPUs is lagging

X Non-convexity can get in the way...

Intro to RL-MPC Fall 2025 17 /29



Reinforcement Learning & MPC

0 Reinforcement Learning over MPC
¥

MPC policy

w3 FC (s) = uf from

RL adjusts 6 to achieve

ne Vod (m3¢) =0
min - To (xn) + > Lo (x4, k)
’ k=0
St Xy = fo (X4 k) from data
he (xk,m) <0, xp=s
[}
S
Why is it useful? Why can it be difficult?
V' Tunes your optimization model for

EN

EIENEENEEN

X Optimization is computationally more

real-world performance expensive than a DNN

MPC: 25 years of results on formal

X Deployment on GPUs is lagging
guarantees & methods

. X Non-convexity can get in the way...
Easy to inject knowledge

Learning does not start from scratch

RL over MPC can tune your MPC for
Planning provides explainability performance beyond what classical
Software now available methods can do!

S. Gros (NTNU) Intro to RL-MPC Fall 2025 17 /29



Example - Home

Setup

Pan(t)
Pais (1)

Battery
ump
§ | Hot water tank
Papp () Pup (6, X,(6)
———

compressor

HWT

Energy Management (simulated)

S. Gros (N

to RL-MPC



Example - Home Energy Management (simulated)
Setup

Real world
data

Learning process: aligned followed with closed-loop

(" inaccirate House model

Process noise €(1234)

Battery
Pen(t)
loads Hot water tank Pais ()
Papp () Pup (6, X,(6)

compressor

HWT

House

=] = = = Dar
S. Gros (NT Intro to RL-MPC



Example - Home Energy Management (simulated)
Setup

Classical
Real world
data

Learning process: aligned followed with closed-loop

model fitting
to build
MPC model

(" inaccirate House model

Process noise €(1234)

loads

Battery
Hot water tank
Papp () Pap (£), X ()

compressor

HWT

House

=] = = = Dar
S. Gros (NT Intro to RL-MPC



Example - Home Energy Management (simulated)

Setup

Learning process: aligned followed with closed-loop

Uiz Reinforcement
Real world model fitting |6 )
data to build Learning
over MPC

MPC model

(" inaccarate House model )

Process noise €(1.234) Battery
Pen(t)
loads Hot water tank Pais (£)

Papp () Pap (£), X ()

compressor HWT House

o e B



Example - Home Energy Management (simulated)

Setup

Learning process: aligned followed with closed-loop

Uiz Reinforcement
Real world model fitting |6 )
data to build Learning
over MPC

MPC model
RL phase (2 RL algo.)

TD3 Leaming steps 168
04 06 08 10
—— cooacea
CDDACGQ 95% C1

--- T3
To395% €1

(" inaccarate House model )
Process noise €(1.234)

loads Hot water tank
Papp () Prp (£, Xo(t)

s F
gz 3
38
-
Performance /()

800 1000

400 800
CDDAC-GQ Learning steps

compressor HWT House

o e B



Example - Home Energy Management (simulated)
Setup

Learning process: aligned followed with closed-loop

Real world
data

Classical
model fitting |6

Reinforcement

. Learnin
d 21l over MPgC
MPC model
RL phase (2 RL algo.)
________________ = cnicawto The RL step improves the
B TD3 95% CI
) MPC performance
significantly from only
e ) model fitting
Pon(®) P (0., g
£ A
& N
‘,‘ TD3: 167
\\ ....... S
W "'\k
’ h COACGQLeamngsieps "
compressor HWT House

S. Gros (N

Intro to RL-MPC
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Example - Home Energy Management (simulated)

Setup

&
Hot water tank

Papp (1)

P (0, X,0

compressor

S. Gros (N

HWT

Learning process: aligned followed with closed-loop

Classical
model fitting |6

Reinforcement
Learning

i Bl over MPC

MPC model

RL phase (2 RL algo.)

TD3 Leaming steps 18
00 02 04 06 08 1

— cooacea
CODAC6Q 98% Gt
03

The RL step improves the
) MPC performance
significantly from only

model fitting
ol

To395% €1

Performance /()

RL over MPC can tune
your MPC for performance
beyond what classical
methods can do!

Intro to RL-MPC Fall 2025 18 /29



Out“ne

© When is RL (most) beneficial for MPC? - |

S. Gros (NTNU)

Intro to RL-MPC




Model fitting?
Proposed paradigm

Policy 73'FC (s) = uf from

N—1

n;in To (XN) + Z Lo (Xk7 llk)
" k=0

s.t. xky1 = fo (Xkyuk)

hg (Xk,llk) S 0, X0 =S

S. Gros (NTNU) Intro to RL-MPC Fall 2025 20/29



Model fitting?

A step back: model adjustment?
Policy 73'FC (s) = uf from
N—1

Ti‘ln T(XN) + Z L(xk,uk)

k=0
s.t. xks1 =fo (Xk, uk)
h(xk,u) <0, x=s
Adjust 0 according to (e.g.)
1. meinIEl [||fg (s,a) — s+||2] vs.
. MPC
2. min J (7\'9 )

. is that different?

S. Gros (NTNU) Intro to RL-MPC Fall 2025

20/29



Model fitting?

A step back: model adjustment?

Policy 73'FC (s) = uf from
N—1
Tin T(XN) aF Z L(xk,uk)
" k=0

s.t. Xkp1 = fo (Xkauk)
h(xk,uk)SO, Xp =8

Adjust 0 according to (e.g.)

1. meinIE [er (s, a) _S+||2} VS.

2. msin J (n%“’c)

Empirical answers:
@ In general it is different...
@ Good to do 1. first, then 2.

@ |Is step 2 necessary?

Improves closed-loop performance
But gain is very case dependent
(also with full parametrization)

What causes that?

. is that different?

S. Gros (NTNU)

Intro to RL-MPC Fall 2025 20/29



Sufficient Condition for MPC Optimality (for MDPs)
MPC policy 7MFC (s) = u} from
N—-1
Tin T(xn) + Z L(xk, uk)
* k=0

s.t Xk+1 = f(xk, llk)
h(xk,uk) <0, x=s

S. Gros (NTNU) Intro to RL-MPC Fall 2025 21/29



Sufficient Condition for MPC Optimality (for MDPs)

MPC policy 7MFC (s) = u} from Sufficient condition of optimality of MPC
N—1 relates model f to optimal value function and
min T (xn) + Z L(%k, ux) conditional distribution s,a — s of the MDP

o k=0 (+ condition on T)

St Xkp1 = f(xk,uk)
h(xk,uk) <0, x=s

S. Gros (NTNU) Intro to RL-MPC Fall 2025 21/29



Sufficient Condition for MPC Optimality (for MDPs)

MPC policy 7MFC (s) = u} from Sufficient condition of optimality of MPC
N—1 relates model f to optimal value function and
min T (xn) + Z L(xk,uk) conditional distribution s,a — s of the MDP

o k=0 (+ condition on T)

St Xkp1 = f(xk,uk)
h(xk,uk) <0, x=s

In general

@ ridge regression
f(s,a) =E[s4|s,a]
@ max likelihood
f(s,a) = maxp[st|s,a]

do not satisfy the optimality
conditions

S. Gros (NTNU) Intro to RL-MPC Fall 2025 21/29



Sufficient Condition for MPC Optimality (for MDPs)

MPC policy 7MFC (s) = u} from

N—1
Tin T(xn) + Z L(xk, uk)
x k=0

St Xkp1 = f(Xk,llk)
h(xk,uk) <0, x=s

In general

@ ridge regression
f(s,a) =E[s4|s,a]
@ max likelihood
f(s,a) = maxp[st|s,a]

do not satisfy the optimality
conditions

S. Gros (NTNU)

Sufficient condition of optimality of MPC

relates model f to optimal value function and

conditional distribution s,a — s of the MDP
(+ condition on T)

Model from “classic SYSID" does not necessarily
yield the best MPC policy

Intro to RL-MPC Fall 2025 21/29



Sufficient Condition for MPC Optimality (for MDPs)

MPC policy 7MFC (s) = u} from Sufficient condition of optimality of MPC
N—1 relates model f to optimal value function and
min  T(xn) + Z L(xk, uk) conditional distribution s,a — s} of the MDP

X k=0 (+ condition on T)

St Xkp1 = f(Xk,llk)
h(xx,ux) <0, xo=s

In general Model from “classic SYSID" does not necessarily
@ ridge regression yield the best MPC policy
f(s,a) =E[s: [s,a] Notable exceptions: model gives E[s; |s,a] and

o max likelihood @ LQR with process noise

@ By extension, locally optimal policies for

> dissipative MDP and
> V* ~~ quadratic in positive invariant set

£(s,a) = maxp[ss |s,a]
do not satisfy the optimality

conditions Smooth tracking MPC, fixed reference away
from constraints, “reasonable” stochasticity

S. Gros (NTNU) Intro to RL-MPC Fall 2025 21/29



Sufficient Condition for MPC Optimality (for MDPs)

MPC policy 7MFC (s) = u} from Sufficient condition of optimality of MPC
N—1 relates model f to optimal value function and
min T (xn) + Z L(xk,uk) conditional distribution s,a — s of the MDP

X k=0 (+ condition on T)

St Xkp1 = f(Xk,llk)
h(xk,uk) <0, x=s

When is RL (most) useful for MPC? “practical” view

@ Not much if smooth tracking problem, spend most of the time close to fixed steady state,
rare transients away from the constraints — small performance gain

S. Gros (NTNU) Intro to RL-MPC Fall 2025 21/29



Sufficient Condition for MPC Optimality (for MDPs)

MPC policy 7MFC (s) = u} from Sufficient condition of optimality of MPC
N—1 relates model f to optimal value function and
min  T(xn) + Z L(xk, uk) conditional distribution s,a — s} of the MDP

k=0 (+ condition on T)

St Xkp1 = f(Xk,llk)

h(xk,uk) <0, x=s

When is RL (most) useful for MPC? “practical” view

Not much if smooth tracking problem, spend most of the time close to fixed steady state,
rare transients away from the constraints — small performance gain

Model is not rich enough to predict the (relevant) expected state transition
Economic problem with “low dissipativity” (trajectories spread over the state space)
Value function curvature changes a lot, problem is non-smooth

Optimal steady-state near / at constraints

Varying exogeneous inputs (e.g. varying prices in energy-related problems, changing reference)

Task-based problems: racing, minimum time, termination conditions, etc.

S. Gros (N Intro to RL-MPC Fall 2025 21/29




Outline =

@ A Deeper Look at the Theory _ | . W : )
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Fully Parametrized MPC Can Describe the MDP Solution

=] = = = E DA
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Fully Parametrized MPC Can Describe the MDP Solution

The theory is about equivalences between MDPs

=] = = = E DA
S. Gros (NTNU) Intro to RL-MPC



Fully Parametrized MPC Can Describe the MDP Solution

The theory is about equivalences between MDPs
World MDP
World MDP definition
@ States s and actions a
@ Cost L (s,a)

@ Transition sy ~ p[-|s,a]

S. Gros (NTNU) Intro to RL-MPC
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Fully Parametrized MPC Can Describe the MDP Solution

The theory is about equivalences between MDPs

World MDP
World MDP definition
@ States s and actions a
@ Cost L (s,a)
@ Transition s ~ p|[-|[s,a]
Optimal value functions
V*(s) = min Q" (s,a)

Q" (s,a) = L(s,a) + YEs, ~p [V* (54) |5, ]

S. Gros (NTNU) Intro to RL-MPC Fall 2025 23/29



Fully Parametrized MPC Can Describe the MDP Solution

The theory is about equivalences between MDPs

World MDP
World MDP definition
@ States s and actions a
@ Cost L (s,a)
@ Transition sy ~ p[-|s,a]
Optimal value functions
V*(s) = min Q" (s,a)
Q" (s,a) = L(s,a) + 7Es,~p [V" (s4) Is, 2]
Optimal policy

7 (s) = argmin Q" (s,a)

S. Gros (NTNU) Intro to RL-MPC Fall 2025
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Fully Parametrized MPC Can Describe the MDP Solution

The theory is about equivalences between MDPs

World MDP Model MDP
World MDP definition Model MDP definition

@ States s and actions a @ States s and actions a

@ Cost L (s,a) @ Cost L (s,a)

@ Transition s ~ p|[-|[s,a] @ Transition s ~ p[-|s,a]
Optimal value functions Optimal value functions

V*(s) = main Q* (s,a) V*(s) = main Q* (s,a)
Q" (s,8) = L(s,8) + vBx, o [V* () Is,al Q" (5,) = L (5,2) + 1 Bayp [ V" (1) 5,2]
Optimal policy Optimal policy

7 (s) = argamin Q* (s,a) #* (s) = argmin Q* (s,a)
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Fully Parametrized MPC Can Describe the MDP Solution

The theory is about equivalences between MDPs

World MDP Model MDP
World MDP definition Model MDP definition

@ States s and actions a @ States s and actions a

@ Cost L (s,a) @ Cost L (s,a)

@ Transition s ~ p|[-|[s,a] @ Transition s ~ p[-|s,a]
Optimal value functions Optimal value functions

V*(s) = main Q* (s,a) V*(s) = main Q* (s,a)
Q" (s,8) = L(s,8) + vBx, o [V* () Is,al Q" (5,) = L (5,2) + 1 Bayp [ V" (1) 5,2]
Optimal policy Optimal policy

7 (s) = argamin Q* (s,a) #* (s) = argmin Q* (s,a)

Theory says that - under some technical conditions - there is a [ such that @Q* = Q*
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Fully Parametrized MPC Can Describe the MDP Solution

The theory is about equivalences between MDPs

World MDP Model MDP
World MDP definition Model MDP definition

@ States s and actions a @ States s and actions a

@ Cost L (s,a) @ Cost L (s,a)

@ Transition s ~ p|[-|[s,a] @ Transition s ~ p[-|s,a]
Optimal value functions Optimal value functions

V*(s) = min Q* (s,a) V*(s) = min Q* (s,a)
Q* (s,8) = L(5,8) + 7Bx, wp [V* () [s,0] O (s,2) = L (5,2) + 1By s [ V7 (81)] 5,2]
Optimal policy Optimal policy

7 (s) = argamin Q* (s,a) #% (s) = argmin Q* (s, a)

Theory says that - under some technical conditions - there is a [ such that @Q* = Q*
Proof: telescopic sum, some non-trivial assumptions to prevent co — co cancellations

S. Gros (NTNU) Intro to RL-MPC Fall 2025 23/29



More on MDP Equivalences

World MDP Model MDP
@ States s and actions a @ States s and actions a
@ Cost L(s,a) @ Cost L (s,a)
@ Transition sy ~ p[-|s,a] @ Transition sy ~ p[-|s,a]

Theory says that
@ Under some technical conditions - there is a L such that Q* = Q*
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More on MDP Equivalences

World MDP Model MDP
@ States s and actions a @ States s and actions a
@ Cost L(s,a) @ Cost L (s,a)
@ Transition sy ~ p[-|s,a] @ Transition sy ~ p[-|s,a]

Theory says that
@ Under some technical conditions - there is a L such that Q* = Q*

@ For [ = L there is a set of models p such that Q* = Q*
@ Conditions for model p “optimality” # min of classical loss functions (except. LQR)

@ World MDP and Model MDP do not need to use the same discount -~y

MPC is a “weird” undiscounted Model MDP

@ Deterministic model is a trivial g, then optimal policy for Model MDP = planning

@ Finite horizon: ok if correct terminal cost (strong assumption, but learning can tune it)
@ Scenario tree: rough p and policy.
o

Robust MPC: carries support j, worst-case cost is a bit off...
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More on MDP Equivalences

World MDP Model MDP
@ States s and actions a @ States s and actions a
@ Cost L(s,a) @ Cost L (s,a)
@ Transition sy ~ p[-|s,a] @ Transition sy ~ p[-|s,a]

Theory says that
@ Under some technical conditions - there is a L such that Q* = Q*

@ For [ = L there is a set of models p such that Q* = Q*
@ Conditions for model p “optimality” # min of classical loss functions (except. LQR)

@ World MDP and Model MDP do not need to use the same discount -~y

Remarks

@ Non-unique optimal model 5 leaves room for aligning it
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Remarks
@ Non-unique optimal model 5 leaves room for aligning it

@ If V* is continuous and support of p is bounded(?) and
path-connected, then f (s,a) C support of p
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@ Non-unique optimal model 5 leaves room for aligning it

@ If V* is continuous and support of p is bounded(?) and
path-connected, then f (s,a) C support of p
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More on MDP Equivalences

World MDP Model MDP
@ States s and actions a @ States s and actions a
@ Cost L(s,a) @ Cost L (s,a)
@ Transition sy ~ p[-|s,a] @ Transition sy ~ p[-|s,a]

Theory says that
@ Under some technical conditions - there is a L such that Q* = Q*

@ For [ = L there is a set of models p such that Q* = Q*
@ Conditions for model p “optimality” # min of classical loss functions (except. LQR)

@ World MDP and Model MDP do not need to use the same discount -~y

Remarks
@ Non-unique optimal model 5 leaves room for aligning it a)

@ If V* is continuous and support of p is bounded(?) and
path-connected, then f (s,a) C support of p

@ More simply said: we can build a “plausible” optimal
deterministic model f (predictions have prob. > 0).

@ Cost modification promotes “simplicity” . 7
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Is there a catch?

World MDP Model MDP

@ States s and actions a @ States s and actions a

@ Cost L(s,a) @ Cost L (s,a)
@ Transition s ~ p|[-|[s,a] @ Transition s ~ p[-|s,a]
Theory says that - under some technical conditions - there is a [ such that (f)* = Q"

Technical assumptions? They are very technical and not intuitive at all. But not very
demanding, and there is a “self-fulfilling” effect in learning, i.e. RL “learns” to satisfy
them.
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@ Cost L(s,a) @ Cost L (s,a)
@ Transition s ~ p|[-|[s,a] @ Transition s ~ p[-|s,a]

Theory says that - under some technical conditions - there is a [ such that @* = Q"

But we are making a strong assumption (in plain sight)
@ Theory assumes that World MDP and Model MDP have the same state s
@ l.e. we need to know the state of the World MDP to build a correct Model MDP

@ That is often unrealistic...
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Is there a catch?

World MDP Model MDP
@ States s and actions a @ States s and actions a
@ Cost L(s,a) @ Cost L (s,a)
@ Transition s ~ p|[-|[s,a] @ Transition s ~ p[-|s,a]

Theory says that - under some technical conditions - there is a [ such that @* = Q"

But we are making a strong assumption (in plain sight)
@ Theory assumes that World MDP and Model MDP have the same state s
@ l.e. we need to know the state of the World MDP to build a correct Model MDP

@ That is often unrealistic...

The end of a nice theory? No, but it is a word of caution...
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Is there a catch?

World MDP Model MDP
@ States s and actions a @ States s and actions a
@ Cost L(s,a) @ Cost L (s,a)
@ Transition s ~ p|[-|[s,a] @ Transition s ~ p[-|s,a]

Theory says that - under some technical conditions - there is a [ such that (f)* = Q"

Eventually the Markov state s “boils down to” the history of past observations
How to embed that in a Model MDP?
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Is there a catch?

World MDP Model MDP
@ States s and actions a

@ Cost L (s,a)

@ Transition sy ~ p[-|s,a]

@ States s and actions a
@ Cost L(s,a)

@ Transition sy ~ p[-|s,a]
Theory says that - under some technical conditions - there is a [ such that @* = Q"

Eventually the Markov state s “boils down to” the history of past observations
How to embed that in a Model MDP?

@ ‘Input-output models”: ARX, multi-step predictors (linear or not), etc.

@ Latent states (a.k.a. embeddings or compressed representations) giving an
Al-driven lower-dimensional version of that history

© State observers giving a model-based meaningful low-dimensional version of that

history
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Is there a catch?

World MDP Model MDP
@ States s and actions a @ States s and actions a

@ Cost L(s,a) @ Cost L (s,a)

@ Transition s ~ p|[-|[s,a] @ Transition s ~ p[-|s,a]

Theory says that - under some technical conditions - there is a [ such that @* = Q"

Eventually the Markov state s “boils down to” the history of past observations
How to embed that in a Model MDP?

@ ‘Input-output models”: ARX, multi-step predictors (linear or not), etc.
@ Latent states (a.k.a. embeddings or compressed representations) giving an
Al-driven lower-dimensional version of that history
© State observers giving a model-based meaningful low-dimensional version of that
history
Options 2 and 3 are part of the decision-making process, back-propagate through
policy + state “constructor”.
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State Estimation in the Learning Loop

RL estimates

VeJ (71'9)

from data

=] = = = E DA
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State Estimation in the Learning Loop
(7]
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RL estimates

Policy
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State
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s = g (Data)

from data

Data
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State Estimation in the Learning Loop

(7]

Policy

o (s)

s
State
estimation

s = g (Data)

Data

RL estimates
VeJ (71'9)

from data

G i i
I
o

Remarks

@ Policy is w0 (Data) = mg (e (Data))
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State Estimation in the Learning Loop
o |
RL estimates

Policy
VeJ (71'9)
o (s)

s
State
estimation

s = g (Data)
S —
|
0

from data

Data

Remarks
@ Policy is w0 (Data) = mg (e (Data))
@ Gradient of the policy now is:

VoD (Data) = Vomo (s) + Ve (Data) Vg (s)
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State Estimation in the Learning Loop
o |
RL estimates

Policy
VeJ (71'9)
o (s)

s
State
estimation

s = g (Data)
S —
|
0

from data

Data

Remarks
@ Policy is w0 (Data) = mg (e (Data))
@ Gradient of the policy now is:

VoD (Data) = Vomo (s) + Ve (Data) Vg (s)

T . o, _ . D
@ Critic is looking at Data — a, i.e. Q™0 (Data,a)
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State Estimation in the Learning Loop
(7]

|
RL estimates

Policy
VgJ (71'9)
o (s)

s
State
estimation

s = g (Data)
S —

{
o

If ©o (Data) is

@ MHE, then its gradient is computed using NLP
sensitivities (same as MPC)

from data

Data

@ DNN, then efficient sensitivity computations exist

@ Bayesian inference? Belief state? Open research topic...
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State Estimation in the Learning Loop

|
RL estimates

VgJ (71'9)
from data
State
estimation
s = g (Data) Data
S
{
0

If ©o (Data) is

@ MHE, then its gradient is computed using NLP
sensitivities (same as MPC)

@ DNN, then efficient sensitivity computations exist

@ Bayesian inference? Belief state? Open research topic...
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Multi-Step Predictive Control
Systems with

@ ~Linear dynamics

@ Input-output data

@ Significant stochasticity
@ Modelling is difficult

=] (=) = acy
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Multi-Step Predictive Control
Systems with

@ ~Linear dynamics Multi-step linear predictors

@ Input-output data u
@ Significant stochasticity y=@| v
@ Modelling is difficult "

@ Recent history of input-output sequence u,y
@ Planned input sequence u

@ Predicted output sequence §
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Multi-Step Predictive Control

SPC for 1, y given Multi-step linear predictors

N u
min Y L(F,,u) y=o| vy
u,y k—0 u
u . .
st. §=0| vy @ Recent history of input-output sequence u,y
u @ Planned input sequence u
h(y,,u) <0 @ Predicted output sequence §

yields policy 7 (u,y) = ug
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Multi-Step Predictive Control

SPC for 1, y given Multi-step linear predictors

N u
min Z L(§,,ux) y=¢| vy
u,y k=0 u
u . .
st. §=0| vy @ Recent history of input-output sequence u,y
u @ Planned input sequence u
h(y,,u) <0 @ Predicted output sequence §
@ Measured output sequences y

yields policy 7 (u,y) = ug
matrix ¢ can be built from past data D, e.g.
2
1 W
min ZE vi—®| vy + R(®)
i€eD u;

s.t. @ causal

or alternative loss functions (e.g. quantile)

S. Gros (NTNU) Intro to RL-MPC Fall 2025 27/29



Multi-Step Predictive Control

SPC for 1, y given Multi-step linear predictors

N u
min Y L(F,,u) y=o| vy
R u

u
st. y=®| y
u

h(§,,w) <0

Recent history of input-output sequence u,y
Planned input sequence u

°
°
@ Predicted output sequence §
°

yields policy 7 (u,y) = ug Measured output sequences y
matrix ® can be built from past data D, e.g.
If R promotes a dynamic
system structure, regression 1 u;
well-posed even with limited mqin Z 5[~ d | y; + R(®)
data (and ¢ high-dimensional) i€D u;

s.t. @ causal

2

But best model fit #- best
policy
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Multi-Step Predictive Control

SPC for u, y given

N
Tig Z L(F ) Can we close the gap via RL? Yes!
’ k=0
. @ RL-MPC theory applies with some twists
st. §=¢| v @ State becomes u, y (window of input-output)
u

h(§,,w) <0

yields policy 7 (u,y) = ug

But best model fit #- best
policy
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Multi-Step Predictive Control

MSPC for u, y given

min W (u, §,u,y)

Y Can we close the gap via RL? Yes!
u . . .
s Gt | o @ RL-MPC theory applies with some twists
u @ State becomes u, y (window of input-output)
Ho (u, §,u,y) <0 @ Modifications in principle not localized in time

yields policy 7o (1,y) = ug

But best model fit #- best
policy
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Multi-Step Predictive Control

MSPC for u, y given

min Wy (u, §,u,y)
Y Can we close the gap via RL? Yes!

u . . .
s Gt | o @ RL-MPC theory applies with some twists
u @ State becomes u, y (window of input-output)
Ho (u, §,u,y) <0 @ Modifications in principle not localized in time

o Hich.di .
e meley e (i) = o High-dimensional parameter space for RL

But best model fit #- best
policy
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Multi-Step Predictive Control

MSPC for u, y given

min Wy (u, §,u,y)
b Can we close the gap via RL? Yes!

u . . .
s Gt | o @ RL-MPC theory applies with some twists
u @ State becomes u, y (window of input-output)
Ho (u, §,u,y) <0 @ Modifications in principle not localized in time

o Hich.di .
e meley e (i) = o High-dimensional parameter space for RL

We need an add-on in Leap-C for high-speed
MPC + sensitivity on this type of model
structure! For now we are down to using CVXPY.

But best model fit #- best
policy
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Multi-Step Predictive Control

MSPC for u, y given
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Orientation

What we have seen:

@ MPC can be understood as a model of the optimal action-value function Q* of
real-world MDPs and/or of the optimal policy 7*

MPC cost (and constraints) become part of that model
Model that best fits the real-world does not (necessarily) yield the best policy
RL is a toolbox to tune the MPC as a model of the MDP solution

MPC state space should match the real world, strong assumption that can be
alleviated
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Orientation

What we have seen:

@ MPC can be understood as a model of the optimal action-value function Q* of
real-world MDPs and/or of the optimal policy 7*

MPC cost (and constraints) become part of that model
Model that best fits the real-world does not (necessarily) yield the best policy
RL is a toolbox to tune the MPC as a model of the MDP solution

MPC state space should match the real world, strong assumption that can be
alleviated

What we will do next: RL over MPC
@ Safe & Stable RL over MPC (In the afternoon)
@ RL over MPC with belief states — a future prospect (In the afternoon)
@ Beyond MPC — Model-based Decisions and Al for decisions (Tomorrow)
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Thanks for your attention!
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