Model Predictive Control and Reinforcement Learning – Lecture 7.1: An MPC prior for SAC –

Jasper Hoffmann

University of Freiburg

Fall School on Model Predictive Control and Reinforcement Learning Freiburg, 6-10 October 2025

universität freiburg

Online RL in the Real World

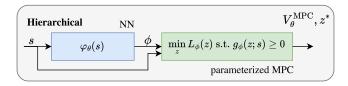
12 (1)

Dream: Deployed agents learn in the real world

Reality: RL unsafe, sample-inefficient, local maxima, hard exploration, spurious correlations

Idea: MPC engineering prior to guide learning and ensure safety

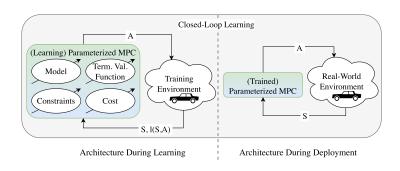
Ingredient 1: Hierarchical Structure



Motivation:

- Hierarchical structure allows usage of MPC as a safety filter
- ▶ Using MPC as a low level controller allows us to potentially simplify the RL problem
- lackbox Nonlinearity of $arphi_{ heta}(s)$ does not affect optimization structure, OCP can be efficiently solved

Ingredient 2: Closed-loop learning



Motivation:

- ▶ Parameterize the MPC such that we optimize closed-loop performance
- ► Focus on what works best, not what is most accurate. Internal models/costs may become misaligned

Caveat:

- $lackbox{ }$ We could also combine this with aligned learning \implies interpretability, safety etc.
- ► To keep it simple we focus on closed-loop learning

Example: SAC without differentiable MPC

What has been done so far?

Started from a MPCRL school project:

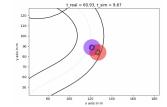
- ► Interactive car-racing
- MPC (acados) takes care of obstacle avoidance and staying on track in curves
- RL strategically positions the car in different scenarios:
 - Overtaking a slower car
 - Blocking a faster car
 - Overtaking and blocking

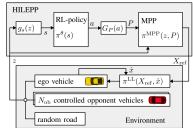
No differentiation through MPC scheme?

2023 European Control Conference (ECC) June 13-16, 2023, Bucharest, Romania

A Hierarchical Approach for Strategic Motion Planning in Autonomous Racing

Rudolf Reiter¹, Jasper Hoffmann², Joschka Boedecker² and Moritz Diehl^{1,3}





Example: PPO with differentiable MPC

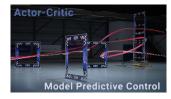
Differentiable MPC within PPO

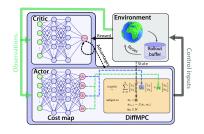
- Drone needs to navigate through a race track marked by gates
- ► Parameterize quadratic cost function
- It uses a differentiable MPC formulation in the actor
- One of the first works to integrate differentiable MPC into RL

However, PPO is an on-policy actor-critic method that only retains transition data briefly, limiting the sample efficiency.

Actor-Critic Model Predictive Control

Angel Romero, Yunlong Song, Davide Scaramuzza





Our Attempt

leap-c

Modular Code:

- Provide a differentiable MPC layer for PyTorch
- Use a state-of-the-art solver like acados to achieve sufficient speed

Benchmarking:

- ► Learning control community rarely benchmarks across multiple problems
- ▶ We provide diverse environments to enable fair comparison

MPC Prior for SAC

Integrate MPC into SAC:

- ► Use a state-of-the-art off-policy method like SAC for sample efficiency
- ▶ **Investigate questions:** Differentiable MPC? How to explore? ...

Outline of the lecture

Design Decisions
OCP formulation
Parameter Critic vs Action Critic
Exploration Strategy

Algorithms: SAC-ZOP and SAC-FOP

Current Results

Next Steps

Outline of the lecture

Design Decisions
OCP formulation
Parameter Critic vs Action Critic
Exploration Strategy

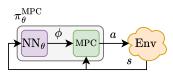
Algorithms: SAC-ZOP and SAC-FOP

Current Results

Next Steps

Design Decisions

Hierarchical policy:



When building our hierarchical policy, we face three fundamental design choices:

- 1. **OCP Formulation:** How do we define the dynamics, cost, and constraints? This choice imposes the inductive bias and determines the trade-off between safety and optimality.
- Action vs. Parameter Critic: Should the critic learn a value function over actions or over MPC parameters? This impacts the training procedure and computational graph.
- 3. **Exploration Strategy:** Where in the hierarchical policy do we inject noise for exploration on the parameters or on the actions?

We will now discuss each of the points in detail.

Reminder: Parameterized OCP

Parameterized OCP with parameters ϕ :

OCP:

$$egin{array}{ll} \min_{m{z}} & L_{\phi}(m{z}) \ \mathrm{s.t.} & x_0 = s, \ & x_{k+1} = f_{\phi}^{\mathrm{MPC}}ig(x_k,u_kig), \ 0 \leq k < N, \ & 0 \leq h_{\phi}^{\mathrm{MPC}}ig(x_k,u_kig), \ 0 \leq k < N, \ & 0 \leq ilde{h}_{\phi}^{\mathrm{MPC}}ig(x_Nig), \end{array}$$

Objective:

$$L_{\phi}(z) := \bar{V}_{\phi}^{ ext{MPC}}(x_N) + \sum_{k=0}^{N-1} l_{\phi}^{ ext{MPC}}(x_k, u_k).$$

Short notation:

$$\min_{z} L_{\phi}(z)$$
 s.t. $g_{\phi}(z;s) \geq 0$.

Parameters ϕ : Can affect objective L_{ϕ} , dynamics f_{ϕ}^{MPC} , and constraints h_{ϕ}^{MPC} . **Parameter Space:** We denote the corresponding parameter space with Φ .

Control Solution Map: Let $a=u_0^\star(s,\phi)$ denote the first control of the opt. solution $z^\star(s,\phi)$.

The impact of the OCP formulation

Realizable Action Set: The choice of dynamics, costs, and constraints determines the set of possible actions $\mathcal{A}_{\mathrm{MPC}}(s)$:

$$\mathcal{A}_{\mathrm{MPC}}(s) = \{ u_0^{\star}(s, \phi) \mid \phi \in \Phi \} \subseteq \mathcal{A},$$

A more expressive formulation (e.g., using a general-purpose solver like acados) expands this set, reducing the risk of sub-optimality.

Safety vs. Optimality Trade-off:

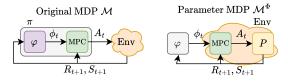
- ▶ Hard constraints in the MPC can guarantee safety by ensuring all actions are feasible.
- ▶ Yet, the policy becomes conservative if the truly optimal action lies outside the feasible set.

Spurious Local Minima: The mapping from parameters ϕ to actions $a=u_0^\star(s,\phi)$ can introduce local minima in the policy learning landscape, even if the critic is perfect.

We showed that given a condition to avoid this: the Jacobian of the solution map u_0^{\star} must have full row rank.

Parameter Critic vs Action Critic: Parameter MDP

Idea: The MPC can be seen as part of the environment!



- Learn parameter policy φ over parameters $\phi \in \Phi$ instead of policy π over actions $a \in \mathcal{A}$.
- ▶ The parameter space Φ , then becomes the new action space \mathcal{A} .
- ▶ The transition function then becomes $P^{\Phi}(\cdot \mid s, \phi) = P(\cdot \mid s, u_0^{\star}(s, \phi))$

Relationships & New objects:

- The parameter policy φ , induces an action policy $\pi(s) = u_0^{\star}(s, \varphi(s))$. The action policy is a policy in the original MDP \mathcal{M} .
- $lackbox{} \varphi$ has corresponding value functions V^{arphi} and Q^{arphi}
- lacktriangle Assuming that the solution map u_0^\star is deterministic, we have for all $\phi\in\Phi$ that

$$Q^{\varphi}(s,\phi) = Q^{\pi}(s,u_0^{\star}(s,\phi))$$

Parameter Critic vs Action Critic: Comparison

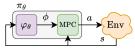
Action Critic: $Q_w^{\mathcal{A}}(s, a) \approx Q^{\pi}(s, a)$

- Provides feedback on action $a = u_0^{\star}(s, \phi)$.
- ► Actor objective:

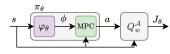
$$J(\theta) = \mathbb{E}_{S \sim D} \left[Q_w^{\mathcal{A}} \left(S, u_0^{\star} (S, \varphi_{\theta}(S)) \right) \right]$$

Requires differentiable MPC: Gradients must flow back through the MPC scheme to the parameter network.

Environment Interaction



Training with Action Critic



Parameter Critic vs Action Critic: Comparison

Parameter Critic: $Q_w^{\Phi}(s,\phi) \approx Q^{\varphi}(s,\phi)$

- ightharpoonup Provides feedback on parameters ϕ .
- ► Actor objective:

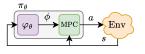
$$J(\theta) = \mathbb{E}_{S \sim D} [Q_w^{\Phi}(S, \varphi_{\theta}(S))]$$

MPC is treated as part of the environment, bypassed during training updates.

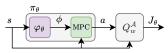
Summary:

- Parameter critic avoids MPC during training, enabling potentially faster training (can enable a simple pure GPU training loop).
- Action critic incorporates the sensitivities of the MPC scheme, potentially leading to more informed updates.

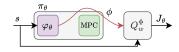
Environment Interaction



Training with Action Critic



Training with Parameter Critic



Exploration Strategies: Where to inject the Noise?

Exploration via Action Noise

Add noise $\xi_{\theta}^{\mathcal{A}}$ directly to the final action A:

$$A = u_0^{\star}(s, \phi_{\theta}(s)) + \xi_{\theta}^{\mathcal{A}}(s)$$

Implications:

- Can result in infeasible or unsafe actions.
- Noise might push the action outside MPC constraints.
- However, we have an explicit exploration in the action space.

Exploration via Parameter Noise

Noise ξ^Φ_θ is added to the **MPC parameters** ϕ **before** solving MPC:

$$A = u_0^{\star} \left(s, \, \phi_{\theta}(s) + \xi_{\theta}^{\Phi}(s) \right)$$

Implications:

- ► The MPC layer acts as a **filter**, ensuring actions remain feasible.
- Enables safe exploration while respecting system constraints.
- However, exploration is now indirect and transformed by the MPC.

Outline of the lecture

Design Decisions
OCP formulation
Parameter Critic vs Action Critic
Exploration Strategy

Algorithms: SAC-ZOP and SAC-FOP

Current Results

Next Steps

Hierachical Architecture

Hierachical Actor Architecture:

► A neural network models a Gaussian distribution over parameters:

$$\varphi_{\theta}(\cdot \mid s) = \mathcal{N}(\mu_{\theta}(s), \Sigma_{\theta}(s))$$

with mean $\mu_{\theta}(s)$ and a covariance $\Sigma_{\theta}(s)$. We can generate samples using the reparameterization trick:

$$y_{\theta}(s,\xi) = \mu_{\theta}(s) + \Sigma_{\theta}^{1/2} \xi,$$

where $\xi \sim \mathcal{N}(0, I)$ is standard normal noise. Note, it holds that $y_{\theta}(s, \xi) \sim \varphi_{\theta}(\cdot \mid s)$.

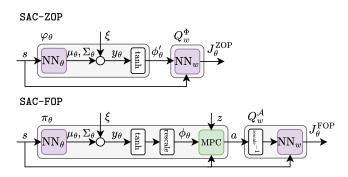
▶ We use a squashing function to ensure the parameters remain within bounds:

$$\phi_{\theta}(s,\xi) = \text{rescale}[\tanh(y_{\theta}(s,\xi))]$$

▶ The final policy is then $\pi_{\theta}(\cdot \mid s) \sim u_0^{\star}(s, \phi_{\theta}(s, \xi))$.

We propose two variants that train π_{θ} .

Two Flavours: SAC-ZOP and SAC-FOP



SAC-ZOP (Zero-Order, Parameter Noise)

- Uses a parameter critic $Q_w^{\Phi}(s,\phi)$.
- Avoids differentiating through the MPC layer during training.
- Zero-order with respect to the MPC.

SAC-FOP (First-Order, Parameter Noise)

- ▶ Uses an **action critic** $Q_w^{\mathcal{A}}(s, a)$.
- Requires differentiating through the MPC layer for the actor update.
- ► Leverages first-order gradient information from the MPC solution map.

SAC-ZOP: Objectives

Note: We measure the entropy of the parameter policy φ_{θ} , not of the action policy π_{θ} :

$$\mathcal{H}(\varphi_{\theta}) = \mathbb{E}_{S \sim \mathcal{D}, \phi \sim \varphi_{\theta}(\cdot \mid S)} \left[-\log \varphi_{\theta}(\phi \mid S) \right].$$

SAC-ZOP (Parameter Critic)

► Actor Objective: The actor maximizes

$$J^{\mathrm{ZOP}}(\theta) := \mathbb{E}_{\substack{S \sim \mathcal{D} \\ \phi \sim \varphi_{\theta}(\cdot \mid S)}} \Big[Q_w^{\Phi}(S, \phi) - \alpha \log \left(\varphi_{\theta}(\phi \mid S) \right) \Big].$$

▶ Critic Loss: The critic minimizes the soft Bellman error

$$\mathcal{L}^{\text{ZOP}}(w) = \frac{1}{2} \mathbb{E}_{(S,\phi,R,S') \sim \mathcal{D}} \Big[\big(R + \gamma V_{\bar{w}}^{\Phi}(S') - Q_w^{\Phi}(S,\phi) \big)^2 \Big],$$

with the soft state-value function

$$V_w^{\Phi}(s) := \mathbb{E}_{\phi \sim \varphi_{\theta}(\cdot \mid s)} \left[Q_w^{\Phi}(s, \phi) - \alpha \log \varphi_{\theta}(\phi \mid s) \right].$$

We are currently investigating how to approximate the entropy in the action space.

SAC-FOP: Objectives

SAC-FOP (Action Critic)

► Actor Objective: The actor maximizes

$$J^{\text{FOP}}(\theta) \coloneqq \mathbb{E}_{\substack{S \sim \mathcal{D} \\ \phi \sim \varphi_{\theta}(\cdot \mid S)}} \Big[\alpha \log \big(\varphi_{\theta}(\phi \mid S) \big) - Q_w^{\mathcal{A}}(S, \mathbf{u}_0^{\star}(S, \boldsymbol{\phi})) \Big].$$

▶ Critic Loss: The critic minimizes the soft Bellman error

$$\mathcal{L}^{\text{FOP}}(w) := \frac{1}{2} \mathbb{E}_{(S,A,R,S') \sim \mathcal{D}} \left[\left(R + \gamma V_{\bar{w}}^{\mathcal{A}}(S') - Q_{w}^{\mathcal{A}}(S,A) \right)^{2} \right],$$

with the soft state-value function

$$V_w^{\mathcal{A}}(s) := \mathbb{E}_{\phi \sim \varphi_{\theta}(\cdot \mid s)} \left[Q_w^{\mathcal{A}}(s, u_0^{\star}(s, \phi)) - \alpha \log \varphi_{\theta}(\phi \mid s) \right].$$

Training: During training, we solve the MPC to obtain $a=u_0^\star(s,\phi)$ and differentiate through the control solution map to compute $\nabla_\theta J^{\rm FOP}(\theta)$.

Note: We also measure the entropy in parameter space.

Outline of the lecture

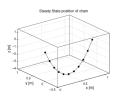
Design Decisions
OCP formulation
Parameter Critic vs Action Critic
Exploration Strategy

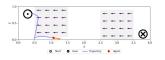
Algorithms: SAC-ZOP and SAC-FOP

Current Results

Next Step:

Current Environments





CartPole Swing-Up

The agent must swing up and balance a pole on a cart.

Goal: swing up and balance the pole

Chain

Involves stabilizing a chain of interconnected springs.

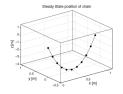
Goal: Achieve target position while minimizing oscillations

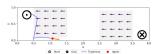
WindMaze

Point mass navigates through a maze with a spatially varying wind field.

Goal: Walk to the target while avoiding windfields, navigate through narrow passages, MPC can not see windfield

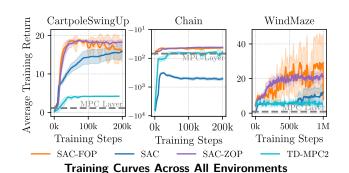
Current Environments





Environment	Name	Dimension	Appears in	Bounds
CartpoleSwingup	Angle reference	1	Cost	$(-2\pi,2\pi)$
WindMaze	X-Position reference	1	Cost	(0, 4)
	Y-Position reference	1	Cost	(0,1)
	Velocity reference	2	Cost	(-20, 20)
	Action reference	2	Cost	(-10, 10)
	$\sqrt{\cdot}$ of state residual weights	4	Cost	(0.5, 1.5)
Chain	$\sqrt{\cdot}$ of state residual weights	21	Cost	(0.5, 1.5)
	$\sqrt{\cdot}$ of action residual weights	3	Cost	(0.05, 0.15)

Experimental Results: Training Performance



Findings:

- Superior sample efficiency: Both SAC-ZOP and SAC-FOP significantly outperform vanilla SAC
- ► Beats model-based RL: Outperforms state-of-the-art TD-MPC2 baseline
- Parameter vs Action critic: SAC-ZOP competitive with SAC-FOP performance

Training Time Comparison:

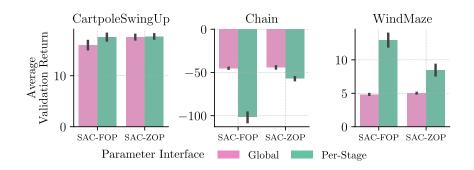
 $(1 \ \mathsf{Million} \ \mathsf{steps} \ \mathsf{on} \ \mathsf{WindMaze})$

- ► SAC-ZOP: 2 hours
- SAC-FOP: 6 hours

Unsafe Exploration using Action Noise SAC-FOA (First-Order, Action Noise), WindMaze

Algorithm	Training Violations (%)		
SAC-ZOP	0%		
SAC-FOP	0%		
SAC-FOA	65.43%		

Experimental Results: Controller Comparison



Parameter Interfaces:

- ▶ Per-stage: Independent parameters ϕ_k for each stage k
- ▶ **Global:** Shared constant parameter ϕ over all stages.
- Impacts both optimization complexity and the expressiveness of the control policy.

Insights:

- In some environments, flexibility helps WindMaze, while in other ones not Chain.
- ➤ SAC-ZOP remains stable even in high-dimensional per-stage setups, showing robustness of the parameter critic, e.g., *Chain* in the per-stage case has 420 parameters!

Outline of the lecture

Design Decisions
OCP formulation
Parameter Critic vs Action Critic
Exploration Strategy

Algorithms: SAC-ZOP and SAC-FOP

Current Results

Next Steps

Summary

In this lecture, we...

- introduced a hierarchical RL architecture integrating an MPC prior into SAC.
- discussed key design decisions: OCP formulation, critic type, and exploration strategy.
- discussed the concept of parameter MDPs.
- presented two algorithms: SAC-ZOP (parameter critic) and SAC-FOP (action critic).
- showcased some initial results

Next Steps

1. Theoretical Understanding

- Why do parameter critics work so well?
- ▶ What are the fundamental learning dynamics?
- When is it easier to generalize in parameter space, when in action space?

2. More Algorithms

- Incorporate MPC into critic networks
- Leverage optimal control structure for value functions
- Use a parameter prior to improve the convergence
- Imitation Learning

3. Broader Applications

- Real-world deployment challenges
- Heat-pump control
- Autonomous driving

Thank you for your attention!

The Goal: Gradient-Based Optimization

We want to find parameters θ that optimize an objective defined as an expectation over a parameterized distribution q_{θ} :

$$\mathcal{L}(\theta) = \underset{Z \sim q_{\theta}}{\mathbb{E}} [l(Z)] = \int l(z) q_{\theta}(z) dz$$

The gradient of this objective is:

$$\nabla_{\theta} \mathcal{L}(\theta) = \int l(z) \nabla_{\theta} q_{\theta}(z) dz.$$

Directly computing this integral is often intractable.

Stochastic Approximatin Theory: We don't need the exact gradient. We can still converge to a minimum if we can find a **noisy but unbiased estimator** g_t of the true gradient.

- ▶ An estimator is unbiased if $\mathbb{E}[g_t] = \nabla_{\theta} \mathcal{L}(\theta_t)$.
- ▶ We can then use stochastic gradient descent: $\theta_{t+1} \leftarrow \theta_t \eta_t g_t$.

The main challenge is finding such an estimator g_t .

Background: Two Ways to Estimate the Gradient

$$\mathcal{L}(\theta) = \mathbb{E}_{Z \sim q_{\theta}}[l(Z)]$$

REINFORCE (Log-Derivative Trick)

Rewrite the gradient as an expectation that can be sampled:

$$\nabla_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{Z \sim q_{\theta}} \left[\underbrace{l(Z)}_{\text{The Loss The "Score Function"}} \right]$$

The Monte Carlo estimator is:

$$g_t' pprox rac{1}{N} \sum_{n=1}^N l(Z_n)
abla_{ heta} \log q_{ heta_t}(Z_n)$$

- ✓ Broadly applicable.
- V Often suffers from high variance in empirical RL

Reparameterization Trick

Factor out the randomness. Express the sample Z as a differentiable function of a noise variable ξ :

$$Z=f(\theta,\xi)$$
, where $\xi\sim q_0$ (e.g., standard normal)

Now the gradient can be moved inside the expectation under some regularity conditions:

$$\nabla_{\theta} \mathcal{L}(\theta) = \underset{\xi \sim q_0}{\mathbb{E}} \left[\nabla_{\theta} l(f(\theta, \xi)) \right]$$

The Monte Carlo estimator is:

$$g_t'' \approx \frac{1}{N} \sum_{n=1}^{N} \nabla_{\theta} l(f(\theta_t, \xi_n))$$

- In empirical RL lower variance, often more stable.
- X Only applicable when f is known, continuous, and differentiable almost everywhere.

Background: Parameter MDP

100

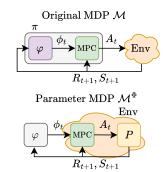
Idea: Learn policy φ over parameters $\phi \in \Phi$ instead of a policy π over actions $a \in \mathcal{A}$. Let $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r)$ be the original MDP with states \mathcal{S} , actions \mathcal{A} , transition kernel P, and rewards r.

$\overline{\mathsf{Definition}}$: Parameter $\overline{\mathsf{MDP}}$ (\mathcal{M}^Φ)

New MDP $\mathcal{M}^{\Phi}=(\mathcal{S},\Phi,P^{\Phi},r^{\Phi})$ with:

- **Actions**: Parameter space Φ
- ► Transitions: $P^{\Phi}(\cdot \mid s, \phi) := P(\cdot \mid s, u_0^{\star}(s, \phi))$
- ▶ Rewards: $r^{\Phi}(s,\phi) := r(s,u_0^{\star}(s,\phi))$

Assumption: u_0^\star is a deterministic, total function



New objects: Parameter policy $\varphi(\phi \mid s)$, induced action policy $\pi(a \mid s) = \mathbb{E}_{\phi \sim \varphi}[\mathbb{1}_{a=u_0^{\star}(s,\phi)}]$, and corresponding value functions $Q^{\varphi}(s,\phi)$ and $Q^{\pi}(s,a)$. We have that

$$Q^{\varphi}(s,\phi) = Q^{\pi}(s, u_0^{\star}(s,\phi))$$

SAC Pseudocode

Algorithm 1 Soft Actor-Critic

- 1: Input: initial policy parameters θ , Q-function parameters ϕ_1 , ϕ_2 , empty replay buffer \overline{D}
- 2: Set target parameters equal to main parameters $\phi_{\text{targ},1} \leftarrow \phi_1, \ \phi_{\text{targ},2} \leftarrow \phi_2$
- 3: repeat
- Observe state s and select action a ~ π_θ(·|s)
- Execute a in the environment
- Observe next state s', reward r, and done signal d to indicate whether s' is terminal
- 7: Store (s, a, r, s', d) in replay buffer \mathcal{D}
- If s' is terminal, reset environment state.
- if it's time to update then
- 10: for j in range(however many updates) do
- 11: Randomly sample a batch of transitions, $B = \{(s, a, r, s', d)\}$ from D
- 12: Compute targets for the Q functions:

$$y(r,s',d) = r + \gamma(1-d) \left(\min_{i=1,2} Q_{\phi_{\text{targ},i}}(s',\bar{a}') - \alpha \log \pi_{\theta}(\bar{a}'|s') \right), \quad \bar{a}' \sim \pi_{\theta}(\cdot|s')$$

13: Update Q-functions by one step of gradient descent using

$$\nabla_{\phi_i} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} \left(Q_{\phi_i}(s,a) - y(r,s',d) \right)^2 \qquad \qquad \text{for } i = 1,2$$

14: Update policy by one step of gradient ascent using

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} \left(\min_{i=1,2} Q_{\phi_i}(s, \tilde{a}_{\theta}(s)) - \alpha \log \pi_{\theta} \left(\tilde{a}_{\theta}(s) | s \right) \right),$$

where $\tilde{\alpha}_{\theta}(s)$ is a sample from $\pi_{\theta}(\cdot|s)$ which is differentiable wrt θ via the reparametrization trick.

15: Update target networks with

$$\phi_{\text{targ},i} \leftarrow \rho \phi_{\text{targ},i} + (1 - \rho)\phi_i$$
 for $i = 1, 2$

- 16: end for
- 17: end if
- 18: until convergence