Synthesis of Model Predictive Control and Reinforcement Learning

Overview over Synthesis of MPC and RL -

Dirk Reinhardt, Jasper Hoffmann

Fall School on Model Predictive Control and Reinforcement Learning Freiburg, 6-10 October 2025

universität freiburg

Dirk's Spotlight

- Postdoc at Cybernetics Department, NTNU, Norway
- Working on combining MPC and RL for real-world systems
- Interested in applications in energy systems
- PhD in Cybernetics, worked on Optimal Control of Unmanned Aerial Vehicles (acados inside)

Two Communities

Reinforcement Learning

- Machine-Learning Community: Use learning to mitigate complexities
- Philosophy: Trial-and-error learning to build policies directly from experience (implicit)
- Offline Solution (explicit function)
- Simulation first
- Roots in Computer Science

Model Predictive Control

- Control Community: Use feedback to mitigate uncertainties
- Philosophy: Model-based optimization over engineering models for planning (explicit)
- Online Solution (implicit function)
- Theory first
- Roots in Process Control

But both want to solve sequential decision-making problems!

[Video: Miki et al. 2022] [Video: Romero et al. 2024]

Synthesis of MPC and RL

Motivation:

- MPC and RL are complementary approaches for solving MDPs
- Nearly orthogonal advantages: weaknesses of one are strengths of the other
- Growing research interest in combination methods

Goals of this presentation:

- Illuminate differences, similarities, and fundamentals enabling combinations
- Categorize existing work based on actor-critic RL framework

Synthesis of Model Predictive Control and Reinforcement Learning: Survey and Classification*

Rudolf Reiter^{a,**}, Jasper Hoffmann^{b,**}, Dirk Reinhardt^d, Florian Messerer^a, Katrin Baumgärtner^a, Shambhuraj Sawant^d, Joschka Bödecker^a, Moritz Diehl^{a,c}, Sebastien Gros^d

**Department of Microsystems Bigineering, University of Freidway, Preidway in Breispan, 29110, Badin-Wittlemberg, Germany Department of Computer Science, University of Peisburg, Freidway in Breispan, 29110, Badin-Wittlemberg, Germany Department of Mathematics, University of Preidway, Preidway in Breispan, 29104, Baden-Wittlemberg, Germany Department of Mathematics, University of Science and Technology, Translation, 2013, Norway

Outline

Comparing MPC and RL

Inference Architectures

Parameterized

Parallel

Hierarchical

Integrated

Algorithmic

Taxonomy of Combination Approaches

MPC as an Expert Actor

MPC within the Deployed Policy

Aligned Learning

Closed-Loop Optimal Learning

MPC as the Critic

MPC for Preprocessing/Postprocessing

Current Challenges

Summary

Outline

Comparing MPC and RL

Inference Architectures

Parameterized

Paralle

Hierarchica

Integrated

Algorithmic

Taxonomy of Combination Approaches

MPC as an Expert Actor

MPC within the Deployed Policy

Aligned Learning

Closed-Loop Optimal Learning

MPC as the Critic

MPC for Preprocessing/Postprocessing

Current Challenge

Summary

Comparison of Practical Properties

Property	MPC	RL
state-space	model specific X	(quite) arbitrary ✓
model requirements	differentiability/ \times online simulation	offline simulation \checkmark
uncertainty	guarantees with known uncertainty	probabilistic guarantees
stability	strong theory 🗸	minor theory X
constraint handling	inherent 🗸	hard to achieve X
online computation time	high 🗸	low X
offline computation time	low X	high 🗸
adaptability	inherent 🗸	needs retraining X
generalization	inherent 🗸	poor when × out-of-distribution

Comparison of practical properties between MPC and RL. The evaluation is simplified and conceptual. Exemptions may exist.

Examples: MPC vs RL - Changes in Dynamics

MPC Problem

$$egin{aligned} \min_{z} & \sum_{k=0}^{N-1} l^{ ext{MPC}}(x_k, u_k) + ar{V}^{ ext{MPC}}(x_N) \ & ext{s.t.} & x_0 = s, \ & x_{k+1} = f^{ ext{MPC}}(x_k, u_k), \ & 0 \leq h^{ ext{MPC}}(x_k, u_k), \ & 0 \leq h^{ ext{MPC}}_N(x_N). \end{aligned}$$

Change in dynamics?

Modify $f^{ ext{MPC}} o ext{new optimal policy}$

RL Policy (DDPG)

$$w \stackrel{Q}{\leftarrow} w + \frac{\alpha_w}{B} \sum_{i=1}^B \delta_i \nabla_w Q_w(S_i, A_i),$$

$$\theta \stackrel{\mu}{\leftarrow} \theta + \frac{\alpha_\theta}{B} \sum_{i=1}^B \nabla_\theta \mu_\theta(S_i) \left. \nabla_a Q_w(S_i, a) \right|_{a = \mu_\theta(S_i)},$$

$$\delta_i \coloneqq l(S_i, A_i) + \gamma Q_{\bar{w}}(S_i^+, A_i^+) - Q_w(S_i, A_i),$$
with $(S_i, A_i, S_i^+) \sim \mathcal{D}^{\text{buffer}}, A_i^+ = \mu_\theta(S_i^+),$

Change in dynamics?

Collect new data $\mathcal{D}^{\mathrm{buffer}} o \mathsf{retrain}$ policy

Examples: MPC vs RL - Constraint Handling

MPC Problem

$$egin{array}{ll} \min_{m{Z}} & \sum_{k=0}^{N-1} l^{ ext{MPC}}(x_k,u_k) + ar{V}^{ ext{MPC}}(x_N) \ & ext{s.t.} & x_0 = s, \ & x_{k+1} = f^{ ext{MPC}}(x_k,u_k), \ & 0 \leq h^{ ext{MPC}}(x_k,u_k), \ & 0 \leq h^{ ext{MPC}}_N(x_N). \end{array}$$

Constraints?

Directly handled through $h^{ ext{MPC}}$ and $h^{ ext{MPC}}_N$

RL Policy (DDPG)

$$w \stackrel{Q}{\leftarrow} w + \frac{\alpha_w}{B} \sum_{i=1}^B \delta_i \nabla_w Q_w(S_i, A_i),$$

$$\theta \stackrel{\mu}{\leftarrow} \theta + \frac{\alpha_\theta}{B} \sum_{i=1}^B \nabla_\theta \mu_\theta(S_i) |\nabla_a Q_w(S_i, a)|_{a = \mu_\theta(S_i)},$$

$$\delta_i := l(S_i, A_i) + \gamma Q_{\bar{w}}(S_i^+, A_i^+) - Q_w(S_i, A_i),$$
with $(S_i, A_i, S_i^+) \sim \mathcal{D}^{\text{buffer}}, A_i^+ = \mu_\theta(S_i^+),$

Constraints?

Hard to handle formally \rightarrow use penalties in cost l or restrict action space of policy μ_{θ} .

Examples: MPC vs RL - Inference Time

MPC Problem

$$egin{array}{ll} \min_{m{z}} & \sum_{k=0}^{N-1} l^{ ext{MPC}}(x_k,u_k) + ar{V}^{ ext{MPC}}(x_N) \ & ext{s.t.} & x_0 = s, \ & x_{k+1} = f^{ ext{MPC}}(x_k,u_k), \ & 0 \leq h^{ ext{MPC}}(x_k,u_k), \ & 0 \leq h^{ ext{MPC}}_N(x_N). \end{array}$$

Inference time?

Often high due to online optimization \rightarrow may be prohibitive for fast systems

RL Policy (DDPG)

$$w \stackrel{Q}{\leftarrow} w + \frac{\alpha_w}{B} \sum_{i=1}^B \delta_i \nabla_w Q_w(S_i, A_i),$$

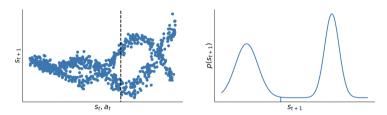
$$\theta \stackrel{\mu}{\leftarrow} \theta + \frac{\alpha_\theta}{B} \sum_{i=1}^B \nabla_\theta \mu_\theta(S_i) \left. \nabla_a Q_w(S_i, a) \right|_{a = \mu_\theta(S_i)},$$

$$\delta_i := l(S_i, A_i) + \gamma Q_{\bar{w}}(S_i^+, A_i^+) - Q_w(S_i, A_i),$$
with $(S_i, A_i, S_i^+) \sim \mathcal{D}^{\text{buffer}}, A_i^+ = \mu_\theta(S_i^+),$

Inference time?

Low, only need forward pass of $\mu_{\theta}
ightarrow$ suitable for fast systems

Stochasticity



[Image: Moerland et al. 2022]

- ▶ **Definition**: Environment is inherently stochastic deterministic future state prediction impossible even with perfect model knowledge
- RL approaches:
 - ▶ Natural fit: Stochasticity inherent in MDP framework
 - ▶ Direct training: Policies trained on real-world environment to account for actual uncertainty
 - ▶ Challenge: Rare events (large but infrequent deviations) make value estimation difficult

Model Mismatch

Challenge: Training environment often differs from deployment environment

RL approaches:

- Domain randomization
- ► Robust RL
- Meta RL training on adaptive distribution of models

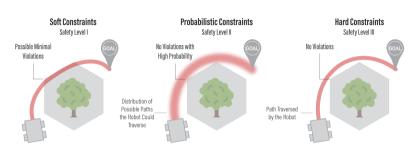
RL assumption: Real-world environment lies within training model distribution

MPC approaches:

- Stochastic MPC explicitly accounts for model mismatch
- Robust MPC handles correlated predictive errors across time
- Distributionally robust MPC robustifies against distribution mismatches

MPC advantage: Inherent robustness - performs well even without explicit model mismatch consideration

Safety & Constraints



[Image: Brunke et al. 2023]

- ▶ MPC: Constraint satisfaction and stability are key strengths:
 - ▶ Challenge: Hard to handle probabilistic constraints with (unknown) uncertainty
 - ► Common MPC approaches: Robust MPC, tube-based MPC
- ▶ **RL**: Increasingly focused on safety guarantees using constrained MDPs:
 - Challenge: Safe RL policies often become too conservative or may still violate constraints.
 - ► Common RL approaches: Safe action sets, Lagrange formulation, trust-region optimization, control-barrier functions, MPC based safety filter

Outline

Comparing MPC and RL

Inference Architectures

Parameterized

Parallel

Hierarchical

Integrated

Algorithmic

Taxonomy of Combination Approaches

MPC as an Expert Actor

MPC within the Deployed Policy

Aligned Learning

Closed-Loop Optimal Learning

MPC as the Critic

MPC for Preprocessing/Postprocessing

Current Challenge

Summary

Parameterized OCP

Parameterized OCP with parameters ϕ :

OCP:

$$\begin{split} \min_{\mathcal{Z}} \quad & L_{\phi}(z) \\ \text{s.t.} \quad & x_0 = s, \\ & x_{k+1} = f_{\phi}^{\text{MPC}}\big(x_k, u_k\big), \ 0 \leq k < N, \\ & 0 \leq h_{\phi}^{\text{MPC}}\big(x_k, u_k\big), \ 0 \leq k < N, \\ & 0 \leq \tilde{h}_{\phi}^{\text{MPC}}\big(x_N\big), \end{split}$$

Objective:

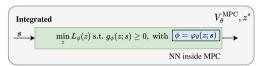
$$L_\phi(z) := ar{V}_\phi^{ ext{MPC}}(x_N) + \sum_{k=0}^{N-1} l_\phi^{ ext{MPC}}ig(x_k, u_kig).$$

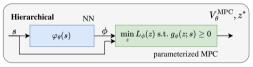
Short notation:

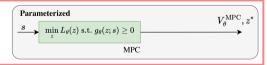
$$\min_{z} \frac{L_{\phi}(z)}{L_{\phi}(z)}$$
 s.t. $g_{\phi}(z;s) \geq 0$.

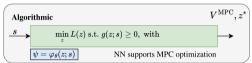
Parameters ϕ can affect: objective L_{ϕ} , dynamics f_{ϕ}^{MPC} , and constraints h_{ϕ}^{MPC} . **Note:** g_{ϕ} encodes both dynamics and constraints.

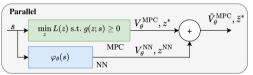
Inference Architectures











Parameterized Architecture

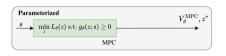
Architecture: Parameters θ are constant and independent of decision variables z or state s

Key characteristics:

- Parameters learned offline, fixed during deployment
- Optimization-friendly MPC formulation
- No evaluation of highly nonlinear functions

Advantages:

- ✓ Preserves MPC problem structure
- ✓ No NN evaluation during inference
- ✓ Suitable for standard MPC solvers
- ✓ Lower computational complexity
- X Less flexibility than state-dependent architectures



Examples:

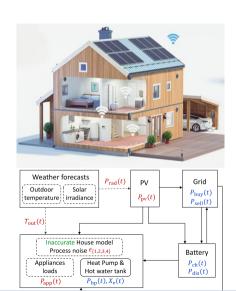
- ► Simplified models [Cai et al. 2023]
- Cost function tuning

Parameterized Architecture: Example

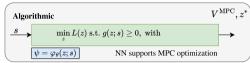
A Learning-Based Model Predictive Control Strategy for Home Energy Management Systems

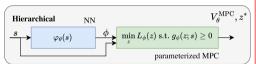
WENQI CAI^{®1}, SHAMBHURAJ SAWANT¹, DIRK REINHARDT¹, SOROUSH RASTEGARPOUR^{®2}, AND SÉBASTIEN GROS^{®1}

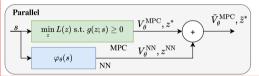
- Build a simplified MPC scheme and parameterize model, cost constraints
- Learn parameters via RL
- Maintains MPC structure, lower inference time compared to full model

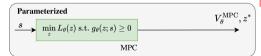


Inference Architectures









Parallel Architecture

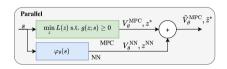
 $\begin{tabular}{ll} \textbf{Architecture:} & MPC & problem & usually & not parameterized; & NN & evaluated & in parallel & to correct & MPC & output & usually &$

Key characteristics:

- ► MPC problem typically not parameterized
- ▶ NN evaluated in parallel to MPC optimization
- NN output corrects optimal solution or value function
- ► MPC and NN operate independently

Trade-offs:

- ▶ No differentiation through optimization ✓
- Potentially unsafe actions due to perturbation X



Examples:

► Value function approximation [Bhardwaj et al. 2020]

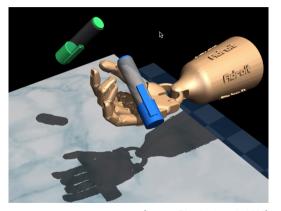
Parallel: Example

BLENDING MPC & VALUE FUNCTION APPROXIMATION FOR EFFICIENT REINFORCEMENT LEARNING

Mohak Bhardwaj¹ Sanjiban Choudhury² Byron Boots¹

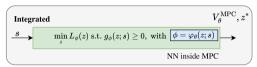
¹ University of Washington ² Aurora Innovation Inc.

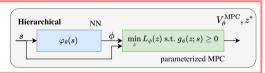
- Use MPC for local value estimates.
- ► NN provides corrections
- ightharpoonup Blend both estimates via weighting factor λ
- ► Improves data efficiency and adds structure

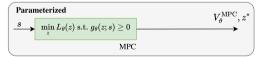


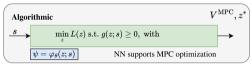
[Image: Bhardwaj et al. 2020]

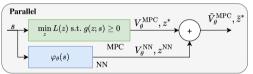
Inference Architectures











Hierarchical Architecture

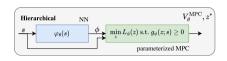
Architecture: NN provides input to MPC, parameter ϕ depends on state via $\phi = \varphi_{\theta}(s)$

Key characteristics:

- ▶ NN evaluated *before* solving optimization problem
- \blacktriangleright Function $\varphi_{\theta}(s)$ evaluated independently of MPC
- ▶ Nonlinearity does not affect optimization structure
- Parameter changes may affect convergence

Tradeoffs:

- ✓ Optimization not harder to solve
- ✓ No NN inside optimization
- ✓ Standard MPC solvers work
- × MPC theory may not hold



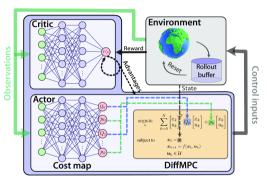
Examples:

- ► Reference trajectory [Brito et al. 2021] [Reiter et al. 2023]
- ► Cost modification [Romero et al. 2024]
- ► Constraint modification [Jacquet et al. 2024]

Hierarchical: Example

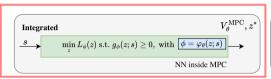
Actor-Critic Model Predictive Control

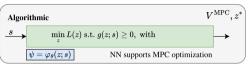
Angel Romero, Yunlong Song, Davide Scaramuzza

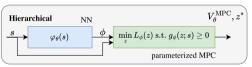


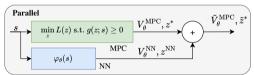
[Image: Romero et al. 2024]

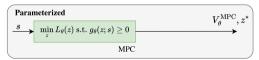
Inference Architectures











Integrated Architecture

Architecture: Parameters depend on both state s and optimization variables z via $\phi = \varphi_{\theta}(s,z)$

Key characteristics:

- ▶ NN is part of the optimization problem itself
- Cannot be evaluated separately from optimization algorithm
- ► NN encoders/decoders infer states, rewards, transition models
- Dutputs value function $V_{\theta}^{ ext{MPC}}$ or decision variables z^{\star}

Tradeoffs:

- X Highly nonlinear, possibly nonconvex
- × Computationally expensive
- \times Requires $\nabla_z \varphi_{\theta}(z;s)$



Examples:

- Latent space MPC [Lowrey et al. 2019]
- NN transition models [Salzmann et al. 2023][Adhau et al. 2024]
- ► Cost function [Seel et al. 2022]

Integrated: Example

Idea:

- Learn NN dynamics model from data
- ► Use model for MPC planning

Anyone wants to try?

[l4casadi]

[I4acados]

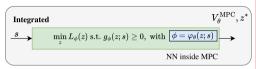
Real-Time Neural MPC: Deep Learning Model Predictive Control for Quadrotors and Agile Robotic Platforms

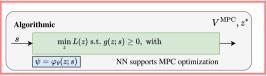
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 4, APRIL 2023

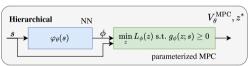
Tim Salzmann , Elia Kaufmann , Member, IEEE, Jon Arrizabalaga , Graduate Student Member, IEEE, Marco Payone , Member, IEEE, Davide Scaramuzza , Senior Member, IEEE, and Markus Ryll , Member, IEEE

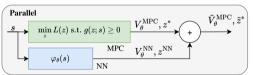
[Image: Salzmann et al. 2023]

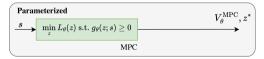
Inference Architectures











Algorithmic Architecture

Architecture: RL policy guides the MPC optimization algorithm without modifying the optimization problem itself

Key characteristics:

- \blacktriangleright RL policy alters hyperparameters ψ of the solver
- Optimization problem remains unchanged
- Examples of hyperparameters:
 - Initial trajectory guess
 - Trajectory samples (MPPI)
 - Active-set predictions
 - MPC recompute flag
 - Horizon length

Tradeoffs:

- ✓ Improve online computation time
- ✓ Can help escape local minima
- X Increased complexity

Examples:

- ► TD-MPC2 [Hansen et al. 2024]
- ► Warm-starting [Grandesso et al. 2023]

Algorithmic: Example

RL Components:

- Joint-embedding prediction
- Reward prediction
- ► TD learning (Q-function)
- Long-term credit assignment

MPC Components:

- Local trajectory optimization
- Planning in latent space
- Policy prior guidance

Key Innovation:

Bootstraps beyond planning horizon using learned Q-function

TD-MPC2: Scalable, Robust World Models for Continuous Control Nicklas Hansen*, Hao Su*†, Xiaolong Wang*† *University of California San Diego, †Equal advising {nihansen, haosu, xiw012}@ucsd.edu a₁ \mathbf{a}_{2} enc enc enc

[Image: Hansen et al. 2023]

Outline

Comparing MPC and RL

Inference Architectures

Parameterized

Paralle

Hierarchica

Integrated

Algorithmic

Taxonomy of Combination Approaches

MPC as an Expert Actor

MPC within the Deployed Policy

Aligned Learning

Closed-Loop Optimal Learning

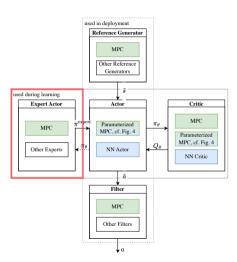
MPC as the Critic

MPC for Preprocessing/Postprocessing

Current Challenge

Summary

Taxonomy



MPC as an Expert Actor

MPC used to generate training data for RL policy

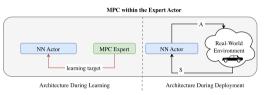
Purpose: Use MPC to provide expert trajectories for imitation learning

Characteristics:

- MPC generates state-action pairs
- RL policy learns to mimic MPC behavior
- Can use behavioral cloning or DAgger
- ► See also [Karg and Lucia 2020]

Benefits:

- ✓ Faster inference than MPC
- ✓ Leverages domain knowledge
- ✓ Sample-efficient learning



Examples:

► Autonomous driving [Hoffmann et al. 2024]

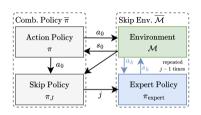
Challenge:

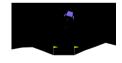
X Limited to MPC performance

MPC as an Expert Actor: Example

Learning When to Trust the Expert for Guided Exploration in RL Felix Schulz * Jasper Hoffmann * Neurorobotics Lab Neurorobotics Lab University of Freiburg University of Freiburg Germany Germany felix schulz@student bni de hoffmaja@informatik.uni-freiburg.de Yuan Zhang Josepha Bödecker Neurorobotics Lab Neurorobotics Lab University of Freiburg University of Freiburg Cormons Germany vzhang@informatik.uni-freiburg.de iboedeck@informatik.uni-freiburg.de

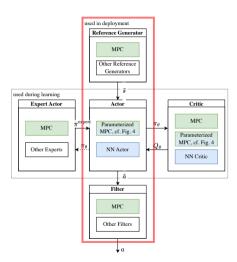
- Use an expert actor for exploration during training
- A learned high-level skip policy π_J decides at each for how many steps it should either follow a learned action policy π or the MPC expert π_{expert}
- Reduce usage of expert during training



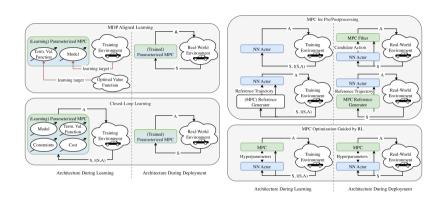


[Image: Schulz and Hoffmann et al. 2024]

Taxonomy

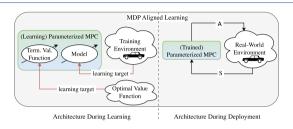


MPC within the Deployed policy



In the following, we will focus on Aligned and Closed-Loop Learning!

Aligned Learning



Paradigm: Learn individual components of the MPC controller to better approximate the true environment. This aligns the controller's internal understanding with reality.

Components aligned with MDP:

 $rac{l}{l}$ Approximate the system's dynamics by learning: $f_{ heta}^{ ext{MPC}} pprox P$

J Approximate the infinite-horizon cost with RL: $ar{V}_{ heta}^{ ext{MPC}}pprox V^{\star}$

Aligned Learning: Example

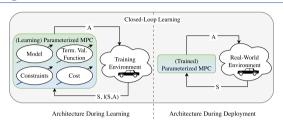
A Learning-Based Model Predictive Control Strategy for Home Energy Management Systems

WENQI CAI^{©1}, SHAMBHURAJ SAWANT¹, DIRK REINHARDT¹, SOROUSH RASTEGARPOUR^{©2}, AND SÉBASTIEN GROS^{©1}

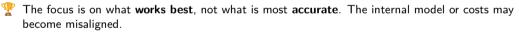
- Build a simplified MPC scheme and parameterize model, cost constraints
- Learn parameters via RL
- Maintains MPC structure, lower inference time compared to full model



Closed-Loop Learning



Paradigm:



How is it implemented?

- Learn MPC parameters ϕ to directly optimize the final closed-loop performance $J(\phi)$.
- **Differentiable MPC:** Treat the MPC as a layer in a policy network. Gradients are backpropagated *through* the optimization process to update parameters.
- \blacktriangleright MPC as part of the Environment: An outer-loop RL agent learns to choose the best MPC parameters ϕ as its "action", treating the MPC-controlled system as a black box.

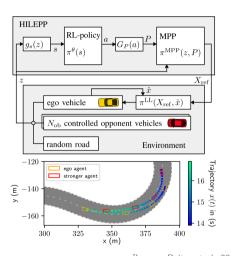
Closed-loop Optimal Learning: Example

2023 European Control Conference (ECC) June 13-16, 2023, Bucharest, Romania

A Hierarchical Approach for Strategic Motion Planning in Autonomous Racing

Rudolf Reiter1, Jasper Hoffmann2, Joschka Boedecker2 and Moritz Diehl1,3

- Car-racing environment
- RL learns to set reference trajectories
- ► MPC tracks learned reference trajectories



[Image: Reiter et al. 2023]

Comparison: Aligned Learning and Closed-Loop Learning

Aligned Learning

Approximate the true Markov Decision Process

Model Learning: Supervised learning on transition data, e.g.,

$$\min_{\theta} \mathcal{L}(S^+ - f_{\theta}^{MPC}(S, A))$$

Terminal Value Learning: RL-style updates towards

$$V_{\theta}^{\mathrm{MPC}} \approx V^{\star}$$

Tradeoffs:

- ✓ Interpretable model, cost, constraints
- ✓ Division of design into manageable subtasks
- √ Safe, generalizes better
- × Sub-optimal closed-loop performance
- × May require complex models
- Restrictive model requirements (differentiability, smoothness)

Closed-Loop Learning

🕹 Approximate the optimal policy

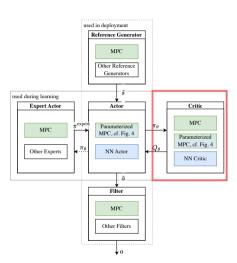
Policy Learning: Directly optimize closed-loop performance, towards

$$\mu_{\theta}^{\mathrm{MPC}} \approx \mu^{\star}$$

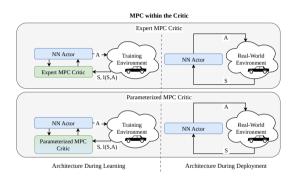
Tradeoffs:

- ✓ Direct optimization of actual objective
- ✓ Can correct for model errors through learning
- ✓ Flexibility in model choice
- X Limited generalization to new scenarios
- X Not representing true system
- × Reduced adaptability when requirements change

Taxonomy



MPC as the Critic



$$\begin{split} Q^{\text{MPC}}(s, a) = & \min_{\mathcal{Z}} & \sum_{k=0}^{N-1} l^{\text{MPC}}(x_k, u_k) + \bar{V}^{\text{MPC}}(x_N) \\ \text{s.t.} & x_0 = s, \\ & u_0 = a, \\ & x_{k+1} = f^{\text{MPC}}(x_k, u_k), \ 0 \leq k < N, \\ & 0 \leq h^{\text{MPC}}(x_k, u_k), \ 1 \leq k < N, \\ & 0 \leq h^{\text{MPC}}_N(x_N). \end{split}$$

- lackbox We can use MPC to derive a Q-function Q^{MPC} , which can be used as a critic!
- We constrain the initial control u_0 to be a.

Example: Learnable Critic

Instead of using a fixed MPC critic, we can further learn to improve the critic:

► In [Bhardwaj et al. 2020], the author combine sampling-based MPC with a learned value function using a parallel architecture solving multiple robot manipulation tasks. A simplified version of the critic is given by:

$$Q(s, a) = (1 - \lambda) \underbrace{Q_w(s, a)}_{\text{learned critic}} + \lambda \underbrace{Q^{\text{MPC}}(s, a)}_{\text{model-based}},$$

where Q_w is a learned critic and Q^{MPC} is the MPC-based Q-function.

lacktriangle The parameter λ balances the two Q-functions and is decayed over time.

Example: Learnable Critic from parameterized MPC

- [Anand et al. 2023] proposed a simple actor-critic scheme, where a single MPC scheme is used for both actor and critic.
- ▶ **Idea:** Close-to-optimal MPC parameters ϕ allow approximation of the optimal Q-function Q^* .

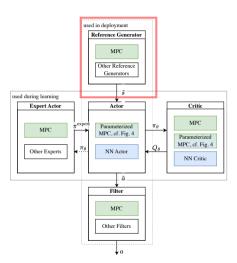
Local Q-function approximation:

$$Q_w(s, a) = Q_\phi^{\mathrm{MPC}}(s, a) + \nabla_\phi Q_\phi^{\mathrm{MPC}}(s, a)^\top w$$

MPC Q-Function

$$\begin{split} Q_{\phi}^{\text{MPC}}(s, a) = & \min_{\tilde{z}} \quad \sum_{k=0}^{N-1} l_{\phi}^{\text{MPC}}(x_k, u_k) + \bar{V}_{\phi}^{\text{MPC}}(x_N) \\ \text{s.t.} \quad & x_0 = s, \\ u_0 = a, \\ x_{k+1} = f_{\phi}^{\text{MPC}}(x_k, u_k), , \\ 0 \leq h_{\phi}^{\text{MPC}}(x_k, u_k), , \\ 0 \leq h_{\phi}^{\text{MPC}}(x_N). \end{split}$$

Taxonomy



MPC for Preprocessing

MPC used in deployed policy, but not during training

Preprocessing: Reference Generator

Purpose: Provide reference trajectory for RL policy

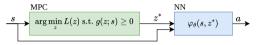
Characteristics:

- MPC outputs planned trajectory
- RL policy uses reference as input

Benefit:

- ✓ Interpretable reference trajectory
- ✓ Bandwidth and learning at lower level

MPC as reference generator

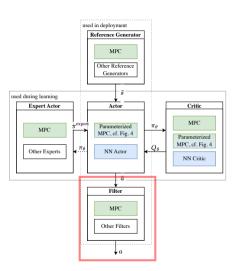


DTC: Deep Tracking Control

FABIAN JENELTEN, 1* JUNZHE HE, 1 FARBOD FARSHIDIAN, 2 AND MARCO HUTTER 1

Robotic Systems Lab, ETH Zurich, 8092 Zurich, Switzerland.
 Currently at Boston Dynamics Al Institute, 145 Broadway, Cambridge MA, USA

Taxonomy



MPC for Postprocessing

MPC used in deployed policy, but not during training

Postprocessing: Safety Filter

Purpose: Ensure safety w.r.t. model and constraints

Characteristics:

- ► MPC filters RL policy output
- Projects actions to safe set

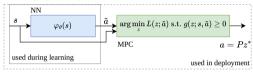
Benefit:

✓ Provides safety guarantees w.r.t. model and constraints

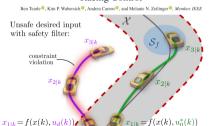
Issue:

- × Policy unaware of filter during training
- X May lead to suboptimal actions

MPC for postprocessing



A Predictive Safety Filter for Learning-Based Racing Control



Outline

Comparing MPC and RL

Inference Architectures

Parameterized

Paralle

Hierarchica

Integrated

Algorithmic

Taxonomy of Combination Approaches

MPC as an Expert Actor

MPC within the Deployed Policy

Aligned Learning

Closed-Loop Optimal Learning

MPC as the Critic

MPC for Preprocessing/Postprocessing

Current Challenges

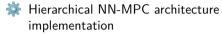
Summary

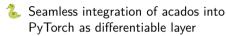
Next Steps and Current Challenges

- Computational efficiency: Scaling to high-dimensional offline RL with massive datasets remains challenging
- Risk-aware learning: Moving beyond robust/stochastic MPC toward sophisticated risk metrics (e.g., mission completion probabilities)
- Expanding frameworks: Generalization from MPC to broader planning (combinatorial optimization, MILP, stochastic multi-stage programming)
- Multi-agent systems: Coordination, communication, and distributed decision-making largely unresolved
- Application domains: Need for more practical demonstrations across diverse sectors (energy, healthcare, logistics)

Learning for Predictive Control (leap-c)

Key features:





Supports differentiation of control/state trajectories and Q-function w.r.t. parameters

Efficient multithreaded implementation for batched inputs

Modular codebase

Focus on closed-loop learning

Missing a differentiable convex programming layer

https://github.com/leap-c/leap-c

Summary

Having heard this lecture, you should have a better understanding of...

- Identify strengths and weaknesses of MPC and RL
- Recognize potential benefits of combining both approaches
- T Distinguish between parameterized MPC architectures:
 - Integrated, hierarchical, parallel, parameterized
- X Design or use MPC-RL algorithms based on:
 - MPC as expert actor
 - 🔅 MPC within deployed policy
 - MPC as critic
 - MPC as reference generator
 - MPC as a safety filter

Thank you for your attention!