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What we will discuss: parametrized / hierarchical RL over MPC

The theory that supports it and what does it tell us? (Now)

Safe & stable RL over MPC (In the afternoon)

RL over MPC with belief states – a future prospect (In the afternoon)

Beyond MPC – Model-based Decisions and AI for decisions
(Tomorrow)
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Focus of today’s lectures (Leap-c structure)

Normal thinking when using MPC

Fit MPC model to reality as good as possible (SYSID)

MPC cost is what we want to minimize (energy, time, money, reference)

MPC state constraints are what we need to respect (safety)

We are talking about changing everything!!
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Reinforcement Learning Over MPC

Why Does It Work?

Sebastien Gros

Dept. of Cybernetic, NTNU
Faculty of Information Tech.

Freiburg PhD School
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Outline

1 Let’s rebuild some background – MPC and MDPs

2 MPC as a solution to MDPs

3 When is RL (most) beneficial for MPC?

4 A Deeper Look at the Theory
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is based on planning the future

Policy from repeated planning

π
MPC (s) = u
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0

What an odd thing to do: we build and
throw away plans all the time knowing that
they are wrong all along, but kinda use

them anyway...
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is based on planning the future
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π
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MPC is a powerful tool to control
constrained systems, increasingly used as

a practical way of building optimal
policies
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Theoretical Framework to connect RL and MPC

Model Predictive Control

Model driven

Policies from planning

Constraints oriented

Reinforcement Learning (RL)

Data driven

Optimal policies from learning

Performance oriented
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Framework to understand optimal policies

Stochastic, discrete-time problems

Extremely permissive mathematics

Powerful abstraction of real-world problems

Model Predictive Control

Model driven

Policies from planning

Constraints oriented

Reinforcement Learning (RL)

Data driven

Optimal policies from learning

Performance oriented

Solves MDP from dataConnection?

Connection?

We have connected MPC and RL from an “implementation” point of view
But understanding what we are doing is about connecting MPC to MDPs!!
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Markov Decision Processes (MDP)

Stochastic state transitions (real world)

s, a→ s+

(state-action → next state)

Cost function (instant performance)
L(s, a) ∈ R

A (fairly) general way of describing optimal control
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min
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Impose hard constraints h (s, a) ≤ 0?

L (s, a) =

{

ℓ (s, a) if h (s, a) ≤ 0
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I will use the same view in MPC for a bit
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ℓ (s, a) if h (s, a) ≤ 0
∞ if h (s, a) > 0

I will use the same view in MPC for a bit

MDP is a go-to framework when
considering general optimal control
problems, useful for applications with

stochastic dynamics.

Solution of an MDP is described by
“simple” equations, but solving them is

very challenging

A (fairly) general way of describing optimal control
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From Policy to Repeated Planning (MPC)

Infinite horizon & discounted

π
⋆

∞ = argmin
π

E

[

∞
∑

k=0

γ
kL(xk , ak)

]

Policy π : state → action
belongs to a function space

Let’s transform an MDP into an MPC and
understand the approximations we make
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N−1
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∑
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∣

∣

∣

∣

∣

s0 = s

]

i.e. restrict policies to fixed a0,...,N−1
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∑
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S. Gros (NTNU) Intro to RL-MPC Fall 2025 8 / 29



From Policy to Repeated Planning (MPC)

Infinite horizon & discounted

π
⋆

∞ = argmin
π

E

[

∞
∑

k=0

γ
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Let’s transform an MDP into an MPC and
understand the approximations we make

Finite-horizon equivalent:

π
⋆

0,...,N−1 = argmin
π0,...,N−1

E

[

T (sN) +
N−1
∑

k=0

γ
kL(sk , ak)

]

If T = V ⋆, then π
⋆

0,...,N−1 = π
⋆

∞

Why attacking the problem in
these ways?

Planning instead of a policy:

min
a0,...,N−1

E

[

T (sN) +

N−1
∑

k=0

γ
kL(sk , ak)

∣

∣

∣

∣

∣

s0 = s

]

i.e. restrict policies to fixed a0,...,N−1

Deterministic model, planning

min
a0,...,N−1

T (sN) +

N−1
∑

k=0

γ
kL(sk , ak)

s.t sk+1 = f(sk , ak)

s0 = s

i.e. adopt deterministic model
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MPC as a policy

Deterministic MPC:

min
u0,...,N−1

T (xN) +
N−1
∑

k=0

γ
kL(xk , uk)

s.t xk+1 = f(xk , uk)

x0 = s

Defines policy:

π
MPC (s) = u

⋆

0

How does πMPC relate to π
⋆?

No reason to match:

Planning rather than policing

Model approximates
stochasticity, often deterministic

Infinite horizon & discounted

π
⋆

∞ = argmin
π

E

[

∞
∑

k=0

γ
kL(sk , ak)

]
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MPC as a policy

Deterministic MPC:

min
u0,...,N−1

T (xN) +

N−1
∑

k=0

γ
kL(xk , uk)

s.t xk+1 = f(xk , uk)

x0 = s

Defines policy:
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MPC (s) = u

⋆
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Can we clarify the relationship?
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Some more context on MPC for performance

Historically MPC focuses on constraints
satisfaction & stability. Cost is for

reference tracking, not representative of
the system performance.
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the system performance.

“Tracking MPC”

Classic stability theory

Uncertainty via

◮ Robust MPC
◮ Stochastic MPC

“MPC is for constraints
satisfaction” (undisclosed speaker)
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time, money. Cost is generic,
representative of the system performance.
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Uncertainty via
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◮ Stochastic MPC

MPC can optimize the system
performance...
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Some more context on MPC for performance

Historically MPC focuses on constraints
satisfaction & stability. Cost is for

reference tracking, not representative of
the system performance.

“Tracking MPC”

Classic stability theory

Uncertainty via

◮ Robust MPC
◮ Stochastic MPC

“MPC is for constraints
satisfaction” (undisclosed speaker)

More recently, focus shifted to
closed-loop performance, e.g. energy,

time, money. Cost is generic,
representative of the system performance.

“Economic MPC”

Dissipativity theory

Uncertainty via

◮ Robust MPC
◮ Stochastic MPC

MPC can optimize the system
performance...

MPC for closed-loop performance

is not a very old topic

“historical robustness” of MPC does
not hold in the presence of
stochasticity

Soft claim: MPC can be used as a
practical toolbox to model the solution of
MDPs. This view is the “best way” for
understanding what we are doing with

economic MPC
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Outline

1 Let’s rebuild some background – MPC and MDPs

2 MPC as a solution to MDPs

3 When is RL (most) beneficial for MPC?

4 A Deeper Look at the Theory
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Learning for MPC - Machine Learning in-the-loop

MPC policy

π
MPC

θ (s)

from model⋆, e.g.

xk+1 = fθ(xk , uk)

a

s
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Learning for MPC - Machine Learning in-the-loop

MPC policy

π
MPC

θ (s)

from model⋆, e.g.

xk+1 = fθ(xk , uk)

Machine-Learning

adjust θ to fit model

xk+1 = fθ(xk , uk)

to data sk+1, sk , ak

a

s

s+, s, a

θ
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MPC policy

π
MPC

θ (s)

from model⋆, e.g.

xk+1 = fθ(xk , uk)

Machine-Learning

adjust θ to fit model

xk+1 = fθ(xk , uk)

to data sk+1, sk , ak

a

s

s+, s, a

θ

“Machine-Learning” in-the-loop fθ from

Physics-based: first principles + SYSID

Neural Network: DNN, LSTM, TFT, . . .

Statistical: GP, GPC, Probabilistic AI . . .
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⋆can replace “model” by any prediction strategies:

input-output predictors, multi-step predictors, etc...
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Paradigm

Performance tied to prediction
accuracy

Target accuracy via ML

Ignore that MPC is a policy
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Learning for MPC - Machine Learning in-the-loop

MPC policy

π
MPC

θ (s)

from model⋆, e.g.

xk+1 = fθ(xk , uk)

Machine-Learning

adjust θ to fit model

xk+1 = fθ(xk , uk)

to data sk+1, sk , ak

a

s

s+, s, a

θ

“Machine-Learning” in-the-loop fθ from

Physics-based: first principles + SYSID

Neural Network: DNN, LSTM, TFT, . . .

Statistical: GP, GPC, Probabilistic AI . . .

⋆can replace “model” by any prediction strategies:

input-output predictors, multi-step predictors, etc...

Paradigm

Performance tied to prediction
accuracy

Target accuracy via ML

Ignore that MPC is a policy

We focus on “breaking” this
paradigm

Learning / RL plays a key role
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How can MPC model an MDP?

MDP optimal policy

π
⋆ = argmin

π

E

[

∞
∑

k=0

γ
kL(xk , uk)

]

is entirely described by Q⋆ (s, a)

MPC policy π
MPC (s) = u⋆

0 from

min
x,u

T (xN) +

N−1
∑

k=0

γ
kL(xk , uk)

s.t xk+1 = f(xk , uk), x0 = s

h (xk , uk) ≤ 0
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How can MPC model an MDP?

MDP optimal policy

π
⋆ = argmin

π

E

[

∞
∑

k=0

γ
kL(xk , uk)

]

is entirely described by Q⋆ (s, a)

MPC policy π
MPC (s) = u⋆

0 from

min
x,u

T (xN) +

N−1
∑

k=0

γ
kL(xk , uk)

s.t xk+1 = f(xk , uk), x0 = s

h (xk , uk) ≤ 0
MPC as a model of the MDP

VMPC (s) := min
x,u

T (xN) +

N−1
∑

k=0

γ
kL(xk , uk)

s.t xk+1 = f(xk , uk), x0 = s

h (xk , uk) ≤ 0

Solving MDP ← building model of Q⋆

E.g. Q-learning does that from data

MPC can model a value function...

Can it model an action-value function?
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How can MPC model an MDP?

MDP optimal policy

π
⋆ = argmin

π

E

[

∞
∑

k=0

γ
kL(xk , uk)

]

is entirely described by Q⋆ (s, a)

MPC policy π
MPC (s) = u⋆

0 from

min
x,u

T (xN) +

N−1
∑

k=0

γ
kL(xk , uk)

s.t xk+1 = f(xk , uk), x0 = s

h (xk , uk) ≤ 0
MPC as a model of the MDP

VMPC (s) := min
x,u

T (xN) +

N−1
∑

k=0

γ
kL(xk , uk)

s.t xk+1 = f(xk , uk), x0 = s

h (xk , uk) ≤ 0

QMPC (s, a) := min
x,u

T (xN) +
N−1
∑

k=0

γ
kL(xk , uk)

s.t xk+1 = f(xk , uk)

h (xk , uk) ≤ 0

x0 = s, u0 = a
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How can MPC model an MDP?

MDP optimal policy

π
⋆ = argmin

π

E

[

∞
∑

k=0

γ
kL(xk , uk)

]

is entirely described by Q⋆ (s, a)

MPC policy π
MPC (s) = u⋆

0 from

min
x,u

T (xN) +

N−1
∑

k=0

γ
kL(xk , uk)

s.t xk+1 = f(xk , uk), x0 = s

h (xk , uk) ≤ 0
MPC as a model of the MDP

VMPC (s) := min
x,u

T (xN) +

N−1
∑

k=0

γ
kL(xk , uk)

s.t xk+1 = f(xk , uk), x0 = s

h (xk , uk) ≤ 0

QMPC (s, a) := min
x,u

T (xN) +
N−1
∑

k=0

γ
kL(xk , uk)

s.t xk+1 = f(xk , uk)

h (xk , uk) ≤ 0

x0 = s, u0 = a

MPC is consistent (for correct T ):

VMPC (s) = min
a

QMPC (s, a)

π
MPC (s) = argmin

a

QMPC (s, a)
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How can MPC model an MDP?

MDP optimal policy

π
⋆ = argmin

π

E

[

∞
∑

k=0

γ
kL(xk , uk)

]

is entirely described by Q⋆ (s, a)

MPC policy π
MPC (s) = u⋆

0 from

min
x,u

T (xN) +

N−1
∑

k=0

γ
kL(xk , uk)

s.t xk+1 = f(xk , uk), x0 = s

h (xk , uk) ≤ 0
MPC as a model of the MDP

VMPC (s) := min
x,u

T (xN) +

N−1
∑

k=0

γ
kL(xk , uk)

s.t xk+1 = f(xk , uk), x0 = s

h (xk , uk) ≤ 0

QMPC (s, a) := min
x,u

T (xN) +
N−1
∑

k=0

γ
kL(xk , uk)

s.t xk+1 = f(xk , uk)

h (xk , uk) ≤ 0

x0 = s, u0 = a

MPC is consistent (for correct T ):

VMPC (s) = min
a

QMPC (s, a)

π
MPC (s) = argmin

a

QMPC (s, a)

MPC is a complete model of MDP if:

QMPC (s, a) = Q⋆ (s, a)

for all s, a. Then optimality holds:

π
MPC (s) = π

⋆ (s)
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Modelling the MDP solution with MPC? Paradigm shifts...
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Modelling the MDP solution with MPC? Paradigm shifts...

Shift 1: focus on performance instead of fitting

from: fθ is a model for the system dynamics

to: MPC is a model of the MDP solution
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Modelling the MDP solution with MPC? Paradigm shifts...

Shift 1: focus on performance instead of fitting

from: fθ is a model for the system dynamics

to: MPC is a model of the MDP solution

Classic view...

MPC: at current state s solve

min
x,u

T (xN) +

N−1
∑

k=0

L (xk , uk)

s.t. xk+1 = fθ (xk , uk)

h (xk , uk) ≤ 0

x0 = s

gives policy π
MPC

θ (s) = u⋆

0

Find θ such that prediction
“fits” the data
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Modelling the MDP solution with MPC? Paradigm shifts...

Shift 1: focus on performance instead of fitting

from: fθ is a model for the system dynamics

to: MPC is a model of the MDP solution

Classic view...

MPC: at current state s solve

min
x,u

T (xN) +

N−1
∑

k=0

L (xk , uk)

s.t. xk+1 = fθ (xk , uk)

h (xk , uk) ≤ 0

x0 = s

gives policy π
MPC

θ (s) = u⋆

0

Find θ such that prediction
“fits” the data

Shift to...

Find θ that “fits MPC to optimality”
according to the data

(QMPC → Q⋆ or at least π
MPC → π

⋆)
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Modelling the MDP solution with MPC? Paradigm shifts...

Shift 1: focus on performance instead of fitting

from: fθ is a model for the system dynamics

to: MPC is a model of the MDP solution

Classic view...

MPC: at current state s solve

min
x,u

T (xN) +

N−1
∑

k=0

L (xk , uk)

s.t. xk+1 = fθ (xk , uk)

h (xk , uk) ≤ 0

x0 = s

gives policy π
MPC

θ (s) = u⋆

0

Find θ such that prediction
“fits” the data

Shift to...

Find θ that “fits MPC to optimality”
according to the data

(QMPC → Q⋆ or at least π
MPC → π

⋆)

→ Best model for closed-loop performance

6= Best model to fit the data!
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Modelling the MDP solution with MPC? Paradigm shifts...

Shift 1: focus on performance instead of fitting

from: fθ is a model for the system dynamics

to: MPC is a model of the MDP solution

Classic view...

MPC: at current state s solve

min
x,u

T (xN) +

N−1
∑

k=0

L (xk , uk)

s.t. xk+1 = fθ (xk , uk)

h (xk , uk) ≤ 0

x0 = s

gives policy π
MPC

θ (s) = u⋆

0

Find θ such that prediction
“fits” the data

Shift to...

Find θ that “fits MPC to optimality”
according to the data

(QMPC → Q⋆ or at least π
MPC → π

⋆)

→ Best model for closed-loop performance

6= Best model to fit the data!

But πMPC = π
⋆ places “high demands” on fθ

Can we do better?
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Modelling the MDP solution with MPC? Paradigm shifts...

Shift 1: focus on performance instead of fitting

from: fθ is a model for the system dynamics

to: MPC is a model of the MDP solution

Classic view...

MPC: at current state s solve

min
x,u

T (xN) +

N−1
∑

k=0

L (xk , uk)

s.t. xk+1 = fθ (xk , uk)

h (xk , uk) ≤ 0

x0 = s

gives policy π
MPC

θ (s) = u⋆

0

Find θ such that prediction
“fits” the data

Shift to...

Find θ that “fits MPC to optimality”
according to the data

(QMPC → Q⋆ or at least π
MPC → π

⋆)

→ Best model for closed-loop performance

6= Best model to fit the data!

But πMPC = π
⋆ places “high demands” on fθ

Can we do better? Yes!
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Modelling the MDP solution with MPC? Paradigm shifts...

Shift 1: focus on performance instead of fitting

from: fθ is a model for the system dynamics

to: MPC is a model of the MDP solution

Classic view...

MPC: at current state s solve

min
x,u

T (xN) +

N−1
∑

k=0

L (xk , uk)

s.t. xk+1 = fθ (xk , uk)

h (xk , uk) ≤ 0

x0 = s

gives policy π
MPC

θ (s) = u⋆

0

Find θ such that prediction
“fits” the data

Shift to...

Find θ that “fits MPC to optimality”
according to the data

(QMPC → Q⋆ or at least π
MPC → π

⋆)

Shift 2: “holistic” parametrization

min
x,u

Tθ (xN) +
N−1
∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk) , x0 = s

hθ (xk , uk) ≤ 0

i.e. cost and constraints are part of the model
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Modelling the MDP solution with MPC? Paradigm shifts...

Shift 1: focus on performance instead of fitting

from: fθ is a model for the system dynamics

to: MPC is a model of the MDP solution

Classic view...

MPC: at current state s solve

min
x,u

T (xN) +

N−1
∑

k=0

L (xk , uk)

s.t. xk+1 = fθ (xk , uk)

h (xk , uk) ≤ 0

x0 = s

gives policy π
MPC

θ (s) = u⋆

0

Find θ such that prediction
“fits” the data

Shift to...

Find θ that “fits MPC to optimality”
according to the data

(QMPC → Q⋆ or at least π
MPC → π

⋆)
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“Holistic” parametrization - Is that formally justified? Yes...

Full MPC parametrization:

min
x,u

Tθ (xN) +

N−1
∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk ) ≤ 0

x0 = s

gives policy π
MPC

θ (s) = u⋆

0
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“Holistic” parametrization - Is that formally justified? Yes...

Full MPC parametrization:

min
x,u

Tθ (xN) +

N−1
∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk ) ≤ 0

x0 = s

gives policy π
MPC

θ (s) = u⋆

0

Theorem: under some technical conditions and
for a “rich” parametrization of the MPC, there is
a θ such that

QMPC

θ (s, a) = Q⋆ (s, a)

π
MPC

θ (s) = π
⋆ (s)

even if the model fθ cannot describe the real
system accurately
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“Holistic” parametrization - Is that formally justified? Yes...

Full MPC parametrization:

min
x,u

Tθ (xN) +

N−1
∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk ) ≤ 0

x0 = s

gives policy π
MPC

θ (s) = u⋆

0

Theorem: under some technical conditions and
for a “rich” parametrization of the MPC, there is
a θ such that

QMPC

θ (s, a) = Q⋆ (s, a)

π
MPC

θ (s) = π
⋆ (s)

even if the model fθ cannot describe the real
system accurately

Remarks

Compensate MPC model deficiencies in the
cost + constraints
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Full MPC parametrization:

min
x,u

Tθ (xN) +

N−1
∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk ) ≤ 0

x0 = s

gives policy π
MPC

θ (s) = u⋆

0

Theorem: under some technical conditions and
for a “rich” parametrization of the MPC, there is
a θ such that

QMPC

θ (s, a) = Q⋆ (s, a)

π
MPC

θ (s) = π
⋆ (s)

even if the model fθ cannot describe the real
system accurately

Remarks

Compensate MPC model deficiencies in the
cost + constraints

Generic: works for robust MPC, stochastic
MPC, economic MPC, Multi-Step PC, etc.
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“Holistic” parametrization - Is that formally justified? Yes...

Full MPC parametrization:

min
x,u

Tθ (xN) +

N−1
∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk ) ≤ 0

x0 = s

gives policy π
MPC

θ (s) = u⋆

0

Theorem: under some technical conditions and
for a “rich” parametrization of the MPC, there is
a θ such that

QMPC

θ (s, a) = Q⋆ (s, a)

π
MPC

θ (s) = π
⋆ (s)

even if the model fθ cannot describe the real
system accurately

Remarks

Compensate MPC model deficiencies in the
cost + constraints

Generic: works for robust MPC, stochastic
MPC, economic MPC, Multi-Step PC, etc.

Sanity check: technical conditions are mild
but forbid MPC model to be “very absurd”
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“Holistic” parametrization - Is that formally justified? Yes...

Full MPC parametrization:

min
x,u

Tθ (xN) +

N−1
∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk ) ≤ 0

x0 = s

gives policy π
MPC

θ (s) = u⋆

0

MPC is a model of the
optimal policy

not a policy approximation using
open-loop (model-based)

predictions

Theorem: under some technical conditions and
for a “rich” parametrization of the MPC, there is
a θ such that

QMPC

θ (s, a) = Q⋆ (s, a)

π
MPC

θ (s) = π
⋆ (s)

even if the model fθ cannot describe the real
system accurately

Remarks

Compensate MPC model deficiencies in the
cost + constraints

Generic: works for robust MPC, stochastic
MPC, economic MPC, Multi-Step PC, etc.

Sanity check: technical conditions are mild
but forbid MPC model to be “very absurd”
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How to use this? Reinforcement Learning

Policy π
MPC

θ (s) = u⋆

0 from

min
x,u

Tθ (xN) +
N−1
∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk) ≤ 0, x0 = s

minθ J
(

π
MPC

θ

)

using data

θ → J
(

π
MPC

θ

)

very implicit

J(.) is the real-system!
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How to use this? Reinforcement Learning

Policy π
MPC

θ (s) = u⋆

0 from

min
x,u

Tθ (xN) +
N−1
∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk) ≤ 0, x0 = s

minθ J
(

π
MPC

θ

)

using data

θ → J
(

π
MPC

θ

)

very implicit

J(.) is the real-system!

Reinforcement Learning

Tools to approximate π
⋆ from data

This is not (necessarily) about DNNs
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How to use this? Reinforcement Learning

Policy π
MPC

θ (s) = u⋆

0 from

min
x,u

Tθ (xN) +
N−1
∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk) ≤ 0, x0 = s

minθ J
(

π
MPC

θ

)

using data

θ → J
(

π
MPC

θ

)

very implicit

J(.) is the real-system!

Reinforcement Learning

Tools to approximate π
⋆ from data

This is not (necessarily) about DNNs

For MPC: tools to find best θ, e.g.

Policy Gradient: estimations of

∇θJ
(

π
MPC

θ

)

, possibly ∇2
θJ

(

π
MPC

θ

)

Q-learning: direct “shaping” of MPC
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Reinforcement Learning & MPC
Classical Reinforcement Learning

πθ given by

RL adjusts θ to achieve

∇θJ
(

π
MPC

θ

)

= 0

from data

a

s

s+, s, a

θ
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Reinforcement Learning & MPC
Reinforcement Learning over MPC

MPC policy

π
MPC

θ (s) = u⋆

0 from

min
x,u

Tθ (xN ) +

N−1∑

k=0

Lθ (xk , uk )

s.t. xk+1 = fθ (xk , uk )

hθ (xk , uk ) ≤ 0, x0 = s

RL adjusts θ to achieve

∇θJ
(

π
MPC

θ

)

= 0

from data

a

s

s+, s, a

θ
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Reinforcement Learning & MPC
Reinforcement Learning over MPC

MPC policy

π
MPC

θ (s) = u⋆

0 from

min
x,u

Tθ (xN ) +

N−1∑

k=0

Lθ (xk , uk )

s.t. xk+1 = fθ (xk , uk )

hθ (xk , uk ) ≤ 0, x0 = s

RL adjusts θ to achieve

∇θJ
(

π
MPC

θ

)

= 0

from data

a

s

s+, s, a

θ

Why is it useful?
X Tunes your optimization model for

real-world performance

X MPC: 25 years of results on formal
guarantees & methods

X Easy to inject knowledge

X Learning does not start from scratch

X Planning provides explainability

X Software now available
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Reinforcement Learning & MPC
Reinforcement Learning over MPC

MPC policy

π
MPC

θ (s) = u⋆

0 from

min
x,u

Tθ (xN ) +

N−1∑

k=0

Lθ (xk , uk )

s.t. xk+1 = fθ (xk , uk )

hθ (xk , uk ) ≤ 0, x0 = s

RL adjusts θ to achieve

∇θJ
(

π
MPC

θ

)

= 0

from data

a

s

s+, s, a

θ

Why is it useful?
X Tunes your optimization model for

real-world performance

X MPC: 25 years of results on formal
guarantees & methods

X Easy to inject knowledge

X Learning does not start from scratch

X Planning provides explainability

X Software now available

Why can it be difficult?

✘ Optimization is computationally more
expensive than a DNN

✘ Deployment on GPUs is lagging

✘ Non-convexity can get in the way...
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Reinforcement Learning & MPC
Reinforcement Learning over MPC

MPC policy

π
MPC

θ (s) = u⋆

0 from

min
x,u

Tθ (xN ) +

N−1∑

k=0

Lθ (xk , uk )

s.t. xk+1 = fθ (xk , uk )

hθ (xk , uk ) ≤ 0, x0 = s

RL adjusts θ to achieve

∇θJ
(

π
MPC

θ

)

= 0

from data

a

s

s+, s, a

θ

Why is it useful?
X Tunes your optimization model for

real-world performance

X MPC: 25 years of results on formal
guarantees & methods

X Easy to inject knowledge

X Learning does not start from scratch

X Planning provides explainability

X Software now available

Why can it be difficult?

✘ Optimization is computationally more
expensive than a DNN

✘ Deployment on GPUs is lagging

✘ Non-convexity can get in the way...

RL over MPC can tune your MPC for
performance beyond what classical

methods can do!
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Example - Home Energy Management (simulated)

Setup
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Example - Home Energy Management (simulated)

Setup

Learning process: aligned followed with closed-loop

Real world
data
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Example - Home Energy Management (simulated)

Setup

Learning process: aligned followed with closed-loop

Real world
data

Classical
model fitting

to build
MPC model

Data
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Example - Home Energy Management (simulated)

Setup

Learning process: aligned followed with closed-loop

Real world
data

Classical
model fitting

to build
MPC model

Reinforcement
Learning
over MPC

Data θ
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Example - Home Energy Management (simulated)

Setup

Learning process: aligned followed with closed-loop

Real world
data

Classical
model fitting

to build
MPC model

Reinforcement
Learning
over MPC

Data θ

RL phase (2 RL algo.)
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Example - Home Energy Management (simulated)

Setup

Learning process: aligned followed with closed-loop

Real world
data

Classical
model fitting

to build
MPC model

Reinforcement
Learning
over MPC

Data θ

RL phase (2 RL algo.)

The RL step improves the
MPC performance

significantly from only
model fitting
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Example - Home Energy Management (simulated)

Setup

Learning process: aligned followed with closed-loop

Real world
data

Classical
model fitting

to build
MPC model

Reinforcement
Learning
over MPC

Data θ

RL phase (2 RL algo.)

The RL step improves the
MPC performance

significantly from only
model fitting

RL over MPC can tune
your MPC for performance

beyond what classical
methods can do!
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Outline

1 Let’s rebuild some background – MPC and MDPs

2 MPC as a solution to MDPs

3 When is RL (most) beneficial for MPC?

4 A Deeper Look at the Theory
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Model fitting?

Proposed paradigm

Policy π
MPC

θ (s) = u⋆

0 from

min
x,u

Tθ (xN) +

N−1
∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk) ≤ 0, x0 = s
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Model fitting?

A step back: model adjustment?

Policy π
MPC

θ (s) = u⋆

0 from

min
x,u

T (xN) +

N−1
∑

k=0

L (xk , uk)

s.t. xk+1 = fθ (xk , uk)

h (xk , uk) ≤ 0, x0 = s

Adjust θ according to (e.g.)

1. min
θ

E

[

‖fθ (s, a)− s+‖
2
]

vs.

2. min
θ

J
(

π
MPC

θ

)

... is that different?
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Model fitting?

A step back: model adjustment?

Policy π
MPC

θ (s) = u⋆

0 from

min
x,u

T (xN) +

N−1
∑

k=0

L (xk , uk)

s.t. xk+1 = fθ (xk , uk)

h (xk , uk) ≤ 0, x0 = s

Adjust θ according to (e.g.)

1. min
θ

E

[

‖fθ (s, a)− s+‖
2
]

vs.

2. min
θ

J
(

π
MPC

θ

)

... is that different?

Empirical answers:

In general it is different...

Good to do 1. first, then 2.

Is step 2 necessary?

◮ Improves closed-loop performance
◮ But gain is very case dependent

(also with full parametrization)

What causes that?
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Sufficient Condition for MPC Optimality (for MDPs)

MPC policy π
MPC (s) = u⋆

0 from

min
u,x

T (xN) +

N−1
∑

k=0

L(xk , uk )

s.t xk+1 = f(xk , uk)

h(xk , uk) ≤ 0, x0 = s
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MPC policy π
MPC (s) = u⋆

0 from

min
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∑
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L(xk , uk )

s.t xk+1 = f(xk , uk)

h(xk , uk) ≤ 0, x0 = s

Sufficient condition of optimality of MPC
relates model f to optimal value function and
conditional distribution s, a→ s+ of the MDP

(+ condition on T )

In general

ridge regression

f (s, a) = E [ s+ | s, a ]

max likelihood

f (s, a) = max ρ [ s+ | s, a ]

do not satisfy the optimality
conditions

Model from “classic SYSID” does not necessarily
yield the best MPC policy

Notable exceptions: model gives E [ s+ | s, a ] and

LQR with process noise

By extension, locally optimal policies for

◮ dissipative MDP and
◮ V ⋆ ≈ quadratic in positive invariant set

Smooth tracking MPC, fixed reference away
from constraints, “reasonable” stochasticity
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Sufficient condition of optimality of MPC
relates model f to optimal value function and
conditional distribution s, a→ s+ of the MDP

(+ condition on T )

When is RL (most) useful for MPC? “practical” view

Not much if smooth tracking problem, spend most of the time close to fixed steady state,
rare transients away from the constraints → small performance gain
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MPC policy π
MPC (s) = u⋆

0 from

min
u,x

T (xN) +

N−1
∑

k=0

L(xk , uk )

s.t xk+1 = f(xk , uk)

h(xk , uk) ≤ 0, x0 = s

Sufficient condition of optimality of MPC
relates model f to optimal value function and
conditional distribution s, a→ s+ of the MDP

(+ condition on T )

When is RL (most) useful for MPC? “practical” view

Not much if smooth tracking problem, spend most of the time close to fixed steady state,
rare transients away from the constraints → small performance gain

Model is not rich enough to predict the (relevant) expected state transition

Economic problem with “low dissipativity” (trajectories spread over the state space)

Value function curvature changes a lot, problem is non-smooth

Optimal steady-state near / at constraints

Varying exogeneous inputs (e.g. varying prices in energy-related problems, changing reference)

Task-based problems: racing, minimum time, termination conditions, etc.

S. Gros (NTNU) Intro to RL-MPC Fall 2025 21 / 29



Outline

1 Let’s rebuild some background – MPC and MDPs

2 MPC as a solution to MDPs

3 When is RL (most) beneficial for MPC?

4 A Deeper Look at the Theory
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Fully Parametrized MPC Can Describe the MDP Solution
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The theory is about equivalences between MDPs

World MDP

World MDP definition

States s and actions a

Cost L (s, a)

Transition s+ ∼ ρ [ · |s, a]

Optimal value functions

V ⋆ (s) = min
a

Q⋆ (s, a)

Q⋆ (s, a) = L (s, a) + γEs+∼ρ [V
⋆ (s+) |s, a]

Optimal policy

π
⋆ (s) = argmin

a

Q⋆ (s, a)

Model MDP

Model MDP definition

States s and actions a

Cost L̂ (s, a)

Transition s+ ∼ ρ̂ [ · |s, a]

Optimal value functions

V̂ ⋆ (s) = min
a

Q̂⋆ (s, a)

Q̂⋆ (s, a) = L̂ (s, a) + γEs+∼ρ̂ [ V
⋆ (ŝ+)| s, a]

Optimal policy

π̂
⋆ (s) = argmin

a

Q̂⋆ (s, a)

Theory says that - under some technical conditions - there is a L̂ such that Q̂⋆ = Q⋆

Proof: telescopic sum, some non-trivial assumptions to prevent ∞−∞ cancellations
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More on MDP Equivalences

World MDP

States s and actions a

Cost L (s, a)

Transition s+ ∼ ρ [ · |s, a]

Model MDP

States s and actions a

Cost L̂ (s, a)

Transition s+ ∼ ρ̂ [ · |s, a]

Theory says that
Under some technical conditions - there is a L̂ such that Q̂⋆ = Q⋆
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Theory says that
Under some technical conditions - there is a L̂ such that Q̂⋆ = Q⋆

For L̂ = L there is a set of models ρ̂ such that Q̂⋆ = Q⋆

Conditions for model ρ̂ “optimality” 6= min of classical loss functions (except. LQR)

World MDP and Model MDP do not need to use the same discount γ

MPC is a “weird” undiscounted Model MDP

Deterministic model is a trivial ρ̂, then optimal policy for Model MDP ≡ planning

Finite horizon: ok if correct terminal cost (strong assumption, but learning can tune it)

Scenario tree: rough ρ̂ and policy.

Robust MPC: carries support ρ̂, worst-case cost is a bit off...
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World MDP and Model MDP do not need to use the same discount γ

Remarks

Non-unique optimal model ρ̂ leaves room for aligning it
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More on MDP Equivalences

World MDP

States s and actions a

Cost L (s, a)

Transition s+ ∼ ρ [ · |s, a]

Model MDP

States s and actions a

Cost L̂ (s, a)

Transition s+ ∼ ρ̂ [ · |s, a]

Theory says that
Under some technical conditions - there is a L̂ such that Q̂⋆ = Q⋆

For L̂ = L there is a set of models ρ̂ such that Q̂⋆ = Q⋆

Conditions for model ρ̂ “optimality” 6= min of classical loss functions (except. LQR)

World MDP and Model MDP do not need to use the same discount γ

Remarks

Non-unique optimal model ρ̂ leaves room for aligning it

If V ⋆ is continuous and support of ρ is bounded(?) and
path-connected, then f (s, a) ⊂ support of ρ

More simply said: we can build a “plausible” optimal
deterministic model f (predictions have prob. > 0).

Cost modification promotes “simplicity”.
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Is there a catch?

World MDP

States s and actions a

Cost L (s, a)

Transition s+ ∼ ρ [ · |s, a]

Model MDP

States s and actions a

Cost L̂ (s, a)

Transition s+ ∼ ρ̂ [ · |s, a]

Theory says that - under some technical conditions - there is a L̂ such that Q̂⋆ = Q⋆

Technical assumptions? They are very technical and not intuitive at all. But not very
demanding, and there is a “self-fulfilling” effect in learning, i.e. RL “learns” to satisfy

them.
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I.e. we need to know the state of the World MDP to build a correct Model MDP

That is often unrealistic...
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World MDP

States s and actions a

Cost L (s, a)

Transition s+ ∼ ρ [ · |s, a]

Model MDP

States s and actions a

Cost L̂ (s, a)

Transition s+ ∼ ρ̂ [ · |s, a]

Theory says that - under some technical conditions - there is a L̂ such that Q̂⋆ = Q⋆

But we are making a strong assumption (in plain sight)

Theory assumes that World MDP and Model MDP have the same state s

I.e. we need to know the state of the World MDP to build a correct Model MDP

That is often unrealistic...

The end of a nice theory? No, but it is a word of caution...
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Is there a catch?

World MDP

States s and actions a

Cost L (s, a)

Transition s+ ∼ ρ [ · |s, a]

Model MDP

States s and actions a

Cost L̂ (s, a)

Transition s+ ∼ ρ̂ [ · |s, a]

Theory says that - under some technical conditions - there is a L̂ such that Q̂⋆ = Q⋆

Eventually the Markov state s “boils down to” the history of past observations

How to embed that in a Model MDP?

1 “Input-output models”: ARX, multi-step predictors (linear or not), etc.

2 Latent states (a.k.a. embeddings or compressed representations) giving an
AI-driven lower-dimensional version of that history

3 State observers giving a model-based meaningful low-dimensional version of that
history

Options 2 and 3 are part of the decision-making process, back-propagate through
policy + state “constructor”.
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State Estimation in the Learning Loop

Policy

πθ (s)

RL estimates

∇θJ (πθ)

from data

a

s

Data

θ
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State
estimation
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RL estimates

∇θJ (πθ)

from data

a Data

θ

Data
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Remarks

Policy is π
D
θ
(Data) = πθ (ϕθ (Data))

Gradient of the policy now is:

∇θπ
D
θ
(Data) = ∇θπθ (s) +∇θϕθ (Data)∇sπθ (s)
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State Estimation in the Learning Loop

Policy

πθ (s)

State
estimation

s = ϕθ (Data)

RL estimates

∇θJ (πθ)

from data

a Data

θ

Data

s

θ

Remarks

Policy is π
D
θ
(Data) = πθ (ϕθ (Data))

Gradient of the policy now is:

∇θπ
D
θ
(Data) = ∇θπθ (s) +∇θϕθ (Data)∇sπθ (s)

Critic is looking at Data
θ
−→ a, i.e. Qπ

D
θ (Data, a)
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State Estimation in the Learning Loop

Policy

πθ (s)

State
estimation

s = ϕθ (Data)

RL estimates

∇θJ (πθ)

from data

a Data

θ

Data

s

θ

If ϕθ (Data) is

MHE, then its gradient is computed using NLP
sensitivities (same as MPC)

DNN, then efficient sensitivity computations exist

Bayesian inference? Belief state? Open research topic...
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Multi-Step Predictive Control
Systems with

∼Linear dynamics

Input-output data

Significant stochasticity

Modelling is difficult
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Input-output data

Significant stochasticity

Modelling is difficult

Multi-step linear predictors

ŷ = Φ





u

y

u





Recent history of input-output sequence u, y

Planned input sequence u

Predicted output sequence ŷ
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Multi-Step Predictive Control

SPC for u, y given

min
u, ŷ

N
∑

k=0

L (ŷk , uk)

s.t. ŷ = Φ





u

y

u





h (ŷk , uk) ≤ 0

yields policy π (u, y) = u⋆

0
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

u
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u


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Recent history of input-output sequence u, y

Planned input sequence u

Predicted output sequence ŷ

Measured output sequences y

matrix Φ can be built from past data D, e.g.

min
Φ

∑

i∈D

1

2

∥

∥

∥

∥

∥

∥

yi − Φ





ui

yi

ui





∥

∥

∥

∥

∥

∥

2

+ R(Φ)

s.t. Φ causal

or alternative loss functions (e.g. quantile)
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
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0

But best model fit 6⇒ best
policy

Can we close the gap via RL? Yes!

RL-MPC theory applies with some twists

State becomes u, y (window of input-output)
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Multi-Step Predictive Control

MSPC for u, y given

min
u, ŷ
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RL-MPC theory applies with some twists

State becomes u, y (window of input-output)

Modifications in principle not localized in time
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policy

Can we close the gap via RL? Yes!

RL-MPC theory applies with some twists

State becomes u, y (window of input-output)

Modifications in principle not localized in time

High-dimensional parameter space for RL

We need an add-on in Leap-C for high-speed
MPC + sensitivity on this type of model

structure! For now we are down to using CVXPY.
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Multi-Step Predictive Control

MSPC for u, y given

min
u, ŷ

Ψθ (u, ŷ, u, y)

s.t. ŷ = Φθ


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


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yields policy πθ (u, y) = u⋆

0

But best model fit 6⇒ best
policy

Can we close the gap via RL? Yes!

RL-MPC theory applies with some twists

State becomes u, y (window of input-output)

Modifications in principle not localized in time

High-dimensional parameter space for RL

We need an add-on in Leap-C for high-speed
MPC + sensitivity on this type of model

structure! For now we are down to using CVXPY.

Nonlinear extension possible. Best way to do it is to be investigated.S. Gros (NTNU) Intro to RL-MPC Fall 2025 27 / 29



Orientation

What we have seen:

MPC can be understood as a model of the optimal action-value function Q⋆ of
real-world MDPs and/or of the optimal policy π

⋆

MPC cost (and constraints) become part of that model

Model that best fits the real-world does not (necessarily) yield the best policy

RL is a toolbox to tune the MPC as a model of the MDP solution

MPC state space should match the real world, strong assumption that can be
alleviated
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Orientation

What we have seen:

MPC can be understood as a model of the optimal action-value function Q⋆ of
real-world MDPs and/or of the optimal policy π

⋆

MPC cost (and constraints) become part of that model

Model that best fits the real-world does not (necessarily) yield the best policy

RL is a toolbox to tune the MPC as a model of the MDP solution

MPC state space should match the real world, strong assumption that can be
alleviated

What we will do next: RL over MPC

Safe & Stable RL over MPC (In the afternoon)

RL over MPC with belief states – a future prospect (In the afternoon)

Beyond MPC – Model-based Decisions and AI for decisions (Tomorrow)
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Thanks for your attention!

ResearchGate Google Scholar
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