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Online RL in the Real World

Dream: Deployed agents learn in the real world

Reality: RL unsafe, sample-inefficient, local maxima,
hard exploration, spurious correlations

Idea: MPC engineering prior to guide learning and
ensure safety
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Ingredient 1: Hierarchical Structure

Motivation:
I Hierarchical structure allows usage of MPC as a safety filter
I Using MPC as a low level controller allows us to potentially simplify the RL problem
I Nonlinearity of ϕθ(s) does not affect optimization structure, OCP can be efficiently solved
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Ingredient 2: Closed-loop learning

Motivation:
I Parameterize the MPC such that we optimize closed-loop performance
I Focus on what works best, not what is most accurate. Internal models/costs may

become misaligned
Caveat:
I We could also combine this with aligned learning =⇒ interpretability, safety etc.
I To keep it simple we focus on closed-loop learning
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Example: SAC without differentiable MPC

What has been done so far?

Started from a MPCRL school project:
I Interactive car-racing
I MPC (acados) takes care of obstacle

avoidance and staying on track in curves
I RL strategically positions the car in

different scenarios:
I Overtaking a slower car
I Blocking a faster car
I Overtaking and blocking

No differentiation through MPC scheme?
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Example: PPO with differentiable MPC

Differentiable MPC within PPO
I Drone needs to navigate through a race

track marked by gates
I Parameterize quadratic cost function
I It uses a differentiable MPC formulation

in the actor
I One of the first works to integrate

differentiable MPC into RL

However, PPO is an on-policy actor–critic
method that only retains transition data
briefly, limiting the sample efficiency.
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Our Attempt

leap-c

Modular Code:
I Provide a differentiable MPC layer for PyTorch
I Use a state-of-the-art solver like acados to achieve sufficient speed

Benchmarking:
I Learning control community rarely benchmarks across multiple problems
I We provide diverse environments to enable fair comparison

MPC Prior for SAC

Integrate MPC into SAC:
I Use a state-of-the-art off-policy method like SAC for sample efficiency
I Investigate questions: Differentiable MPC? How to explore? ...
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Design Decisions
OCP formulation
Parameter Critic vs Action Critic
Exploration Strategy

Algorithms: SAC-ZOP and SAC-FOP

Current Results

Next Steps
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Design Decisions

Hierarchical policy:

When building our hierarchical policy, we face three fundamental design choices:

1. OCP Formulation: How do we define the dynamics, cost, and constraints? This choice
imposes the inductive bias and determines the trade-off between safety and optimality.

2. Action vs. Parameter Critic: Should the critic learn a value function over actions or over
MPC parameters? This impacts the training procedure and computational graph.

3. Exploration Strategy: Where in the hierarchical policy do we inject noise for exploration
— on the parameters or on the actions?

We will now discuss each of the points in detail.
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Reminder: Parameterized OCP

Parameterized OCP with parameters φ:
OCP:

minz Lφ(z)

s.t. x0 = s,
xk+1 = f mpc

φ

(
xk, uk

)
, 0 ≤ k < N ,

0 ≤ hmpc
φ

(
xk, uk

)
, 0 ≤ k < N ,

0 ≤ h̃mpc
φ

(
xN

)
,

Objective:

Lφ(z) := V̄ mpc
φ (xN)+

N−1∑
k=0

lmpc
φ

(
xk, uk

)
.

Short notation:

min
z

Lφ(z) s.t. gφ(z; s) ≥ 0.

Parameters φ: Can affect objective Lφ, dynamics f mpc
φ , and constraints hmpc

φ .
Parameter Space: We denote the corresponding parameter space with Φ.

Control Solution Map: Let a = u?
0(s, φ) denote the first control of the opt. solution z?(s, φ).
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The impact of the OCP formulation

Realizable Action Set: The choice of dynamics, costs, and constraints determines the set of
possible actions AMPC(s):

AMPC(s) = {u?
0(s, φ) | φ ∈ Φ} ⊆ A,

I A more expressive formulation (e.g., using a general-purpose solver like acados) expands
this set, reducing the risk of sub-optimality.

Safety vs. Optimality Trade-off:
I Hard constraints in the MPC can guarantee safety by ensuring all actions are feasible.
I Yet, the policy becomes conservative if the truly optimal action lies outside the feasible set.

Spurious Local Minima: The mapping from parameters φ to actions a = u?
0(s, φ) can

introduce local minima in the policy learning landscape, even if the critic is perfect.
I We showed that given a condition to avoid this: the Jacobian of the solution map u?

0 must
have full row rank.
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Parameter Critic vs Action Critic: Parameter MDP
Idea: The MPC can be seen as part of the environment!

I Learn parameter policy ϕ over parameters φ ∈ Φ instead of policy π over actions a ∈ A.
I The parameter space Φ, then becomes the new action space A.
I The transition function then becomes PΦ(· | s, φ) = P(· | s, u?

0(s, φ))

Relationships & New objects:
I The parameter policy ϕ, induces an action policy π(s) = u?

0(s, ϕ(s)). The action policy is
a policy in the original MDP M.

I ϕ has corresponding value functions Vϕ and Qϕ

I Assuming that the solution map u?
0 is deterministic, we have for all φ ∈ Φ that

Qϕ(s, φ) = Qπ(s, u?
0(s, φ))
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Parameter Critic vs Action Critic: Comparison

Action Critic: QA
w (s, a) ≈ Qπ(s, a)

I Provides feedback on action a = u?
0(s, φ).

I Actor objective:

J (θ) = ES∼D
[
QA

w
(
S , u?

0(S , ϕθ(S))
)]

I Requires differentiable MPC:
Gradients must flow back through the MPC scheme
to the parameter network.
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Parameter Critic vs Action Critic: Comparison

Parameter Critic: QΦ
w (s, φ) ≈ Qϕ(s, φ)

I Provides feedback on parameters φ.
I Actor objective:

J (θ) = ES∼D
[
QΦ

w(S , ϕθ(S))
]

I MPC is treated as part of the environment,
bypassed during training updates.

Summary:
I Parameter critic avoids MPC during training,

enabling potentially faster training (can enable a
simple pure GPU training loop).

I Action critic incorporates the sensitivities of the
MPC scheme, potentially leading to more informed
updates.
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Exploration Strategies: Where to inject the Noise?

Exploration via Action Noise
Add noise ξAθ directly to the final action A:

A = u?
0
(
s, φθ(s)

)
+ ξAθ (s)

Implications:
I Can result in infeasible or unsafe

actions.
I Noise might push the action outside MPC

constraints.
I However, we have an explicit exploration

in the action space.

Exploration via Parameter Noise
Noise ξΦθ is added to the MPC parameters φ
before solving MPC:

A = u?
0
(
s, φθ(s) + ξΦθ (s)

)
Implications:
I The MPC layer acts as a filter, ensuring

actions remain feasible.
I Enables safe exploration while respecting

system constraints.
I However, exploration is now indirect and

transformed by the MPC.
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Hierachical Architecture

Hierachical Actor Architecture:
I A neural network models a Gaussian distribution over parameters:

ϕθ(· | s) = N (µθ(s),Σθ(s))

with mean µθ(s) and a covariance Σθ(s). We can generate samples using the
reparameterization trick:

yθ(s, ξ) = µθ(s) + Σθ
1/2 ξ,

where ξ ∼ N (0, I ) is standard normal noise. Note, it holds that yθ(s, ξ) ∼ ϕθ(· | s).
I We use a squashing function to ensure the parameters remain within bounds:

φθ(s, ξ) = rescale
[
tanh

(
yθ(s, ξ)

)]
I The final policy is then πθ(· | s) ∼ u?

0
(
s, φθ(s, ξ)

)
.

We propose two variants that train πθ.
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Two Flavours: SAC-ZOP and SAC-FOP

SAC-ZOP (Zero-Order, Parameter Noise)

I Uses a parameter critic QΦ
w(s, φ).

I Avoids differentiating through the MPC
layer during training.

I Zero-order with respect to the MPC.

SAC-FOP (First-Order, Parameter Noise)

I Uses an action critic QA
w (s, a).

I Requires differentiating through the MPC
layer for the actor update.

I Leverages first-order gradient information
from the MPC solution map.
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SAC-ZOP: Objectives

Note: We measure the entropy of the parameter policy ϕθ, not of the action policy πθ:

H(ϕθ) = ES∼D,φ∼ϕθ(·|S) [− logϕθ(φ | S)] .

SAC-ZOP (Parameter Critic)

I Actor Objective: The actor maximizes

JZOP(θ) := E S∼D
φ∼ϕθ(·|S)

[
QΦ

w (S , φ)− α log (ϕθ(φ | S))
]
.

I Critic Loss: The critic minimizes the soft Bellman error

LZOP(w) =
1
2E(S,φ,R,S′)∼D

[(
R + γVΦ

w̄ (S ′)−QΦ
w (S , φ)

)2
]
,

with the soft state-value function

VΦ
w (s) := Eφ∼ϕθ(·|s)

[
QΦ

w (s, φ)− α logϕθ(φ | s)
]
.

We are currently investigating how to approximate the entropy in the action space.
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SAC-FOP: Objectives

SAC-FOP (Action Critic)

I Actor Objective: The actor maximizes

JFOP(θ) := E S∼D
φ∼ϕθ(·|S)

[
α log (ϕθ(φ | S))−QA

w (S , u?
0 (S , φ))

]
.

I Critic Loss: The critic minimizes the soft Bellman error

LFOP(w) :=
1
2E(S,A,R,S′)∼D

[ (
R + γVA

w̄ (S ′)−QA
w (S ,A)

)2 ]
,

with the soft state-value function

VA
w (s) := Eφ∼ϕθ(·|s)

[
QA

w (s, u?
0 (s, φ))− α logϕθ(φ | s)

]
.

Training: During training, we solve the MPC to obtain a = u?
0 (s, φ) and differentiate through the

control solution map to compute ∇θJFOP(θ).

Note: We also measure the entropy in parameter space.
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Current Environments

CartPole Swing-Up
The agent must swing up and

balance a pole on a cart.

Chain
Involves stabilizing a chain of

interconnected springs.

WindMaze
Point mass navigates through a
maze with a spatially varying

wind field.

Goal: swing up and balance the
pole

Goal: Achieve target position
while minimizing oscillations

Goal: Walk to the target while
avoiding windfields, navigate

through narrow passages, MPC
can not see windfield
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Current Environments

Environment Name Dimension Appears in Bounds

CartpoleSwingup Angle reference 1 Cost (−2π, 2π)

WindMaze

X-Position reference 1 Cost (0, 4)
Y-Position reference 1 Cost (0, 1)
Velocity reference 2 Cost (−20, 20)
Action reference 2 Cost (−10, 10)√
· of state residual weights 4 Cost (0.5, 1.5)

Chain
√
· of state residual weights 21 Cost (0.5, 1.5)√
· of action residual weights 3 Cost (0.05, 0.15)

MPC and RL – Lecture 7.1: An MPC prior for SAC J. Hoffmann, University of Freiburg 23



Experimental Results: Training Performance

Training Curves Across All Environments

Findings:
I Superior sample efficiency: Both

SAC-ZOP and SAC-FOP
significantly outperform vanilla SAC

I Beats model-based RL:
Outperforms state-of-the-art
TD-MPC2 baseline

I Parameter vs Action critic:
SAC-ZOP competitive with
SAC-FOP performance

Training Time Comparison:
(1 Million steps on WindMaze)
I SAC-ZOP: 2 hours
I SAC-FOP: 6 hours

Unsafe Exploration using Action Noise
SAC-FOA (First-Order, Action Noise), WindMaze

Algorithm Training Violations (%)

SAC-ZOP 0%
SAC-FOP 0%
SAC-FOA 65.43%
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Experimental Results: Controller Comparison

Parameter Interfaces:
I Per-stage: Independent parameters φk for

each stage k
I Global: Shared constant parameter φ over

all stages.
I Impacts both optimization complexity and

the expressiveness of the control policy.

Insights:
I In some environments, flexibility helps

WindMaze, while in other ones not Chain.
I SAC-ZOP remains stable even in

high-dimensional per-stage setups, showing
robustness of the parameter critic, e.g.,
Chain in the per-stage case has 420
parameters!
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Summary

In this lecture, we...

I introduced a hierarchical RL architecture integrating an MPC prior into SAC.
I discussed key design decisions: OCP formulation, critic type, and exploration strategy.
I discussed the concept of parameter MDPs.
I presented two algorithms: SAC-ZOP (parameter critic) and SAC-FOP (action critic).
I showcased some initial results
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Next Steps

1. Theoretical Understanding
I Why do parameter critics work so well?
I What are the fundamental learning dynamics?
I When is it easier to generalize in parameter

space, when in action space?

2. More Algorithms
I Incorporate MPC into critic networks
I Leverage optimal control structure for value

functions
I Use a parameter prior to improve the

convergence
I Imitation Learning

3. Broader Applications
I Real-world deployment challenges
I Heat-pump control
I Autonomous driving

Thank you for your attention!
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Background: Optimizing Parameterized Distributions

The Goal: Gradient-Based Optimization
We want to find parameters θ that optimize an objective defined as an expectation over a
parameterized distribution qθ:

L(θ) = E
Z∼qθ

[l(Z)] =

∫
l(z)qθ(z)dz

The gradient of this objective is:

∇θL(θ) =
∫

l(z)∇θqθ(z)dz.

Directly computing this integral is often intractable.

Stochastic Approximatin Theory: We don’t need the exact gradient. We can still converge to a
minimum if we can find a noisy but unbiased estimator gt of the true gradient.
I An estimator is unbiased if E[gt] = ∇θL(θt).
I We can then use stochastic gradient descent: θt+1 ← θt − ηtgt.

The main challenge is finding such an estimator gt.
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Background: Two Ways to Estimate the Gradient

L(θ) = EZ∼qθ [l(Z)]

REINFORCE (Log-Derivative Trick)
Rewrite the gradient as an expectation that can be
sampled:

∇θL(θ) = EZ∼qθ
[

l(Z)︸︷︷︸
The Loss

∇θ log qθ(Z)︸ ︷︷ ︸
The ”Score Function”

]
The Monte Carlo estimator is:

g′
t ≈

1
N

N∑
n=1

l(Zn)∇θ log qθt (Zn)

X Broadly applicable.
7 Often suffers from high variance in empirical

RL

Reparameterization Trick
Factor out the randomness. Express the sample Z
as a differentiable function of a noise variable ξ:

Z = f (θ, ξ), where ξ ∼ q0 (e.g., standard normal)

Now the gradient can be moved inside the
expectation under some regularity conditions:

∇θL(θ) = E
ξ∼q0

[
∇θl(f (θ, ξ))

]
The Monte Carlo estimator is:

g′′
t ≈

1
N

N∑
n=1

∇θl(f (θt, ξn))

X In empirical RL lower variance, often more
stable.

7 Only applicable when f is known, continuous,
and differentiable almost everywhere.
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Background: Parameter MDP

Idea: Learn policy ϕ over parameters φ ∈ Φ instead of a policy π over actions a ∈ A.
Let M = (S,A,P, r) be the original MDP with states S, actions A, transition kernel P, and
rewards r .

Definition: Parameter MDP (MΦ)
New MDP MΦ = (S,Φ,PΦ, rΦ) with:
I Actions: Parameter space Φ

I Transitions: PΦ(· | s, φ) := P(· | s, u?
0(s, φ))

I Rewards: rΦ(s, φ) := r(s, u?
0(s, φ))

Assumption: u?
0 is a deterministic, total function

New objects: Parameter policy ϕ(φ | s), induced action policy π(a | s) = Eφ∼ϕ[1a=u?
0 (s,φ)],

and corresponding value functions Qϕ(s, φ) and Qπ(s, a). We have that

Qϕ(s, φ) = Qπ(s, u?
0(s, φ))
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SAC Pseudocode
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