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Dirk’s Spotlight

Postdoc at Cybernetics Department, NTNU, Norway
Working on combining MPC and RL for real-world systems
Interested in applications in energy systems
PhD in Cybernetics, worked on Optimal Control of
Unmanned Aerial Vehicles (acados inside)
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Two Communities

Reinforcement Learning
I Machine-Learning Community: Use learning

to mitigate complexities
I Philosophy: Trial-and-error learning to

build policies directly from experience
(implicit)

I Offline Solution (explicit function)
I Simulation first
I Roots in Computer Science

Model Predictive Control
I Control Community: Use feedback to

mitigate uncertainties
I Philosophy: Model-based optimization over

engineering models for planning (explicit)
I Online Solution (implicit function)
I Theory first
I Roots in Process Control

But both want to solve sequential decision-making problems!
[Video: Miki et al. 2022] [Video: Romero et al. 2024]
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https://youtu.be/3epWs63bOGs?si=_eH0EQsKQh615VPB&t=401


Synthesis of MPC and RL

Motivation:
I MPC and RL are complementary

approaches for solving MDPs
I Nearly orthogonal advantages:

weaknesses of one are strengths of the
other

I Growing research interest in combination
methods

Goals of this presentation:
I Illuminate differences, similarities, and

fundamentals enabling combinations
I Categorize existing work based on

actor-critic RL framework
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Comparison of Practical Properties

Property MPC RL
state-space model specific 5 (quite) arbitrary 3

model requirements differentiability/
online simulation 5 offline simulation 3

uncertainty guarantees with
known uncertainty 3

probabilistic
guarantees 3

stability strong theory 3 minor theory 5
constraint handling inherent 3 hard to achieve 5
online computation time high 3 low 5
offline computation time low 5 high 3
adaptability inherent 3 needs retraining 5

generalization inherent 3
poor when

out-of-distribution 5

Comparison of practical properties between MPC and RL.
The evaluation is simplified and conceptual. Exemptions may exist.
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Examples: MPC vs RL - Changes in Dynamics

MPC Problem

minz

N−1∑
k=0

lmpc(xk, uk)+V̄ mpc(xN)

s.t. x0 = s,
xk+1 = f mpc(xk, uk),

0 ≤ hmpc(xk, uk),

0 ≤ hmpc
N (xN).

Change in dynamics?

Modify f mpc → new optimal policy

RL Policy (DDPG)

w Q← w +
αw

B

B∑
i=1

δi∇wQw(Si,Ai),

θ
µ← θ +

αθ

B

B∑
i=1

∇θµθ(Si) ∇aQw(Si, a)|a=µθ(Si)
,

δi := l(Si,Ai) + γQw̄(S+
i ,A+

i )−Qw(Si,Ai),

with (Si,Ai,S+
i ) ∼ Dbuffer, A+

i = µθ(S+
i ),

Change in dynamics?

Collect new data Dbuffer → retrain policy
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Examples: MPC vs RL - Constraint Handling

MPC Problem

minz

N−1∑
k=0

lmpc(xk, uk)+V̄ mpc(xN)

s.t. x0 = s,
xk+1 = f mpc(xk, uk),

0 ≤ hmpc(xk, uk),

0 ≤ hmpc
N (xN).

Constraints?

Directly handled through hmpc and hmpc
N

RL Policy (DDPG)

w Q← w +
αw

B

B∑
i=1

δi∇wQw(Si,Ai),

θ
µ← θ +

αθ

B

B∑
i=1

∇θµθ(Si) ∇aQw(Si, a)|a=µθ(Si)
,

δi := l(Si,Ai) + γQw̄(S+
i ,A+

i )−Qw(Si,Ai),

with (Si,Ai,S+
i ) ∼ Dbuffer, A+

i = µθ(S+
i ),

Constraints?

Hard to handle formally → use penalties in cost l
or restrict action space of policy µθ.
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Examples: MPC vs RL - Inference Time

MPC Problem

minz

N−1∑
k=0

lmpc(xk, uk)+V̄ mpc(xN)

s.t. x0 = s,
xk+1 = f mpc(xk, uk),

0 ≤ hmpc(xk, uk),

0 ≤ hmpc
N (xN).

Inference time?

Often high due to online optimization → may
be prohibitive for fast systems

RL Policy (DDPG)

w Q← w +
αw

B

B∑
i=1

δi∇wQw(Si,Ai),

θ
µ← θ +

αθ

B

B∑
i=1

∇θµθ(Si) ∇aQw(Si, a)|a=µθ(Si)
,

δi := l(Si,Ai) + γQw̄(S+
i ,A+

i )−Qw(Si,Ai),

with (Si,Ai,S+
i ) ∼ Dbuffer, A+

i = µθ(S+
i ),

Inference time?

Low, only need forward pass of µθ → suitable for
fast systems
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Stochasticity

[Image: Moerland et al. 2022]

I Definition: Environment is inherently stochastic - deterministic future state prediction
impossible even with perfect model knowledge

I RL approaches:
I Natural fit: Stochasticity inherent in MDP framework
I Direct training: Policies trained on real-world environment to account for actual uncertainty
I Challenge: Rare events (large but infrequent deviations) make value estimation difficult
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Model Mismatch

Challenge: Training environment often differs from deployment environment

RL approaches:
I Domain randomization
I Robust RL
I Meta RL - training on adaptive

distribution of models

MPC approaches:
I Stochastic MPC - explicitly accounts for

model mismatch
I Robust MPC - handles correlated

predictive errors across time
I Distributionally robust MPC - robustifies

against distribution mismatches

RL assumption: Real-world environment lies
within training model distribution

MPC advantage: Inherent robustness -
performs well even without explicit model
mismatch consideration
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Safety & Constraints

[Image: Brunke et al. 2023]

I MPC: Constraint satisfaction and stability are key strengths:
I Challenge: Hard to handle probabilistic constraints with (unknown) uncertainty
I Common MPC approaches: Robust MPC, tube-based MPC

I RL: Increasingly focused on safety guarantees using constrained MDPs:
I Challenge: Safe RL policies often become too conservative or may still violate constraints.
I Common RL approaches: Safe action sets, Lagrange formulation, trust-region

optimization, control-barrier functions, MPC based safety filter
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Parameterized OCP

Parameterized OCP with parameters φ:
OCP:

minz Lφ(z)

s.t. x0 = s,
xk+1 = f mpc

φ

(
xk, uk

)
, 0 ≤ k < N ,

0 ≤ hmpc
φ

(
xk, uk

)
, 0 ≤ k < N ,

0 ≤ h̃mpc
φ

(
xN

)
,

Objective:

Lφ(z) := V̄ mpc
φ (xN)+

N−1∑
k=0

lmpc
φ

(
xk, uk

)
.

Short notation:

min
z

Lφ(z) s.t. gφ(z; s) ≥ 0.

Parameters φ can affect: objective Lφ, dynamics f mpc
φ , and constraints hmpc

φ .
Note: gφ encodes both dynamics and constraints.
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Inference Architectures
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Parameterized Architecture
Architecture: Parameters θ are constant and independent of decision variables z or state s

Key characteristics:
I Parameters learned offline, fixed during

deployment
I Optimization-friendly MPC formulation
I No evaluation of highly nonlinear functions

Advantages:
3 Preserves MPC problem structure
3 No NN evaluation during inference
3 Suitable for standard MPC solvers
3 Lower computational complexity
5 Less flexibility than state-dependent architectures

Examples:
I Simplified models [Cai et al. 2023]

I Cost function tuning
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Parameterized Architecture: Example

I Build a simplified MPC scheme and
parameterize model, cost constraints

I Learn parameters via RL
I Maintains MPC structure, lower inference

time compared to full model

[Image: Cai et al. 2023]
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Inference Architectures
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Parallel Architecture
Architecture: MPC problem usually not parameterized; NN evaluated in parallel to correct
MPC output

Key characteristics:
I MPC problem typically not parameterized
I NN evaluated in parallel to MPC optimization
I NN output corrects optimal solution or value

function
I MPC and NN operate independently

Trade-offs:
I No differentiation through optimization 3

I Potentially unsafe actions due to perturbation 5

Examples:
I Value function approximation

[Bhardwaj et al. 2020]
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Parallel: Example

I Use MPC for local value estimates
I NN provides corrections
I Blend both estimates via weighting factor λ
I Improves data efficiency and adds structure

[Image: Bhardwaj et al. 2020]

Synthesis Dirk Reinhardt, NTNU, Jasper Hoffmann, University of Freiburg, 20

https://arxiv.org/abs/2012.05909


Inference Architectures
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Hierarchical Architecture
Architecture: NN provides input to MPC, parameter φ depends on state via φ = ϕθ(s)

Key characteristics:
I NN evaluated before solving optimization problem
I Function ϕθ(s) evaluated independently of MPC
I Nonlinearity does not affect optimization structure
I Parameter changes may affect convergence

Tradeoffs:
3 Optimization not harder to solve
3 No NN inside optimization
3 Standard MPC solvers work
5 MPC theory may not hold

Examples:
I Reference trajectory [Brito et al.

2021] [Reiter et al. 2023]

I Cost modification [Romero et al.
2024]

I Constraint modification [Jacquet
et al. 2024]
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Hierarchical: Example

[Image: Romero et al. 2024]
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Inference Architectures
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Integrated Architecture
Architecture: Parameters depend on both state s and optimization variables z via
φ = ϕθ(s, z)

Key characteristics:
I NN is part of the optimization problem itself
I Cannot be evaluated separately from optimization

algorithm
I NN encoders/decoders infer states, rewards,

transition models
I Outputs value function V mpc

θ or decision variables
z?

Tradeoffs:
5 Highly nonlinear, possibly nonconvex
5 Computationally expensive
5 Requires ∇zϕθ(z; s)

Examples:
I Latent space MPC [Lowrey et al.

2019]

I NN transition models [Salzmann
et al. 2023][Adhau et al. 2024]

I Cost function [Seel et al. 2022]
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Integrated: Example

Idea:
I Learn NN dynamics model from data
I Use model for MPC planning

Anyone wants to try?

[l4casadi] [l4acados]

[Image: Salzmann et al. 2023]
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Inference Architectures
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Algorithmic Architecture
Architecture: RL policy guides the MPC optimization algorithm without modifying the
optimization problem itself

Key characteristics:
I RL policy alters hyperparameters ψ of the solver
I Optimization problem remains unchanged
I Examples of hyperparameters:

I Initial trajectory guess
I Trajectory samples (MPPI)
I Active-set predictions
I MPC recompute flag
I Horizon length

Tradeoffs:
3 Improve online computation time
3 Can help escape local minima
5 Increased complexity

Examples:
I TD-MPC2 [Hansen et al. 2024]

I Warm-starting [Grandesso et al.
2023]
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Algorithmic: Example

RL Components:
I Joint-embedding prediction
I Reward prediction
I TD learning (Q-function)
I Long-term credit assignment

MPC Components:
I Local trajectory optimization
I Planning in latent space
I Policy prior guidance

Key Innovation:
Bootstraps beyond planning horizon using
learned Q-function

[Image: Hansen et al. 2023]
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MPC as an Expert Actor

MPC used to generate training data for RL policy
Purpose: Use MPC to provide expert trajectories
for imitation learning

Characteristics:
I MPC generates state-action pairs
I RL policy learns to mimic MPC behavior
I Can use behavioral cloning or DAgger
I See also [Karg and Lucia 2020]

Examples:
I Autonomous driving [Hoffmann et al. 2024]

Benefits:
3 Faster inference than MPC
3 Leverages domain knowledge
3 Sample-efficient learning

Challenge:
5 Limited to MPC performance
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MPC as an Expert Actor: Example

I Use an expert actor for exploration during training
I A learned high-level skip policy πJ decides at each for

how many steps it should either follow a learned action
policy π or the MPC expert πexpert

I Reduce usage of expert during training
[Image: Schulz and Hoffmann et al. 2024]
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MPC within the Deployed policy

In the following, we will focus on Aligned and Closed-Loop Learning!
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Aligned Learning

Paradigm: Learn individual components of the MPC controller to better approximate the true
environment. This aligns the controller’s internal understanding with reality.

Components aligned with MDP:
Approximate the system’s dynamics by learning: f MPC

θ ≈ P
Approximate the infinite-horizon cost with RL: V̄ MPC

θ ≈ V ?
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Aligned Learning: Example

I Build a simplified MPC scheme and
parameterize model, cost constraints

I Learn parameters via RL
I Maintains MPC structure, lower inference

time compared to full model

[Image: Cai et al. 2023]
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Closed-Loop Learning

Paradigm:
The focus is on what works best, not what is most accurate. The internal model or costs may
become misaligned.

How is it implemented?
Learn MPC parameters φ to directly optimize the final closed-loop performance J(φ).
Differentiable MPC: Treat the MPC as a layer in a policy network. Gradients are
backpropagated through the optimization process to update parameters.
MPC as part of the Environment: An outer-loop RL agent learns to choose the best MPC
parameters φ as its ”action”, treating the MPC-controlled system as a black box.
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Closed-loop Optimal Learning: Example

I Car-racing environment
I RL learns to set reference trajectories
I MPC tracks learned reference trajectories

[Image: Reiter et al. 2023]

[Image: Romero et al. 2024]
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Comparison: Aligned Learning and Closed-Loop Learning

Aligned Learning
Approximate the true Markov Decision Process

Model Learning: Supervised learning on transition data,
e.g.,

min
θ

L(S+ − f MPC
θ (S,A))

Terminal Value Learning: RL-style updates towards

V MPC
θ ≈ V?

Tradeoffs:
3 Interpretable model, cost, constraints
3 Division of design into manageable subtasks
3 Safe, generalizes better
5 Sub-optimal closed-loop performance
5 May require complex models
5 Restrictive model requirements (differentiability,

smoothness)

Closed-Loop Learning
Approximate the optimal policy

Policy Learning: Directly optimize closed-loop
performance, towards

µ
MPC
θ ≈ µ

?

Tradeoffs:
3 Direct optimization of actual objective
3 Can correct for model errors through learning
3 Flexibility in model choice
5 Limited generalization to new scenarios
5 Not representing true system
5 Reduced adaptability when requirements change
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MPC as the Critic

NN Actor

 S 

 A 

Real-World
Environment

Expert MPC Critic

NN Actor

 S, l(S,A) 

Training
Environment

 A 

Architecture During Learning Architecture During Deployment

NN Actor

 S 

 A 

Real-World
Environment

Parameterized MPC
Critic

NN Actor

 S, l(S,A) 

Training
Environment

 A 

MPC within the Critic

Expert MPC Critic

Parameterized MPC Critic

Qmpc(s, a)=minz

N−1∑
k=0

lmpc(xk, uk)+V̄ mpc(xN)

s.t. x0 = s,
u0= a,

xk+1 = f mpc(xk, uk), 0 ≤ k < N ,
0 ≤ hmpc(xk, uk), 1 ≤ k < N ,
0 ≤ hmpc

N (xN).

I We can use MPC to derive a Q-function Qmpc, which can be used as a critic!
I We constrain the initial control u0 to be a.
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Example: Learnable Critic

Instead of using a fixed MPC critic, we can further learn to improve the critic:
I In [Bhardwaj et al. 2020], the author combine sampling-based MPC with a learned value

function using a parallel architecture solving multiple robot manipulation tasks. A
simplified version of the critic is given by:

Q(s, a) = (1− λ) Qw(s, a)︸ ︷︷ ︸
learned critic

+ λ Qmpc(s, a)︸ ︷︷ ︸
model-based

,

where Qw is a learned critic and Qmpc is the MPC-based Q-function.
I The parameter λ balances the two Q-functions and is decayed over time.
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Example: Learnable Critic from parameterized MPC

I [Anand et al. 2023] proposed a simple actor-critic
scheme, where a single MPC scheme is used for
both actor and critic.

I Idea: Close-to-optimal MPC parameters φ
allow approximation of the optimal
Q-function Q?.

Local Q-function approximation:

Qw(s, a) = QMPC
φ (s, a) +∇φQMPC

φ (s, a)>w

MPC Q-Function

Qmpc
φ (s, a)=minz

N−1∑
k=0

lmpc
φ (xk, uk)+V̄ mpc

φ (xN)

s.t. x0 = s,
u0= a,

xk+1 = f mpc
φ (xk, uk), ,

0 ≤ hmpc
φ (xk, uk), ,

0 ≤ hmpc
Nφ

(xN).
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MPC for Preprocessing
MPC used in deployed policy, but not during training

Preprocessing: Reference Generator
Purpose: Provide reference trajectory for RL
policy

Characteristics:
I MPC outputs planned trajectory
I RL policy uses reference as input

Benefit:
3 Interpretable reference trajectory
3 Bandwidth and learning at lower level

MPC as reference generator

MPC NN

[Image: Jenelten et al. 2024]
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MPC for Postprocessing
MPC used in deployed policy, but not during training

Postprocessing: Safety Filter
Purpose: Ensure safety w.r.t. model and
constraints

Characteristics:
I MPC filters RL policy output
I Projects actions to safe set

Benefit:
3 Provides safety guarantees w.r.t. model

and constraints
Issue:

5 Policy unaware of filter during training
5 May lead to suboptimal actions

used in deployment

MPC for postprocessing

 used during learning

MPC

NN

[Image: Tearle et al. 2021]
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Next Steps and Current Challenges

Computational efficiency: Scaling to high-dimensional offline RL
with massive datasets remains challenging
Risk-aware learning: Moving beyond robust/stochastic MPC
toward sophisticated risk metrics (e.g., mission completion
probabilities)
Expanding frameworks: Generalization from MPC to broader
planning (combinatorial optimization, MILP, stochastic multi-stage
programming)
Multi-agent systems: Coordination, communication, and
distributed decision-making largely unresolved
Application domains: Need for more practical demonstrations
across diverse sectors (energy, healthcare, logistics)
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Learning for Predictive Control (leap-c)
Key features:

Hierarchical NN-MPC architecture
implementation
Seamless integration of acados into
PyTorch as differentiable layer
Supports differentiation of control/state
trajectories and Q-function w.r.t.
parameters
Efficient multithreaded implementation
for batched inputs
Modular codebase
Focus on closed-loop learning
Missing a differentiable convex
programming layer
https://github.com/leap-c/leap-c
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Summary
Having heard this lecture, you should have a better understanding of. . .

Identify strengths and weaknesses of MPC and RL
Recognize potential benefits of combining both approaches
Distinguish between parameterized MPC architectures:
I Integrated, hierarchical, parallel, parameterized

Design or use MPC-RL algorithms based on:
MPC as expert actor
MPC within deployed policy
MPC as critic
MPC as reference generator
MPC as a safety filter

Thank you for your attention!
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