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Online RL in the Real World

Dream: Deployed agents learn in the real world

Reality: RL unsafe, sample-inefficient, local maxima,
hard exploration, spurious correlations

Idea: MPC engineering prior to guide learning and
ensure safety
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Ingredient 1: Hierarchical Structure
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parameterized MPC

Motivation:

» Hierarchical structure allows usage of MPC as a safety filter

» Using MPC as a low level controller allows us to potentially simplify the RL problem

» Nonlinearity of ¢y(s) does not affect optimization structure, OCP can be efficiently solved
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Ingredient 2: Closed-loop learning

Closed-Loop Learning
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Architecture During Deployment

Motivation:
» Parameterize the MPC such that we optimize closed-loop performance

> Focus on what works best, not what is most accurate. Internal models/costs may
become misaligned

Caveat:
» We could also combine this with aligned learning = interpretability, safety etc.
» To keep it simple we focus on closed-loop learning
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Example: SAC without differentiable MPC

What has been done so far?

\Y

A

Started from a MPCRL school project:
» Interactive car-racing
» MPC (acados) takes care of obstacle
avoidance and staying on track in curves

» RL strategically positions the car in
different scenarios:
> Overtaking a slower car
> Blocking a faster car
> Overtaking and blocking

No differentiation through MPC scheme?

2023 European Control Conference (ECC)
June 13-16, 2023, Bucharest, Romania

A Hierarchical Approach for Strategic Motion Planning in Autonomous
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Example: PPO with differentiable MPC

Actor-Critic Model Predictive Control
Differentiable MPC within PPO

» Drone needs to navigate through a race
track marked by gates

Angel Romero, Yunlong Song, Davide Scaramuzza

» Parameterize quadratic cost function

» |t uses a differentiable MPC formulation
in the actor

» One of the first works to integrate
differentiable MPC into RL

However, PPO is an on-policy actor—critic
method that only retains transition data
briefly, limiting the sample efficiency.

sindui [o1uo0)
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Our Attempt

Modular Code:
» Provide a differentiable MPC layer for PyTorch

> Use a state-of-the-art solver like acados to achieve sufficient speed

Benchmarking:
» Learning control community rarely benchmarks across multiple problems

» We provide diverse environments to enable fair comparison

MPC Prior for SAC

Integrate MPC into SAC:
» Use a state-of-the-art off-policy method like SAC for sample efficiency
> Investigate questions: Differentiable MPC? How to explore? ...
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Outline of the lecture

Design Decisions
OCP formulation
Parameter Critic vs Action Critic
Exploration Strategy

Algorithms: SAC-ZOP and SAC-FOP

Current Results

Next Steps
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Outline of the lecture

Design Decisions
OCP formulation
Parameter Critic vs Action Critic
Exploration Strategy
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Design Decisions

Hierarchical policy:

When building our hierarchical policy, we face three fundamental design choices:

1. OCP Formulation: How do we define the dynamics, cost, and constraints? This choice
imposes the inductive bias and determines the trade-off between safety and optimality.

2. Action vs. Parameter Critic: Should the critic learn a value function over actions or over
MPC parameters? This impacts the training procedure and computational graph.

3. Exploration Strategy: Where in the hierarchical policy do we inject noise for exploration
— on the parameters or on the actions?

We will now discuss each of the points in detail.

MPC and RL - Lecture 7.1: An MPC prior for SAC J. Hoffmann, University of Freiburg




Reminder: Parameterized OCP

Parameterized OCP with parameters ¢:

OCP: Objective:
mzin Ly(2) - N-1 o
ot W= s Ly(z) :== V3™ (zn —|—kz;) 7 (n, ug).
Bt = f7 (@ ue), 0S k<, Short notation:
0 < hy" (2, ur), 0< k<N, min Ly(z) s.t. (z;8) > 0.

z
0< 7712)1?(: (l'N),

Parameters ¢: Can affect objective Ly, dynamics /i, and constraints /.

Parameter Space: We denote the corresponding parameter space with ®.

Control Solution Map: Let a = uj(s, ¢) denote the first control of the opt. solution z*(s, ¢).
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The impact of the OCP formulation

Realizable Action Set: The choice of dynamics, costs, and constraints determines the set of
possible actions Aypc(s):

Anipc(s) = {ug(s,¢) | ¢ € P} C A,

» A more expressive formulation (e.g., using a general-purpose solver like acados) expands
this set, reducing the risk of sub-optimality.

Safety vs. Optimality Trade-offF:
» Hard constraints in the MPC can guarantee safety by ensuring all actions are feasible.

> Yet, the policy becomes conservative if the truly optimal action lies outside the feasible set.

Spurious Local Minima: The mapping from parameters ¢ to actions a = u3(s, ¢) can
introduce local minima in the policy learning landscape, even if the critic is perfect.
> We showed that given a condition to avoid this: the Jacobian of the solution map uj must
have full row rank.
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Parameter Critic vs Action Critic: Parameter MDP

Idea: The MPC can be seen as part of the environment!
Original MDP M Parameter MDP M*?
T Env
Ay
|

oD Ay
0 MPC—> P
A A |
Rii1, 8141 Ry, St41

» Learn parameter policy @ over parameters ¢ € ® instead of policy 7w over actions a € A.
» The parameter space ®, then becomes the new action space A.
> The transition function then becomes P®(- | s,¢) = P(- | s, u3(s, ¢))

Relationships & New objects:

» The parameter policy ¢, induces an action policy m(s) = uj(s,¢(s)). The action policy is
a policy in the original MDP M.

» ¢ has corresponding value functions V¥ and Q¥

» Assuming that the solution map wu is deterministic, we have for all ¢ € ® that

Q‘P(S, QJ)) = Qﬂ(‘g? ’LLS(S, ¢))
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Parameter Critic vs Action Critic: Comparison

Action Critic: Q\(s, a) ~ Q" (s, a)

w

> Provides feedback on action a = uj(s, ¢).

» Actor objective:
J(6) = Es~p[ Qi (S, u(S, 06(5)))]

» Requires differentiable MPC:
Gradients must flow back through the MPC scheme
to the parameter network.

Environment Interaction

0 S
S
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Parameter Critic vs Action Critic: Comparison

Parameter Critic: Q2(s, ®) ~ Q%(s, ¢)

w

» Provides feedback on parameters ¢.

» Actor objective:

J(0) = Es~p[Q2(S, 0a(9))]

» MPC is treated as part of the environment,
bypassed during training updates.

Summary:

» Parameter critic avoids MPC during training,
enabling potentially faster training (can enable a
simple pure GPU training loop).

» Action critic incorporates the sensitivities of the
MPC scheme, potentially leading to more informed
updates.

Environment Interaction

Training with Action Critic
Uy

s a | 4 |Js

Training with Parameter Critic

Uy

A\
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Exploration Strategies: Where to inject the Noise?

Exploration via Action Noise

Add noise 55“ directly to the final action A:

A= ui(s, do(s)) +&5'(s)

Implications:

» Can result in infeasible or unsafe
actions.

» Noise might push the action outside MPC
constraints.

» However, we have an explicit exploration
in the action space.

Exploration via Parameter Noise

Noise 53’ is added to the MPC parameters ¢
before solving MPC:

A=ui(s, go(s) + &5 (s))

Implications:

» The MPC layer acts as a filter, ensuring
actions remain feasible.

» Enables safe exploration while respecting
system constraints.

» However, exploration is now indirect and
transformed by the MPC.
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Outline of the lecture

Design Decisions
OCP formulation
Parameter Critic vs Action Critic
Exploration Strategy
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Hierachical Architecture

Hierachical Actor Architecture:

» A neural network models a Gaussian distribution over parameters:

wo(- | 5) = N(po(s),Zo(s))

with mean pg(s) and a covariance ¥y(s). We can generate samples using the
reparameterization trick:

vo (s, €) = po(s) + o'/? &,
where & ~ N (0, I) is standard normal noise. Note, it holds that yy(s,&) ~ @o(- | s).
» We use a squashing function to ensure the parameters remain within bounds:

bo(s,&) = rescale] tanh (y(s,€))]

> The final policy is then mg(- | ) ~ u (s, do(s,€)).

We propose two variants that train my.
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Two Flavours: SAC-ZOP and SAC-FOP

SAC-Z0P
Lid |£ Q("}; ZOP
72 g / JG
s ue 0¥ Yo §_¢"
SAC-FOP
A
T |£ lz Qw FOP

SAC-ZOP (Zero-Order, Parameter Noise) SAC-FOP (First-Order, Parameter Noise)

> Uses an action critic Q7\(s, a).
» Requires differentiating through the MPC
layer for the actor update.

» Leverages first-order gradient information
from the MPC solution map.

> Uses a parameter critic Q2 (s, ¢).

» Avoids differentiating through the MPC
layer during training.

» Zero-order with respect to the MPC.
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SAC-ZOP: Objectives

Note: We measure the entropy of the parameter policy g, not of the action policy my:

H(po) = Esnp, gy (-|s) [—10g wa( | 5)].

SAC-ZOP (Parameter Critic)

» Actor Objective: The actor maximizes

JOP0)=F s [QE(S,6)— alog(ve(@]5))].
o (-1S)

» Critic Loss: The critic minimizes the soft Bellman error
1 2
L7°F (w) = E]E(S,qS,R,S’)ND [(R +9Va(S) — Qu(S, ¢)) ],
with the soft state-value function

Vi (8) = Egmwp(-ls) [QE(S, ¢) — alogpe(d | 3)] o

We are currently investigating how to approximate the entropy in the action space.
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SAC-FOP: Objectives

SAC-FOP (Action Critic)

» Actor Objective: The actor maximizes

TOTO) =E s [alog(pe(9|5) ~ Q(S,ui(S,9))]-

b~ (¢
» Critic Loss: The critic minimizes the soft Bellman error
1 2
LFOP () = $Es.ansn~n| (R+7VE(S) - @(5,4)) ],
with the soft state-value function

Vil(s) = Epmppie | Qs 65(5,0)) — alogwo(@ | 5)]

Training: During training, we solve the MPC to obtain a = uj (s, ¢) and differentiate through the
control solution map to compute VoJ¥F (6).

Note: We also measure the entropy in parameter space.
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Outline of the lecture

Current Results
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Current Environments

CartPole Swing-Up
The agent must swing up and
balance a pole on a cart.

Goal: swing up and balance the
pole

MPC and RL - Lecture 7.1: An MPC prior for SAC

Steady State position of chain

Chain
Involves stabilizing a chain of
interconnected springs.

Goal: Achieve target position
while minimizing oscillations

WindMaze
Point mass navigates through a
maze with a spatially varying
wind field.

Goal: Walk to the target while
avoiding windfields, navigate
through narrow passages, MPC
can not see windfield

J. Hoffmann, University of Freiburg
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Current Environments

Steady State position of chain

ha N

Environment Name Dimension Appears in Bounds

CartpoleSwingup  Angle reference 1 Cost (=2m, 2m)
X-Position reference 1 Cost (0,4)
Y-Position reference 1 Cost (0,1)

WindMaze Velocity reference 2 Cost (—20,20)
Action reference 2 Cost (—10,10)
/- of state residual weights 4 Cost (0.5,1.5)

Chain /- of state residual weights 21 Cost (0.5,1.5)
/- of action residual weights 3 Cost (0.05,0.15)
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Experimental Results: Training Performance

CartpoleSwingUp Chain
—10t

Findings:

WindMaze > Superior sample efficiency: Both

20 4

| rm——
—102 4 MPC Layer

40 4 SAC-ZOP and SAC-FOP
significantly outperform vanilla SAC

» Beats model-based RL:

Average Training Return

20 A
—10% 4 OQutperforms state-of-the-art
_ MPC Laver| TD-MPC2 baseline
0 : : A 100 4y ; ; 0 - ; :
0k 100k 200k Ok 100k 200k Ok 500k 1M » Parameter vs Action critic:
Training Steps Training Steps Training Steps SAC-ZOP competitive with
—— SAC-FOP —— SAC —— SAC-ZOP —— TD-MPC2 SAC-FOP performance

Training Curves Across All Environments

Training Time Comparison:
(1 Million steps on WindMaze)

» SAC-ZOP: 2 hours
» SAC-FOP: 6 hours

Unsafe Exploration using Action Noise
SAC-FOA (First-Order, Action Noise), WindMaze

Algorithm  Training Violations (%)

SAC-ZOP 0%
SAC-FOP 0%
SAC-FOA 65.43%
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Experimental Results: Controller Comparison

CartpoleSwingUp

—_
jes)
1

Average
Validation Return

SAC-FOP SAC-ZOP

Parameter Interface

Parameter Interfaces:

» Per-stage: Independent parameters ¢y, for
each stage k

» Global: Shared constant parameter ¢ over
all stages.

» Impacts both optimization complexity and
the expressiveness of the control policy.

Chain WindMaze

0
10
—50
5
—100 1
- -

SAC-FOP SAC-ZOP

SAC-FOP SAC-ZOP

[0 Global [ Per-Stage

Insights:

» In some environments, flexibility helps
WindMaze, while in other ones not Chain.

» SAC-ZOP remains stable even in
high-dimensional per-stage setups, showing
robustness of the parameter critic, e.g.,
Chain in the per-stage case has 420
parameters!
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Outline of the lecture

Next Steps
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Summary

In this lecture, we...

» introduced a hierarchical RL architecture integrating an MPC prior into SAC.

> discussed key design decisions: OCP formulation, critic type, and exploration strategy.
» discussed the concept of parameter MDPs.

» presented two algorithms: SAC-ZOP (parameter critic) and SAC-FOP (action critic).

» showcased some initial results
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Next Steps

1. Theoretical Understanding
» Why do parameter critics work so well?
» What are the fundamental learning dynamics?
> When is it easier to generalize in parameter
space, when in action space?

2. More Algorithms
> Incorporate MPC into critic networks
> Leverage optimal control structure for value
functions
> Use a parameter prior to improve the
convergence
» Imitation Learning

3. Broader Applications

» Real-world deployment challenges
» Heat-pump control
> Autonomous driving

Thank you for your attention!
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Background: Optimizing Parameterized Distributions

The Goal: Gradient-Based Optimization

We want to find parameters 6 that optimize an objective defined as an expectation over a
parameterized distribution g¢g:

£O)= E [(2)] = / e

Zrqg

The gradient of this objective is:

VoL(6) = / 1(2) Voo (2)de.

Directly computing this integral is often intractable.

Stochastic Approximatin Theory: We don't need the exact gradient. We can still converge to a
minimum if we can find a noisy but unbiased estimator g: of the true gradient.

> An estimator is unbiased if E[g;] = VoL(6;).
» We can then use stochastic gradient descent: 611 < 60 — n.g:.

The main challenge is finding such an estimator g.
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Background: Two Ways to Estimate the Gradient

L(0) = Eznq,[1(2)]

REINFORCE (Log-Derivative Trick)

Rewrite the gradient as an expectation that can be
sampled:

VQ[,(Q) = EZNQQ [ l(Z) VQ log QQ(Z) ]
~ ——
The Loss The "Score Function”
The Monte Carlo estimator is:
9t NWZ 2)Volog qo,(Zn)
v' Broadly applicable.

X Often suffers from high variance in empirical

RL

Reparameterization Trick

Factor out the randomness. Express the sample Z
as a differentiable function of a noise variable &:

Z = f(6,&), where £ ~ qo (e.g., standard normal)

Now the gradient can be moved inside the
expectation under some regularity conditions:

VoL©®) = E [Voll/(6,)]

~4q0

The Monte Carlo estimator is:
X
1! ~
9~y ; Vollf(0:,6n))

V" In empirical RL lower variance, often more
stable.

X Only applicable when f is known, continuous,
and differentiable almost everywhere.
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Background: Parameter MDP

Idea: Learn policy ¢ over parameters ¢ € ® instead of a policy 7 over actions a € A.

Let M = (S, A, P,r) be the original MDP with states S, actions A4, transition kernel P, and
rewards 7.

Definition: Parameter MDP (M?®) Original MDP M

s

New MDP M® = (S, ®, P, r®) with: At g

» Actions: Parameter space ® ]

> Transitions: P®(- | s,¢) == P(- | s,u(s,®)) Ris1, S
L]
> Rewards: r®(s,¢) = (s, ut (s, 9)) Parameter MDP /];/:W
i T N A
pEery
Assumption: ug is a deterministic, total function AL B
Rt+17 St+1

New objects: Parameter policy ¢(¢ | s), induced action policy 7(a | 8) = Epnp[Lazus (s.6)):
and corresponding value functions Q¥ (s, ®) and Q™ (s, a). We have that

Q<p(37 ¢) = Qﬂ-(sﬁ US(S, ¢)))
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SAC Pseudocode

Algorithm 1 Soft Actor-Critic
1: Input: initial policy parameters 6, Q-function parameters ¢y, 02, empty replay buffer D
2: Set target parameters equal to main parameters O‘ERTEJ < 01, Drarg2 ¢ 02

3: repeat

4:  Observe state s and select action a ~ (-

)

5. Execute a in the environment

6:  Observe next state s’, reward r, and done signal d to indicate whether s is terminal
7. Store (s,a,r,s',d) in replay buffer D

8 If ¢ is terminal, reset environment state.

9:  if it’s time to update then

10: for j in range(however many updates) do
11: Randomly sample a batch of transitions, B = {(s,a,r,s',d)} from D
12: Compute targets for the Q functions:

0 ) = 140 = ) (10 Qo 58 ~ logm@) )~ )
=1,
13: Update Q-functions by one step of gradient descent using

1 '
Vol > (Qulsa)—ylrs.d)’ fori=12
(s.ars' d)eB

14: Update policy by one step of gradient ascent using
1 . ~ -
Vam ; (}‘:‘}}; Qo (s, 0(s)) — alogms (as(s)| 5) )
s

where Gag(s) is a sample from mp(-|s) which is differentiable wrt 6 via the
reparametrization trick.

15: Update target networks with

Otargi ¢ Prargs + (1= p)oi fori=1,2
16: end for
17: end if

18: until convergence
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