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Disclaimer

It is the first time this talk is given, watch out for typos :/
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Outline of the lecture

Implicit and explicit model predictive control

Loss functions for imitation learning

Improving performance of learned controllers

Data collection – how to sample?

Verification of learned controllers
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Model predictive control

A control technique that let us specify performance objectives, system dynamics and properties
in optimal control problem (OCP).

Compute the next control by solving the OCP at the given state. Tackled in two ways:

▶ Implicit MPC. Control policy computed online

▶ Explicit MPC. Control policy offline and only evaluated online
▶ For linear MPC: exact policy representation via piece-wise affine functions

▶ For nonlinear MPC: only possible to resort to approximations ⇒ Online computation
preferred, but: realtime requirements, computational power, ...
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Explicit linear MPC

▶ convex quadratic cost

▶ linear dynamics

▶ affine constraints

▶ parametric in x̄0

min
x,u

x⊤
NPxN +

1

N

N−1∑
k=0

x⊤
k Qxk + u⊤

k Ruk

s.t. x0 − x̄0 = 0,

xk+1 −Axk −Buk = 0, k ∈ [N − 1],

Cxk +Duk + ck ≤ 0.

Feedback law:

u∗
0(x0) =


K1x0 + d1 if H1x0 ≤ h1,
...

KMx0 + dM if HMx0 ≤ hM .

Small example:

▶ A =

[
1 1
0 1

]
, B =

[
1
0.5

]
▶ Q = diag(1, 1), R = 1

▶ (−5,−5) ≤ xk ≤ (5, 5), −1 ≤ uk ≤ 1

Resulting polyhedral partition for N = 2,
N = 10

▶ x-axis: x[1], y-axis: x[2], color: feedback
law
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Function approximation via deep neural networks

Clear that we will soon have issues with storing and retrieving the right feedback law!

Not suited for nonlinear MPC – the feedback law is not PWA!

Observation: MPC is a parametric problem defining an implicit map x0 → u∗ (simplest case)

Can we learn this map?
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Imitation Learning

“Definition.” Learn a policy by imitating an expert policy in a supervised manner.

Expert policy. Any policy π⋆ that accomplishes the considered task in the way we desire (safe,
time/energy-optimal, feasible, ...)

Aim. Approximate π⋆ as well as possible by a parameterized policy π(· ; θ) : Rnx → Rnu

▶ A parameterized policy could be a Neural Network where the parameters θ ∈ Rnθ are the
weights of the Neural Network.
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Imitation Learning

The Imitation Learning objective can be defined generically as

L(θ) := Ex∼D [ℓ (x, π(· | x; θ))] , with a stochastic policy

:= Ex∼D [ℓ (x, π(x; θ))] , with a deterministic policy

where

▶ ℓ the point-wise loss function of the policy π(· ; θ) for a given state x

▶ D is a given state distribution over Rnx

The optimal combination of parameters θ⋆ that minimizes the expected loss L(θ) is given by

θ⋆ = argmin
θ∈Rθ

L(θ).
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Exact representation of linear MPC via ReLU NN

Old idea: [Parisini and Zoppoli, 1995]

▶ However, limited to small systems

▶ Adoption of NN with 1 wide layer due
to Universal Function Approximation

Why rediscovered? Thanks to deep
learning, number of linear regions grows
exponentially with number of layers
[Montufar, 2014]

nr =

(
L−1∏
l=1

⌊
M
nx

⌋nx

)
nx∑
j=0

(
L

j

)
, with M ≥ nx
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Exact representation of linear MPC via ReLU NN

Old idea: [Parisini and Zoppoli, 1995]

▶ However, limited to small systems

▶ Adoption of NN with 1 wide layer due
to Universal Function Approximation

Why rediscovered? Thanks to deep
learning, number of linear regions grows
exponentially with number of layers
[Montufar, 2014]

nr =

(
L−1∏
l=1

⌊
M
nx

⌋nx

)
nx∑
j=0

(
L

j

)
, with M ≥ nx

Figure: nx = 2, nu = 4, layers L ∈ [1, 50],
neurons M = 10. [Karg and Lucia, 2020]

Possible to compute the number of neurons and layers necessary to exactly represent the
solution of a linear MPC problem.
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Imitation Learning

The Imitation Learning objective can be defined generically as

L(θ) := Ex∼D [ℓ (x, π(x; θ))] ,

where

▶ ℓ the point-wise loss function of the policy π(· ; θ) for a given state x

▶ D is a given state distribution over Rnx

The optimal combination of parameters θ⋆ that minimizes the expected loss L(θ) is given by

θ⋆ = argmin
θ∈Rθ

L(θ).
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Behavioral Cloning

In general, Imitation Learning assumes no prior knowledge about the internal objective of the
expert policy (e.g., human expert) ⇒ Behavioral Cloning (BC)

BC assumes a surrogate loss function ℓ that measures the behavioral difference between the
policy π and the expert policy π⋆.

A popular choice is the quadratic loss function ℓ2 defined as

ℓ2(x, π) := (π(x)− π⋆(x))
2
,

which results in the following expected quadratic loss:

L2(θ) := Ex∼D [ℓ2 (x, π(· ; θ))] .

Other popular loss: Huber loss, ℓ1 loss, cross-entropy loss in the case of stochastic policies.
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Optimal control problem formulation

Differently from BC we want to imitate a MPC controller, which solves the discrete-time OCP

min
x0,u0,s0,...,
uN−1,xN ,sN

N−1∑
k=0

L̃(xk, uk, sk) + Ẽ(xN , sN )

s.t.

x0 = x̄0,

xk+1 = f(xk, uk), k = 0, . . . , N − 1,

h(xk, uk) ≤ sk, k = 0, . . . , N − 1,

r(xN ) ≤ sN ,

sk ≥ 0, k = 0, . . . , N,

▶ xk ∈ Rnx and uk ∈ Rnu represent the
state and control, respectively

▶ Functions L,E, f, h, r are twice
continuously differentiable in their
respective variables.

▶ sk ∈ Rns,k are slack variables and
we penalize their use in the cost
function
▶ stage cost: L̃(xk, uk, sk) :=

L(xk, uk) + z⊤sk + ∥sk∥2Z
▶ terminal cost: Ẽ(xN , sN ) :=

E(xN ) + z⊤e sN + ∥sN∥2Ze
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The exact Q-loss

▶ Our expert is the NMPC policy =⇒ π⋆(x) := u⋆
0(x), with x = x̄0.

▶ In such case the internal objective of the expert is known.

▶ Given an initial state for the OCP, it is possible to assign a cost to every possible control.
▶ Concept of Q-value (state-action value) in Optimal Control / Reinforcement Learning.

▶ Approximate Q-values can be computed by solving the OCP associated with a given
state-action pair.
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The exact Q-loss

Idea. Fix the first control u0 of the OCP by the value returned from the policy, ū0 = π(x; θ),
then solve the resulting OCP to assign a cost to the policy value π(x; θ).

⇒ Given x̄0 we define the exact Q-loss by the following “Q-function OCP”

Q(x̄0, ū0) := min
x0,u0,s0,...,
uN−1,xN ,sN

N−1∑
k=0

L̃(xk, uk, sk) + Ẽ(xN , sN )

s.t. x0 − x̄0 = 0,

u0 − ū0= 0,

xk+1 − f(xk, uk) = 0, k = 0, . . . , N − 1,

h(xk, uk) ≤ sk, k = 0, . . . , N − 1,

r(xN ) ≤ sN ,

sk ≥ 0, k = 0, . . . , N,
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The exact Q-loss

Lemma (Gradient computation)

The gradient of the Q-loss is given by the Lagrangian multiplier λ̄u corresponding to the
constraint u⋆

0 − ū0 = 0 for the optimal solution

λ̄u = ∇uQ(x, u)|u=π(x;θ) .

Lemma (Distance function)

If π⋆(x̄0) is a unique minimizer of the original OCP then Q(x̄0, ū0) > Q(x̄0, π
⋆(x̄0)) for any

ū0 ̸= π⋆(x̄0). Thus, the exact Q-loss penalizes any deviation of ū0 from π⋆(x̄0).
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The exact Q-loss

With the exact Q-loss, the Imitation Learning objective becomes

LQ(θ) := Ex∼D [Q(x, π(x; θ))] .

The gradient of LQ(θ) is defined as

∇θLQ(θ) = Ex∼D

[
∇θπ(x; θ) ∇uQ(x, u)|u=π(x;θ)

]
.

Remark (Connection to actor-critic methods)

The Q-loss can been seen as a critic while the actor is the policy π. Following this perspective,
the gradient of the Q-loss is directly related to deterministic policy gradients.
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Exact Q-loss properties

▶ Computation cost compared to the L2 loss

▶ ∇θL2(θ) = Ex∼D[∇θπ(x; θ)(π(x; θ)− π⋆(x))]

▶ ∇θLQ(θ) = Ex∼D

[
∇θπ(x; θ) ∇uQ(x, u)|u=π(x;θ)

]
▶ OCP feasibility during training – need to evaluate the Q-loss

for any (x, π(x; θ))

▶ The Q-function for a nonlinear OCP might be nonconvex and
nonlinear – tough to optimize
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▶ OCP feasibility during training – need to evaluate the Q-loss

for any (x, π(x; θ))

▶ The Q-function for a nonlinear OCP might be nonconvex and
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▶ introduce a quadratic programming approximation! (cf.
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Comparing policies for cartpole swing-up
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Other ideas to improve the loss function

Imitating a “generic” policy.

Sobolev Training [Lueken, Brandner, Lucia, 2023]

▶ includes in the training data the sensitivity ∂u
∂x =⇒ dataset of tuples t as

(x ∈ Rnx , u ∈ Rnu , ∂u
∂x ∈ Rnu×nx)

▶ obtain predictions: û = π(x̂; θ), ∂u
∂x

∣∣
x̂,û

= ∂π(·;θ)
∂x

∣∣
x̂

▶ Sobolev loss function: Lsob(x, u, ∂u
∂x ; θ) = Et∼D

[
∥u− π(x; θ)∥22 + α∥∂u∂x −

∂π(·;θ)
∂x

∣∣
x
∥22
]
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Other ideas to improve the loss function

Imitating a MPC-based policy.

Augmenting the loss function using KKT information of the MPC problem (primal and dual
feasibility) [Adhau, Naik, Skogestad, 2021]

▶ Lλ(x; θ) = Ex∼D[∥πλ(x; θ)− π∗
λ(x)∥22 + τ1∥log(−h(x, u))∥22 + τ2∥− log(−µ)∥22]

▶ with πλ(xi) predicting (ui, x
+
i , µi), function h defines the stage-wise inequality constraints

of the MPC problem, µ is the associated multiplier

PlanNetX [Hoffmann et al., 2024]

▶ Considering the full MPC trajectory as training data,
(x∗,u∗) = (x∗

0, . . . , x
∗
N , u∗

0, . . . , u
∗
N−1)

▶ PlanNetX loss: Lp = Ex0∼D

[
1
N

∑N
k=0 γ

k∥x̂k(u;x0, θ)− x∗
k∥2W

]
, with

x̂k+1 = f(x̂k, π(x̂k; θ)), x̂0 = x0, k = 0, . . . , N − 1, W ⪰ 0.

▶ Possibly combined with a loss involving the controls
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Reinforcing a parametric control law

Assuming that an accurate simulator is available, it is possible to adapt the IL controller

▶ IL imitates MPC which might have a simplified model compared to reality

▶ In deployment we discover effects we did not considered: estimation errors, ...

▶ The environment is changed compared to when we trained the IL controller

▶ Blend a new control objective in the existing IL controller

Generate data set D
e.g. via repeatedly

solving MPC

Tune policy
parameters via IL

(using your favorite loss)

Optimize policy
parameters via RL

Random initialization
of policy parameters

Choose a new point (xinit, p)
(replay buffer)

D θ̂ ⊆ Θ θ∗

θinit R
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Activation patterns in a neural network I

In a ReLU network each layer: fl(ξl−1) = Wlξl−1 + bl, with ReLU σl = max(0, fl), and ξ0 = x.
The network is the composition fL+1 ◦ σL ◦ fL ◦ · · · ◦ σ1 ◦ f1(x)

Activation patterns. Assign a binary value to
every neuron in the each hidden layer.

We assume NN with fixed width nw, activation
patter Γ = {γ1, . . . , γL}, γi ∈ {0, 1}nw

G(x) := {β ◦ fl(ξl−1) ∈ [0, 1]L | ξ0 = x}
β is a Heaviside-step function:

β ◦ fl(Wl−1)
(i) =

{
1 if W

(i)
l ξl−1 + b

(i)
l ≥ 0,

0 otherwise

x1

x2

σ1
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Activation patterns in a neural network II

Given an input xi we can obtain Γi

Γi describes a polytopic region in the state
space SΓi

= {x ∈ Rnx | Γi = G(x)}
We can write in H-representation as
Si = {x ∈ Rnx | Fix ≤ gi}
Using activation pattern we can describe the
network as
fL+1 ◦ γL ⊙ fL ◦ · · · ◦ γ1 ⊙ f1(x) = WΓi

x+ bΓi

x1

x2

σ1
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Feedback in the neighborhood of an equilibrium [Karg and Lucia, 2020]

Find Γeq at the equilibrium xeq as G(xeq) =⇒ Seq = {x ∈ Rnx | Feqx ≤ geq}
In a neighborhood of xeq, we want to have

▶ the LQR feedback law πLQR(x) = −Kx

▶ the closed-loop system x+ = f(x, πLQR(x)) asymptotically stable =⇒
∥eig(A−BK)∥∞ < 1

The network feedback for Γeq is π(x; θ) = WL+1(WΓeq
x+ bΓeq

) + bL+1

Set the affine term to zero: WL+1bΓeq
+ bL+1 = 0

Set the stability condition: ∥eig(A−BWL+1WΓeq
)∥∞ < 1

Tune the weights of the last layer L+ 1 via

min
ŴL+1, b̂L+1

∥ŴL+1 −WL+1∥22 + ∥b̂L+1 − bL+1∥22

s.t. ŴL+1WΓeq = KLQR,

ŴL+1bΓeq + b̂L+1 = 0.
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Feedback in the neighborhood of an equilibrium [Karg and Lucia, 2020]
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Outline of the lecture

Implicit and explicit model predictive control

Loss functions for imitation learning

Improving performance of learned controllers

Data collection – how to sample?

Verification of learned controllers
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Covariate shift problem

Training (MPC + imitation)

ptrain(s)

expert (MPC)
trained policy

start

target

Deployment (rollout)

ptest(s)

expert (MPC)
trained policy

small error → new state
errors accumulate

unseen statesstart

target

Imitation Learning fails if the policy never learns how to act in its own state distribution.
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DAgger (Dataset Aggregation) [Ross et al. 2011]

Require: Expert policy π∗, learner policy class Π
1: Initialize π̂1 to any policy in Π
2: Initialize dataset D ← ∅
3: for i = 1 to N do
4: Let πi = βiπ

∗ + (1− βi)π̂i

5: Rollout T -step trajectories using πi

6: Get dataset D = {(s, π∗(s))} of visited states by πi and actions given by the expert
7: Aggregate datasets D ← D ∪Di

8: Train policy π̂i+1 on D
9: end for

10: Return: best π̂i on validation

in general β1 = 1 and βi = pi−1 (usage of the expert decays exponentially)

Idea:

▶ the learner policy interacts with the environment

▶ for each state visited by learner, we collect the correct action from the expert
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Data augmentation

In case we imitate from nonlinear MPC
collecting data might be expensive.

▶ Always have to solve NLPs!

How can we exploit at maximum the data
at hand?
Using the NLP sensitivities! (Rembember
lecture 4!)

z(p) ≈ z(p∗) + dz(p∗)
dp (p− p∗)

[Krishnamoorthy, 2021]
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Outline of the lecture

Implicit and explicit model predictive control

Loss functions for imitation learning

Improving performance of learned controllers

Data collection – how to sample?

Verification of learned controllers
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Guarantees for learned controllers

For systems with a linear dynamics and quadratic cost (“LQR case”)

▶ projection-based methods [Chen et al., 2018]

▶ a-priori verification via output-range analysis [Karg and Lucia, 2020]

▶ worst-case approximation errors and Lipschitz constants [Fabiani and Goulart, 2023],
[Schwan, Jones, Kuhn, 2023]

For nonlinear systems:

▶ Safety filter (projection-based) [Wabersich et al., 2021, ...]

▶ Probabilistic verification [Tempo et al., 1997, Alamo et al, 2015, Karg and Lucia, 2021]
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Safety filter in a nutshell

Learned Policy
π(·; θ)

Plant
s+ = f(s, a)

Safety Filter

action a

safe action asafe

state s

min
x,u

∥π(x0; θ)− u0∥22
s.t. x0 − x̄0 = 0,

xk+1 − f(xk, uk) = 0, k ∈ Z[0,N−1],

g(xk, uk) ≤ 0, k ∈ Z[0,N−1]
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