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Dirk's Spotlight

fi=2 Postdoc at Cybernetics Department, NTNU, Norway
= Working on combining MPC and RL for real-world systems
Interested in applications in energy systems

@ PhD in Cybernetics, worked on Optimal Control of
Unmanned Aerial Vehicles (acados inside)
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Two Communities

Reinforcement Learning i:8 Model Predictive Control

» Machine-Learning Community: Use learning » Control Community: Use feedback to
to mitigate complexities mitigate uncertainties

» Philosophy: Trial-and-error learning to » Philosophy: Model-based optimization over
build policies directly from experience engineering models for planning (explicit)
(implicit) » Online Solution (implicit function)

> Offline Solution (explicit function) > Theory first

> Simulation first » Roots in Process Control

» Roots in Computer Science

But both want to solve sequential decision-making problems!
[Video: Miki et al. 2022] [Video: Romero et al. 2024]
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https://www.youtube.com/watch?v=v1qFzCmdF-A
https://youtu.be/3epWs63bOGs?si=_eH0EQsKQh615VPB&t=401

Synthesis of MPC and RL

Motivation:
Synthesis of Model Predictive Control and Reinforcement Learning;
» MPC and RL are complementary Survey and Classification”
approaches for solvi ng MDPs Rudolf Reiter***, Jusper Hoffmann®*", Dirk Reinhardt¢, Florian Messerer®, Katrin Bunmgirtuer®, Shambiuraj Sasant?,
A

Joschka Bidecker®, Moritz Dichl**, Sebastien Gros

» Nearly orthogonal advantages:
weaknesses of one are strengths of the
other

» Growing research interest in combination
methods

Goals of this presentation:

» [lluminate differences, similarities, and
fundamentals enabling combinations d L X1V

» Categorize existing work based on
actor-critic RL framework

o
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Outline

Comparing MPC and RL

Inference Architectures
Parameterized
Parallel
Hierarchical
Integrated
Algorithmic

Taxonomy of Combination Approaches
MPC as an Expert Actor

MPC within the Deployed Policy
Aligned Learning
Closed-Loop Optimal Learning

MPC as the Critic
MPC for Preprocessing/Postprocessing

Current Challenges

Summary
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Outline

Comparing MPC and RL
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Comparison of Practical Properties

Property

MPC

RL

state-space

model requirements

uncertainty

stability

constraint handling
online computation time
offline computation time
adaptability

generalization

model specific X

differentiability/ %
online simulation
guarantees with
known uncertainty

strong theory v/

inherent v/

high v

low X

inherent v/

inherent v/

(quite) arbitrary v/
offline simulation v/

probabilistic
guarantees

minor theory X

hard to achieve X

low X

high v

needs retraining X
poor when
out-of-distribution

Comparison of practical properties between MPC and RL.
The evaluation is simplified and conceptual. Exemptions may exist.

Synthesis
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Examples: MPC vs RL - Changes in Dynamics

MPC Problem RL Policy (DDPG)

N—-1
mzin Z lMPC(Z_k’ Uk)+ VMPC(QSN) B

k=0 FZ&V Qw SzyA)
s.t. To = 8, i=1

Trpr = (2n, ur),
0 S hMPC(zk,'UJc),

0 < by (zn). 0; = 1(Ss, Ay) +’Yqu(Si_‘_7A?-) — Qu(S;, Ay),
with (i, A, S;F) ~ D™ AT = pa(SF),

B
0L 04+ 20 va ) VaQu(Sis &)l aepy sy »

Change in dynamics?

H MPC H H
Modify f*"“ — new optimal policy Change in dynamics?

Dbuffer

Collect new data — retrain policy

Synthesis Dirk Reinhardt, NTNU, Jasper Hoffmann, University of Freiburg, 7



Examples: MPC vs RL - Constraint Handling

MPC Problem RL Policy (DDPG)

N—-1

mzin Z lMPC(a:k, Ulc)"‘ VMPC(wN)
k=0

s.t. To = S,

1 = 7 (an, wr),
0 < B (k, ur),
0 < B ().

Constraints?

Directly handled through A" and h)"™

B
fwzfsv Qu(Si, As),

B
9#9+f2vw9 ) Va@u(Si, @)y sy

0; == l(Sz, Az) + 'YQw(Ser A+) Qw(siv Al)v
with (Si, As, Si7) ~ DU, A = po(S),

Constraints?

Hard to handle formally — use penalties in cost [
or restrict action space of policy 1.

Synthesis
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Examples: MPC vs RL - Inference Time

MPC Problem RL Policy (DDPG)

N—-1
mzin Z ll\l}’C(xk’ Uk)+ VMPC(IN) B

k=0 fzfsv Qu(Si, As),
s.t. To = S, i=1

Trpr = 7 (zk, ur),
0 < B (k, ur),

0< h?\[zpc(l"N) 0; = l(S»L, Az) <= 'YQH)(S;rvA;r) - Qw(s’iv Al)v
with (Si, As, Si7) ~ DU, A = po(S),

B
9#9+f2v9u9 ) Va@u(Si, @)y sy

Inference time?

Often hllg.h.due to online optimization — may Inference time?
be prohibitive for fast systems
Low, only need forward pass of 19 — suitable for

fast systems
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Stochasticity

St+1
p(st+1)

St at

St+1

[Image: Moerland et al. 2022]

> Definition: Environment is inherently stochastic - deterministic future state prediction
impossible even with perfect model knowledge

» RL approaches:
> Natural fit: Stochasticity inherent in MDP framework

> Direct training: Policies trained on real-world environment to account for actual uncertainty
> Challenge: Rare events (large but infrequent deviations) make value estimation difficult
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https://arxiv.org/pdf/2006.16712

Model Mismatch

Challenge: Training environment often differs from deployment environment

RL approaches: MPC approaches:
» Domain randomization » Stochastic MPC - explicitly accounts for
> Robust RL model mismatch
> Meta RL - training on adaptive » Robust MPC - handles correlated
distribution of models predictive errors across time

» Distributionally robust MPC - robustifies
against distribution mismatches

RL assumption: Real-world environment lies MPC advantage: Inherent robustness -
within training model distribution performs well even without explicit model
mismatch consideration
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Safety & Constraints

Soft Constraints
Safety Level |

Possible Minimal
Violations

Probabilistic Constraints
Safety Level

No Violations with
High Probability
|

Distribution of
Possible Paths
the Robot Could ) |
Traverse

Hard Constraints
Safety Level Il

No Violations

,

Path Traversed
by the Robot l

[Image: Brunke et al. 2023]

» MPC: Constraint satisfaction and stability are key strengths:
> Challenge: Hard to handle probabilistic constraints with (unknown) uncertainty
» Common MPC approaches: Robust MPC, tube-based MPC
» RL: Increasingly focused on safety guarantees using constrained MDPs:
> Challenge: Safe RL policies often become too conservative or may still violate constraints.
> Common RL approaches: Safe action sets, Lagrange formulation, trust-region
optimization, control-barrier functions, MPC based safety filter

Synthesis
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https://arxiv.org/abs/2108.06266

Outline

Inference Architectures

Parameterized
Parallel
Hierarchical
Integrated
Algorithmic

Synthesis
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Parameterized OCP

Parameterized OCP with parameters ¢:

OCP: Objective:
min  Ly(2) N-1
z ¢ I (Z) — VMPC(xN)‘i‘Z jMPc (xk Uk)
S.t. Ty = 8, 2 ’ ¢ P 4 ’ ’
i1 = 37 (z, ug), 0 < k< N,
k1 = Ig ( g k) - Short notation:
0< hi;)IPC (xk’ Uk); 0<k<N, mzin Ly(z) st 0.(zs) >0.

0< ﬁgﬁnﬁc (CUN) ,

. H H H MPC H MPC
Parameters ¢ can affect: objective Ly, dynamics f;™“, and constraints /.

Note: ¢, encodes both dynamics and constraints.
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Inference Architectures

Integrated VgMPC, 2 Algorithmic VMPC, 2"
L,{ min Ly(2) s.t. go(2; 5) > 0, with [ = @e(2;5) ’—y AN min L(z) s.t. g(2;8) > 0, with ’_y
2 z
_ NN inside MPC P = pg(z; 8) NN supports MPC optimization
Hierarchical NN VgMPC’ z* Eaalic] MPC _+ YMPC s»
s A min L(z2) s.t. g(z;8) > 0 Vo =2 )
wo(s) min Ly (2) s.t. g4(z 8) > 0 z
MPC VNN ZNN
parameterized MPC [
©0(s)
[NN
Parameterized YMPC s
s ; | O 8
—+ min Ly(2) s.t. go(28) > 0 | > D Neural Network (NN) D MPC Layer (MPC)
MPC
-
Dirk Reinhardt, NTNU, Jasper Hoffmann, University of Freiburg, 15
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Parameterized Architecture

Architecture: Parameters 6 are constant and independent of decision variables z or state s

Key characteristics: Parameterized .

Z
S5 5 minLy(z)st.ge(z8)>0 — 5
z

» Parameters learned offline, fixed during
deployment

» Optimization-friendly MPC formulation

MPC

N I hit I c Examples:
> . . . . _
o evaluation of highly nonlinear functions > Simplified models (Cai et 21 2027

Advantages: » Cost function tuning

v Preserves MPC problem structure

v/ No NN evaluation during inference

v Suitable for standard MPC solvers

v/ Lower computational complexity

X Less flexibility than state-dependent architectures
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https://ieeexplore.ieee.org/document/9484747/

Parameterized Architecture: Example

A Learning-Based Model Predictive
Control Strategy for Home Energy
Management Systems

WENQI CAI®', SHAMBHURAJ SAWANT', DIRK REINHARDT',
SOROUSH RASTEGARPOUR'”2, AND SEBASTIEN GROS"!

» Build a simplified MPC scheme and
parameterize model, cost constraints

» |earn parameters via RL

» Maintains MPC structure, lower inference
time compared to full model

PV Grid

Ppuy(6)
Py (t) uy
™ Psen(t)
"“Inaccurate House model \

Process noise €{1,2,3,4} Battery

:' Appliances \: Heat Pump & Pen(t)

loads Hot water tank Pis(t)

Papp () Php (), Xy ()
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Inference Architectures

MPC MPC
Integrated ) , 2" Algorithmic \4 22
S min Ly(2) s.t. gs(z8) > 0, with |¢ = pa(2;8) s 5 min L(2) s.t. g(z;8) > 0, with
4 7
= z
_ NN inside MPC P = pg(z; 8) NN supports MPC optimization )
. N MPC Parallel _
Hierarchical NN Ve, 2" | VMPC ~ V"MPC’ 7
s s () i ) = 0 min L(2) s.t. g(z;8) >0 G- +
@o(s) min Ly(2) s.t. g4(28) > z ‘ \T/'
MPC NN _NN
parameterized MPC VB pZ
NN /
Parameterized
) VMPC
—»{ min Lo(2) s.t. go(z; 8) = 0 I:‘ Neural Network (NN) D MPC Layer (MPC)
MPC
-
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Parallel Architecture

Architecture: MPC problem usually not parameterized; NN evaluated in parallel to correct
MPC output

Key characteristics: Parallel MPC e
VMPC V 32
» MPC problem typically not parameterized L) st alse) 2
i i . MPC V\(N NN

» NN evaluated in parallel to MPC optimization w(s
» NN output corrects optimal solution or value
function Examples:
» MPC and NN operate independently » Value function approximation

[Bhardwaj et al. 2020]
Trade-offs:
» No differentiation through optimization v/
» Potentially unsafe actions due to perturbation X
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https://arxiv.org/abs/2012.05909

Parallel: Example

BLENDING MPC & VALUE FUNCTION APPROXIMATION
FOR EFFICIENT REINFORCEMENT LEARNING

Mohak Bhardwaj' Sanjiban Choudhury?  Byron Boots'

1 University of Washington 2 Aurora Innovation Inc.

Use MPC for local value estimates
NN provides corrections

Blend both estimates via weighting factor A

vV vyVvyy

Improves data efficiency and adds structure

[Image: Bhardwaj et al. 2020]
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Inference Architectures

Integrated VgMPC7 z* Algorithmic VMPC7 2
3_>{ min Ly(2) s.t. go(2; 8) > 0, with | = pe(2;5) }_> S, min L(2) s.t. g(z;s) > 0, with }_>
# z
_ NN inside MPC P = pg(z; 8) NN supports MPC optimization )
MP! =
Hierarchical NN | Parallel ‘ YMPC o+ Y e, 2
f min L(z) s.t. g(z;8) > 0 )
& ©o(s) min Ly(2) s.t. g4(28) > 0 }_> in L(2) s.t. 9( 5) i \%J—
MPC NN _NN
N parameterized MPC vo(s) Vo ',z
[NN )
Parameterized YMPC -
s : ‘ 9 Ixd
_’{ min Lo(2) 5.t- go(2; 8) 2 0 i I:] Neural Network (NN) D MPC Layer (MPC)
MPC
&
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Hierarchical Architecture

Architecture: NN provides input to MPC, parameter ¢ depends on state via ¢ = wp(s)

Key characteristics: il ype
> NN evaluated before solving optimization problem 9 gols) Ly minLy(z) st gy(zi8) 20 >
» Function pg(s) evaluated independently of MPC e
» Nonlinearity does not affect optimization structure E .

xamples:

» Parameter changes may affect convergence > Reference trajectory [Brito et
rito et al.

2021] [Reiter et al. 2023]
Tradeoffs:

imizati » Cost modification [R t al.
v/ Optimization not harder to solve [Romero et a

2024]

v No NN inside optimization » Constraint modification [Jacquet

v/ Standard MPC solvers work et al. 2024]
X MPC theory may not hold
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https://ieeexplore.ieee.org/document/9385847
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https://doi.org/10.1109/ICRA57147.2024.10610381
https://doi.org/10.1109/ICRA57147.2024.10610381
https://arxiv.org/pdf/2402.13038
https://arxiv.org/pdf/2402.13038

Hierarchical: Example

Actor-Critic Model Predictive Control

Angel Romero, Yunlong Song, Davide Scaramuzza

=T . |
Model Predictive Co

Environment

(Actor ()

\¥

S
™
N,

/8O

3

@
RV
S
A
VA

\__ Costmap

Vi) %/,
subject to T =@
Zpsr = flErwi)
w €U

DiffMPC

AR
/%

[Image: Romero et al. 2024]

syndui jo13u0d
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Inference Architectures

\

MPC MPC
Integrated Vy v Algorithmic |4 22
3_>{ min Ly(2) s.t. go(2; 5) > 0, with | = pe(2;5) }_> S 5 min L(2) s.t. g(z;s) > 0, with }_>
z z
_ NN inside MPC P = pg(z; 5) NN supports MPC optimization )
(" MPC Parallel
Hierarchical NN Vo2 e VPO 2~ VPC, 3
s i () i ) 2 @ min L(z2) s.t. g(z;8) > 0 9 +
©o(s) min Lg(2) s.t. g5(2; 8) > z ‘ \TJ’
MPC NN _NN
L parameterized MPC Vo 2
NN J
Parameterized
I/eMPC, 2
D Neural Network (NN) D MPC Layer (MPC)

\

s_>{ min Ly(2) s.t. go(z;s) > 0 |
z
MPC
\
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Integrated Architecture

Architecture: Parameters depend on both state s and optimization variables z via

¢ =po(s,2)

Key characteristics: ntegrated ypwe,
» NN is part of the optimization problem itself S5 minLy() st golzis) > 0, with [f=@E9)] >
» Cannot be evaluated separately from optimization NN inside MPC

algorithm
Examples:

» NN encoders/decoders infer states, rewards,

transition models > Latent space MPC [Lowrey et al

. ; .. . 2019]
» Outputs value function V™ or decision variables o
o » NN transition models [Salzmann
et al. 2023][Adhau et al. 2024]
Tradeoffs: .
: . . » Cost function [Seel et al. 2022]
X Highly nonlinear, possibly nonconvex
X Computationally expensive

X Requires V,pg(z; s)
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https://arxiv.org/pdf/1811.01848
https://arxiv.org/pdf/1811.01848
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https://www.sciencedirect.com/science/article/pii/S0947358024001080
https://ieeexplore.ieee.org/abstract/document/9944720

Integrated: Example

Idea:

» Learn NN dynamics model from data ) .
Real-Time Neural MPC: Deep Learning Model

» Use model for MPC planning Predictive Control for Quadrotors and
Agile Robotic Platforms

Anyone wants to try?

[Image: Salzmann et al. 2023]

[l4casadi] [l4acados]

Synthesis Dirk Reinhardt, NTNU, Jasper Hoffmann, University of Freiburg, 26


https://arxiv.org/pdf/2203.07747

Inference Architectures

MPC MPC
Integrated Vs 2" Algorithmic \4 22
] min Ly(2) s.t. gs(z8) > 0, with |¢ = pa(2;5) s min L(2) s.t. g(z;8) > 0, with
4 ’
z z
_ NN inside MPC P = pg(z; 8) NN supports MPC optimization )
. . MPC Parallel ~
Hierarchical NN Ve, 2 | VMPC ~ VgMPC, 7
s s () i ) = min L(2) s.t. g(z;8) >0 G- +
@o(s) min Ly(2) s.t. gg(28) > z \TJ’
MPC NN _NN
parameterized MPC VB pZ
NN /
Parameterized
s ‘ ‘/ng:'C7 2
—>{ min Ly(2) 5.t go(2 8) > 0 I:‘ Neural Network (NN) D MPC Layer (MPC)
MPC
-

27

Synthesis Dirk Reinhardt, NTNU, Jasper Hoffmann, University of Freiburg,



Algorithmic Architecture

Architecture: RL policy guides the MPC optimization algorithm without modifying the
optimization problem itself

Key characteristics: Algorithmic YRC

» RL policy alters hyperparameters i of the solver S5 mink(2)st.g(zs) > 0, with >

» Optimization problem remains unchanged BN LD

» Examples of hyperparameters:

N ) Examples:
> Initial trajectory guess
> Trajectory samples (MPP|) > TD-MPC2 [Hansen et al. 2024]
> Active-set predictions » Warm-starting [Grandesso et al.
> MPC recompute flag 2023]
> Horizon length
Tradeoffs:

v/ Improve online computation time
v/ Can help escape local minima

X Increased complexity
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Algorithmic: Example

RL Components:

» Joint-embedding prediction TD-MPC2: .
Scalable, Robust World Models for Continuous Control

Nicklas Hansen', Hao Su’',

» Reward prediction

University of California San Di
» TD learning (Q-function) {oshansenshaos
» Long-term credit assignment a, Q1 a, q2 a3 ds

Xiaolong Wang
Equal advising

05U, Xiw0:

MPC Components:

» Local trajectory optimization

» Planning in latent space

» Policy prior guidance enc enc enc

Key Innovation:
Bootstraps beyond planning horizon using
learned Q-function

[Image: Hansen et al. 2023]
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Outline

Taxonomy of Combination Approaches
MPC as an Expert Actor
MPC within the Deployed Policy

MPC as the Critic
MPC for Preprocessing/Postprocessing
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Taxonomy

! used in deployment
Reference Generator

used during learning

Actor Critic

ExpertActor |
7° ’i" Parameterized
MPC, cf. Fig. 4
‘ Other Experts & L ‘ NN Actor ‘

a

Filter

31
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MPC as an Expert Actor

MPC used to generate training data for RL policy

MPC within the Expert Actor

Purpose: Use MPC to provide expert trajectories

for imitation learning ‘ ; ’7/\

Real-World

Characteristics: NN /T\clor MPC ‘Expen ‘] NNActor | Environment
» MPC generates state-action pairs \ LA 1 s J
. . . Architecture During Learning : Architecture During Deployment
» RL policy learns to mimic MPC behavior ‘
Examples:

» Can use behavioral cloning or DAgger o
P Autonomous driving [Hoffmann et al. 2024]

» See also [Karg and Lucia 2020]

Benefits: Challenge:
v Faster inference than MPC X Limited to MPC performance
v Leverages domain knowledge

v/ Sample-efficient learning

Synthesis Dirk Reinhardt, NTNU, Jasper Hoffmann, University of Freiburg, 32


https://ieeexplore.ieee.org/abstract/document/9123670
https://proceedings.mlr.press/v242/hoffmann24a/hoffmann24a.pdf

MPC as an Expert Actor: Example

Learning When to Trust the Expert
for Guided Exploration in RL

Felix Schulz * Jasper Hoffmann *
Neurorobotics Lab Neurorobotics Lab
University of Freiburg University of Freiburg
Germany Germany
te1 bpi.de ~freiburg.d
Yuan Zhang Joschka Bdecker
Neurorobotics Lab Neurorobotics Lab
University of Freiburg University of Freiburg
Germany Germany
4 4

» Use an expert actor for exploration during training

» A learned high-level skip policy 7, decides at each for
how many steps it should either follow a learned action
policy 7 or the MPC expert Texpert

» Reduce usage of expert during training

Comb. Policy 7 | ! Skip Env. M !
Action Policy -;A): Environment E

™ < M .

v A

Skip Policy \ | Expert Policy |,
—» .

Ty ! J ! T expert !

[Image: Schulz and Hoffmann et al. 2024]
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Taxonomy

used in deployment

Reference Generator

used during learning s
ExpertActor | | | Actor Critic
‘ pert -
kLo N Parameterized | o
MPC, cf. Fig. 4 >
‘ Other Experts 1 ‘ NN Actor ‘ fetet |
[a
Filter
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MPC within the Deployed policy

/

(Leaming) Parameterized MPC

EDICD

learning target

leamning target

MDP Aligned Learning

Training

Real-World

Environment

Enviropment rained
r— Parameterized MPC

Optimal Value
Function

A
(Learning) Parameterized MPC

Closed-Loop Learni

Real-World
Environment

Training
Environment

Architecture During Learning

H Architecture During Deployment

/ MPC for Pre/Postprocessing - \

| MPCFilter

Training
Environment

Real-World

Candidate Action
Environment

NN Actor

S.15.A)

NN Actor

Training

Real-World
Environment

Reference Trajectory Reference Trajectory

Environment

MPC Reference
Generator

MPC

| Hyperparameters
NN Actor
B

Training
Environment

NN Actor s
\ S.I(S.A)

al- W
Hyperparameters Real-World

Environment

Architecture During Learning

: Architecture During Deployment

In the following, we will focus on Aligned and Closed-Loop Learning!

Synthesis
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Aligned Learning

e MDP Aligned Learning

(Learning) Parameterized MPC

Training Real-World

Parameterized MPC Environment

(Trained)

Environment
x x

L learning target -/ :

learning target ‘
\ i

Architecture During Learning

4

Architecture During Deployment

Paradigm: Learn individual components of the MPC controller to better approximate the true
environment. This aligns the controller's internal understanding with reality.

Components aligned with MDP:

J Approximate the system'’s dynamics by learning: fMPC ~ P

») Approximate the infinite-horizon cost with RL: VQMPC ~ V*
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Aligned Learning: Example

A Learning-Based Model Predictive

Weather forecasts .
Control Strategy for Home Energy SRR LY Grid
: Pruy(6)
Fov() v
Management Systems “‘ Pean®
WENQI CAI7, SHAMBHURAJ SAWANT', DIRK REINHARDT',
SOROUSH RASTEGARPOUR 2, AND SEBASTIEN GROS ! e onea madel Ty
i Process noise €(1234] | Battery
i i . i Appliances 3 Heat Pump & Pen(t)
» Build a simplified MPC scheme and i loads ! | Hot water tank Pais(6)
parameterize model, cost constraints Fr® P X0
» Learn parameters via RL -
earn parameters via (e Leared optimal
. . . Bt parameters :
> Maintains MPC structure, lower inference e N 0" = (03,02,0%)
Se+1 = f(S0 @ d, € b
time compared to full model (@sttes) bl IO
Inadequateffinformation g, 0,,, 08 [
Practical, simplified model: N
Star = fo, (S, de) é-m
(4 states) e 126
.

[Image: Cai et al. 2023]
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Closed-Loop Learning

e T
Closed-Loop Learning

,—/\

(Learning) Parameterized MPC

\_ r

Architecture During Learning i Architecture During Deployment

,7 A
' (Trained)
|| Parameterized MPC

Real-World

Training

Environment Environment

S.I(S.A) . /

Paradigm:
7 The focus is on what works best, not what is most accurate. The internal model or costs may
become misaligned.
How is it implemented?
~/ Learn MPC parameters ¢ to directly optimize the final closed-loop performance J(¢).

%/ Differentiable MPC: Treat the MPC as a layer in a policy network. Gradients are
backpropagated through the optimization process to update parameters.

& MPC as part of the Environment: An outer-loop RL agent learns to choose the best MPC
parameters ¢ as its "action”, treating the MPC-controlled system as a black box.
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Closed-loop Optimal Learning: Example

2023 European Control Conference (ECC)
June 13-16, 2023, Bucharest, Romania

A Hierarchical Approach for Strategic Motion Planning in Autonomous HILEPP
Racing RL-policy

@ p |MPP

Rudolf Reiter', Jasper Hoffmann?, Joschka Boedecker? and Moritz Diehl" 70 (s) aMPP (2, P)

F
z X

[ 3@
ego vehicle H s (Xret, ) |‘_

i Nob, controlled opponent vehicles @B |

random road

» Car-racing environment

Q
<
&
=1 T

» RL learns to set reference trajectories

» MPC tracks learned reference trajectories

Environment

\3

—120

=
ego agent &
 m— Y t @
\ _ stronger agent 168
£ —140 <
> 5=
~160 s
¥ T T T 1 ue

300 325 350 375 400

x (m)

[Image: Reiter et al. 2023]
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Comparison: Aligned Learning and Closed-Loop Learning

Aligned Learning Closed-Loop Learning

< Approximate the true Markov Decision Process < Approximate the optimal policy
Model Learning: Supervised learning on transition data, Policy Learning: Directly optimize closed-loop
eg., performance, towards
min £(ST — f1FC(S, A))
[ MPC _,  *
6 S
Terminal Value Learning: RL-style updates towards
Tradeoffs:
MPC * . P -
Vo ~V v/ Direct optimization of actual objective

Can correct for model errors through learning

Tradeoffs: Flexibility in model choice

. Limited generalization to new scenarios
v Interpretable model, cost, constraints g

L - Not representing true system
Division of design into manageable subtasks P € 4

X X X NN

Gefts, meelies e Reduced adaptability when requirements change

Sub-optimal closed-loop performance

May require complex models

X X X NN

Restrictive model requirements (differentiability,
smoothness)

Synthesis Dirk Reinhardt, NTNU, Jasper Hoffmann, University of Freiburg, 40



Taxonomy

used in deployment
Reference Generator

used during learning
ExpertActor | | Actor Critic
7P [ Parameterized
RIEC ‘ MPC, cf. Fig. 4
‘ Other Experts ‘ ‘ NN Actor ‘
a
Filter
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MPC as the Critic

MPC within the Critic

s Expert MPC Critic ™\

: N-1
NN Actor )’A Training | . . | = .
. ; ( NN Actor QMP(, (8, a) —min § : lMPc(xl€7 uk) 4 pvre (ZN)
| Expert MPC Cridic | o 2 —
7 518,8) i k=0
s.t. Tp =58
/ Parameterized MPC Critic \ 0 ’
' Up= a,

Tyl = f‘m)c(m)w uk), 0<k< N,
0< hMPC(xlm uk)v 1<k< N7
0 < Iy (a).

I NN Actor }“ A

Training

o

Real-World
Envi

oy

I NN Actor ‘

Parameterized MPC
Critic

S, 1(5,A)

Architecture During Learning Architecture During Deployment

» We can use MPC to derive a Q-function @Q""°, which can be used as a critic!

» We constrain the initial control v to be a.
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Example: Learnable Critic

Instead of using a fixed MPC critic, we can further learn to improve the critic:

» In [Bhardwaj et al. 2020], the author combine sampling-based MPC with a learned value
function using a parallel architecture solving multiple robot manipulation tasks. A
simplified version of the critic is given by:

Q(s,a) = (1=X) Qu(s,a) +A Q"(s,a),
—— ——
learned critic model-based

where ), is a learned critic and Q¥° is the MPC-based Q-function.

» The parameter A balances the two Q-functions and is decayed over time.
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Example: Learnable Critic from parameterized MPC

P [Anand et al. 2023] proposed a simple actor-critic MPC = .
scheme, where a single MPC scheme is used for
both actor and critic.

. QMPC S a —mln lMPC ilfk, Ups +V]\IPC( )
» Idea: Close-to-optimal MPC parameters ¢ Z ?

allow approximation of the optimal s.t. T = s,
Q-function Q™. w= a,

Tp1 = fo (T Uk,

Local Q-function approximation: 0 < hY™ (@, ug),,

MPC MPC T 0 < A" (ow):
Qu(s,a) = Qg ~(s,a) +VgQy ~(s5,a) w
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Taxonomy

used in deployment

Reference Generator

used during learning l s
ExpertActor | | Actor Critic
p— 7P [ Parameterized
MPC, cf. Fig. 4
‘ Other Experts ‘ ‘ NN Actor ‘
[a
Filter
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MPC for Preprocessing

MPC used in deployed policy, but not during training

MPC as reference generator

Preprocessing: Reference Generator e N
Purpose: Provide reference trajectory for RL ir’{ ey () mi 6Ee) 2 O };,_ﬂ vo(s,2") }L>
policy
L. DTC: Deep Tracking Control
Characteristics:
FABIAN JENELTEN,'* JUNZHE HE,! FARBOD FARSHIDIAN,? AND MARCO HUTTER!
» MPC outputs planned trajectory 1 Robotic Systems Lab, ETH Zurich, 8092 Zurich, Switzerland.

2Currently at Boston Dynamics Al Institute, 145 Broadway, Cambridge MA, USA

B i W | <

» RL policy uses reference as input

Benefit:
v Interpretable reference trajectory

v/ Bandwidth and learning at lower level

46
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Taxonomy

used in deployment
Reference Generator

used during learning
ExpertActor | | Actor Critic
p— 7P [ Parameterized
MPC, cf Fig. 4
‘ Other Experts ‘ ‘ NN Actor ‘

a7
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MPC for Postprocessing

MPC used in deployed policy, but not during training

Postprocessing: Safety Filter

MPC for postprocessing

' NN
Purpose: Ensure safety w.r.t. model and oy _
] : a in L(z; @) s.t. g(z;s,@) > 0
constraints 1 $o(s) argmin
MPC a= Pz"
Characteristics: ! | used during learning

used in deployment

» MPC filters RL policy output

i X A Predictive Safety Filter for Learning-Based
» Projects actions to safe set Racing Control

Ben Tearle @, Kim P. Wabersich @, Andrea Carron @, and Melanie N. Zeilinger ©, Member, IEEE

. Unsafe desired input b ~ X
v Provides safety guarantees w.r.t. model with safety filter: >

Benefit:

. Ty S \
and constraints S . T3
violation U

Issue: 4

2

X Policy unaware of filter during training

X May lead to suboptimal actions

1= k), wa(k))o 8 = £ (k) i ()
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Outline

Current Challenges
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Next Steps and Current Challenges

%/ Computational efficiency: Scaling to high-dimensional offline RL

with massive datasets remains challenging

] \

Risk-aware learning: Moving beyond robust/stochastic MPC
toward sophisticated risk metrics (e.g., mission completion
probabilities)

Expanding frameworks: Generalization from MPC to broader
planning (combinatorial optimization, MILP, stochastic multi-stage
programming) o

Multi-agent systems: Coordination, communication, and
distributed decision-making largely unresolved

Application domains: Need for more practical demonstrations
across diverse sectors (energy, healthcare, logistics)

Synthesis
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Learning for Predictive Control (leap-c)

Key features:

J- Hierarchical NN-MPC architecture
implementation

% Seamless integration of acados into
PyTorch as differentiable layer

~/ Supports differentiation of control/state
trajectories and Q-function w.r.t.
parameters

%/ Efficient multithreaded implementation
for batched inputs

@ Modular codebase

Focus on closed-loop learning

7z Missing a differentiable convex
programming layer
https://github.com/leap-c/leap-c

~

X
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Summary

Having heard this lecture, you should have a better understanding of. ..

[T0 Identify strengths and weaknesses of MPC and RL
Recognize potential benefits of combining both approaches

%1 Distinguish between parameterized MPC architectures:

> Integrated, hierarchical, parallel, parameterized

X Design or use MPC-RL algorithms based on:
MPC as expert actor

MPC within deployed policy

MPC as critic

MPC as reference generator

MPC as a safety filter

\¥@

@X L

Thank you for your attention!
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