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Policy Gradient Methods

» Up to this point, we represented a model or a value function by some parameterized
function approximator and extracted the policy implicitly

» Now, we are going to talk about Policy Gradient Methods: methods which consider a
parameterized policy

mo(a|s) =Pr{A;=al S =356, =6},
with parameters 6

» Policy Gradient Methods are able to represent stochastic policies and scale naturally to
very large or continuous action spaces
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Policy Gradient Methods

» Remember, we consider a parameterized policy
mo(a|s)=Pr{Ai=a| S;=s,0; =0},

with parameters 6
» \We update these parameters based on the gradient of some performance measure J(8)
that we want to maximize, i.e. via gradient ascent:

—

0t+1 = gt + OZVJ(Qt),

where V.J(8;) € R is a stochastic estimate whose expectation approximates the gradient
of the performance measure w.r.t. 8,
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Policy Gradient Theorem

Policy Objective Functions:
» We consider episodic problems where we define performance as: J(0) = V7 (S))

Policy Gradient Theorem

For any differentiable policy 7(a|s, @) and any of the above policy objective functions, the
policy gradient is:
Vo J(0) =E [Vglogmg(A| S)Q™ (S, A)]

Reminder: V7™ =3%" mg(als)Q™ (s, a)
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Policy Gradient Theorem

Proof (episodic case):
Ve V7™0(s) =V [Zﬂg(a YQ™ (s,a)|, forallseS

= Z [Vemg(a|s)Q™(s,a) +mg(a| s)VeQT0 (s, a)] (product rule of calculus)

_Z |:Vg7’l'9 5)Q™8 (s,a) + mo(a )VgZP(s',r | s,a) (r+ V7o (s/)):|

s',r

—Z{Veﬂe 9Q(s,a) +ma(a| ) S P(s' | 5,0)Ve VO ()

= {Voﬂo(a | 5)QT0 (s,a) + 7a(a | ) S P(s' | s,a) > [Vara(a' | )@ (s, a')+

CARS) Z P(s" | §,d)Ve V""’(s”)]]

s’

_ZZPrs%zkﬂg ZV@ﬂ'e z)Q"0(z, a)

€S k=0
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Policy Gradient Theorem

Proof (episodic case):

Vg J(8) = Ve V™ (s0)
= XS: <k§; Pr(so — s, kme)) zﬂ:voﬁo(a|5) Q" (s, a)
- ;mézvm(am 0 (s
:;n ZZ o Zvem als) Q™ (s, a)
=Zn s ZS:/) s %:ero als)Q" (s, a)
o isjpﬁ(s) za: Voe(als)Q™ (s, a)

(Q.ED.)
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Score Function

» Likelihood ratios exploit the following identity:

We want the
expectation of this

Veomg(a|s) =mg(al S)M

mo(a| s)
mg(a| $)Velogme(a | s)

Easy to take the expectation
because we can sample from !

> Vglogmg(a| s) is called the score function
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Score Function: Example

Consider a Gaussian policy, where the mean is a linear combination of state features:
mo(a|s) ~N(s70,0?), ie.

1(s"0— a)?

Py )

mo(a | s) = 2mo?

Exercise (5min)

Derive the score function.
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Score Function: Example

Consider a Gaussian policy, where the mean is a linear combination of state features:

mo(a|s) ~N(s70,0?), ie.

1 1(s70 —a)?
o2 exp(_§ o2 )

mo(al|s) =

Solution

The log yields
1 2 LT 2
logmg(a | s) = —§log(27ra ) — ﬁ(s 0—a)

and the gradient

1
Velogmg(a|s) = —F(STO —a)2s .
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REINFORCE

» REINFORCE: Monte Carlo Policy Gradient
» Builds upon Monte Carlo returns as an unbiased sample of Q™
» However, therefore REINFORCE can suffer from high variance
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REINFORCE

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .

Input: a differentiable policy parameterization 7(als, 0)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € RY (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1, Ar_1, R, following 7(-|-, 8)
Loop for each step of the episode t =0,1,...,T — 1:
G« Zfzm YRy, (Gt)
0« 0+ ay'GVinm(AS, 0)
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Variance Reduction with Baselines

» Vanilla REINFORCE provides unbiased estimates of the gradient V.J(6), but it can suffer
from high variance

» Goal: reduce variance while remaining unbiased

» Observation: we can generalize the policy gradient theorem by including an arbitrary
action-independent baseline b(s), i.e.

Vo (8) o 37 57(5) Y (@7(s, @) — b(s))Voma(a | )

:Z:,()Tr ZQ (s,a)Vemg(a| s) VBZWGCH

=0

=3 5(5) > @7 (s,a)Vara(al )

» Baselines can reduce the variance of gradient estimates significantly!
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Variance Reduction with Baselines

» A constant value can be used as a baseline
» The state-value function can be used as a baseline

Is the Q-function a valid baseline?

Assume an approximation of the state-value function as a baseline. Is REINFORCE then
biased?
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REINFORCE with Baselines

Indeed, an estimate of the state value function, (S, w), is a very reasonable choice for b(s):

REINFORCE with Baseline (episodic), for estimating mp ~ .

Input: a differentiable policy parameterization 7 (als, 0)

Input: a differentiable state-value function parameterization 9(s,w)
Algorithm parameters: step sizes a® > 0, a™ > 0

Initialize policy parameter @ € R% and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,St_1, Ar_1, Ry, following 7 (-|-, 8)
Loop for each step of the episode t =0,1,..., 7 — 1:
G T R (Gv)
d < G — 0(Sg,w)
W W+ aV IV(Se,w)
0 < 0+ a4V Inn(AlS:,0)
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Actor-Critic Methods

» Methods that learn approximations to both policy and value functions are called
actor-critic methods

actor: learned policy
critic: learned value function (usually a state-value function)

Is REINFORCE-with-baseline considered as an actor-critic method?
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Actor-Critic Methods

» REINFORCE-with-baseline is unbiased, but tends to learn slowly and has high variance

» To gain from advantages of TD methods we use actor-critic methods with a bootstrapping
critic

One-step actor-critic methods

Replace the full return of REINFORCE with one-step return as follows:

Vr(As | S, 0¢)
(A | Si,6¢)
V(A | S, 60:)
m(As | S, 04)

011 =0+ a(Grir1 — (S, w))

= 0; + a (Rip1 +70(Seq1, w) — 0(S, w))

Vﬂ'(At | St,Ot)

=0, +ad
¢ 2 W(At|St,9t)
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Actor-Critic Methods

One-step Actor—Critic (episodic), for estimating mg ~ 7.

Input: a differentiable policy parameterization m(als, 6)
Input: a differentiable state-value function parameterization 0(s,w)
Parameters: step sizes a® > 0, a™ > 0
Initialize policy parameter @ € R? and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I+1
Loop while S is not terminal (for each time step):
A~ 7(-]S,0)
Take action A, observe S’, R
d < R+ ~v0(S",w) — 9(S,w) (if S’ is terminal, then o(S’,w) = 0)

W W+ aViVi(S,w)
0« 0+a®I5VInn(A|S,0)
I+~

S+ S
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Proximal Policy Optimization

» Motivation: how can we take the biggest possible improvement step on a policy using the
data we currently have, without stepping so far that we accidentally cause performance
collapse?

> We collect data with 7g_,

v

And we want to optimize some objective to get a new policy 7y
» In PPO, we ignore the change in state distribution and optimize a surrogate objective:

Jod (0) = ESNpﬂeold JA~e [A™u (S, A)]

o .
= E(s,4)~me, {MA "°'d(S,A)}
» Improvement Theory: 7n(mg) > Joid(0) — ¢ - maxs Dky, (7, ||7e)

> If we keep the KL-divergence between our old and new policies small, optimizing the
surrogate is close to optmizing 7)(7g)!
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Proximal Policy Optimization

» Adaptive Penalty Surrogate Objective:

o

E(S>A)Nﬂ'eo\d |:ﬂ-9 AT e (57 A) -8 DKL(W90|d||7T9):|
old

» Clipped Surrogate Objective:

To

. [ T . .
E(s,4)~me,, {mm <mv4 %0 (S, A), cllp(ﬂe -

1 —e,14€)A™u(S, A))}
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Proximal Policy Optimization

Algorithm 1 PPO-Clip

1: Input: initial policy parameters 6y, initial value function parameters ¢g

2: for £k =0,1,2,... do

3: Collect set of trajectories Dy = {7;} by running policy 7, = 7(fy) in the environment.
Compute rewards-to-go Rt
Compute advantage estimates, A, (using any method of advantage estimation) based
on the current value function Vj, .
6:  Update the policy by maximizing the PPO-Clip objective:

(’Fe a|s;)

o, (@] st)

AN

Buon = axgmp o S 3 min A(s,00), gl A“ws,,a,))) ,

TE€Dy t=0

typically via stochastic gradient ascent with Adam.
7:  Fit value function by regression on mean-squared error:

T

N2

Opy1 = arg,lnm |D T E E (Vo(st) — R,) ,
T7ED t=0

typically via some gradient descent algorithm.
8: end for

credits: https://spinningup.openai.com/en/latest/algorithms/ppo.html
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Deep Deterministic Policy Gradient

» DDPG is an actor-critic method (Continuous DQN)
» Recall the DQN-target: Y; = R; + v max, Qy- (Sj+1, a)
» In case of continuous actions, the maximization step is not trivial

» Therefore, we approximate deterministic actor 1 representing the arg max, Qw(Sj+1, a) by
a neural network and update its parameters following the

Deterministic Policy Gradient Theorem
VoJ(8) =E, [Vore(S)VaQu(S, @)lazp(s)] -

» Exploration by adding Gaussian noise to the output of p
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Deep Deterministic Policy Gradient

» The Q-function is fitted to the adapted TD-target:

Y = Rj 4+ vQw (Sjs1, o (Sj11))

» The parameters of the target networks of the actor 8~ and the critic w~ are then adjusted
with a soft update

w +—(1l—-7)w +7wand 0~ + (1—-7)0" + 760

with 7 € (0, 1]
» DDPG is very popular and builds the basis for more SOTA actor-critic algorithms
» However, it can be quite unstable and sensitive to its hyperparameters
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Deep Deterministic Policy Gradient

Algorithm 1: DDPG

Initialize replay memory D to capacity N

Initialize critic @ and actor p with random weights

for episode i = 1,.., M do

fort=1,..,T do

select action A; = p(s¢, 0) + €, where € ~ N(0, o)

Store transition (S¢, A¢, Si+1, Rt) in D

Sample minibatch of transitions (S;, A;, Rj, Sj4+1) from D
R; if Sjy1 is terminal
Rj+ v Q(Sjt+1,1(8j4+1,07),w™) else

Update the parameters of () according to the TD-error

Update the parameters of u according to:

Set y; =

1
Ve & D VaQu(S) @)la=p(sy Vore(S))
J

Adjust the parameters of the target networks via a soft update
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Soft Actor-Critic

» Soft Actor-Critic: entropy-regularized value-learning

» The policy is trained to maximize a trade-off between expected return and entropy
(H(p) = Ez~p[—log p(z)]), @ measure of randomness in the policy:

e = arg max E Z Rit1+ aH(m(-|S: = s1))
T t=0

» The value functions are then defined as:

V7(s) = Eﬁ[z Riv1 +aH(m(- | St = st))]So = 8, Ao = 4]
t=0

Q”(s, a) = EW[Z Rt+1 +aZ'ytH(7r( | St = St))|SO = S,AO = Cl]
t=0 t=1

» And their relation as: V7™ (s) =E.[Q"(s, a)] + aH(7(- | Sy = s))
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Soft Actor-Critic

» The corresponding Bellman equation for Q™ is
Q" (81, a1) = Egr [Rt+1 +3(Q7(Sp41, Apgr) + oH (m(- | St+1)))}
=Er[Riy1 + V7 (S41)]-

» Loss for the Q-networks:

L(wi.D) Qs 4)-y(1.5))]

_  E [(
(S,A,R,S")~D

where the target is:
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Soft Actor-Critic

>

We want to find a policy which maximizes expected future return and expected future
entropy, i.e. which maximizes V7 (s):

V7 (8) = Eann(s) (@ (s, A)] + aH (7 (- | 5))
=Eaun(ls) [Q"(s,A) —alogm(4 | s)]

To optimize the policy despite the sampling of actions, we make use of the
reparameterization trick:

Ag(s,€) = tanh (ug(s) + o9(s) @ &), & ~N(0,1)

We can thus rewrite the expectation from above as:

Eanmy [Q7 (5, A) — alogmg(A | 5)] = Eeonr(o,n) {Q”" (s, Ag(s,f)) — alog g (;19(8, &) | s)}

Final policy loss is then:

max E, ¢ L@ing Q- (5,219(3, 5)) — alogmy (;19(5,5) | 3)}
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Soft Actor-Critic

T
R

i
o
GACH

Algorithm 1 Soft Actor-Critic
1: Input: initial policy parameters 6, Q-function parameters ¢y, ¢, empty replay buffer D
2: Set target parameters equal to main parameters Grarg 1 = 01, Grarg2 2

3: repeat
: Observe state s and select action a ~ (-|s)

3

Execute a in the environment

Observe next state ', reward 7, and done signal d to indicate whether
,

is terminal, reset environment state.

5:
6:
7. Store (s,a,r,,d) in replay buffer D
s
9 if it’s time to update then

10: for j in range(however many updates) do
11: Randomly sample a batch of transitions, B = {(s,a,r,',d)} from D
12: Compute targets for the Q functions:

Qv (8,7

y(r,s'd) =7+ (1 - d) (n:' alog W,(a’\s’)) @ ~mls)

13 Update Q-functions by one step of gradient descent using
Vo,ﬁ > (@alsa) =y ) fori=1,2

(sars' dEB

1 Update policy by one step of gradient ascent using
Vot ) (mm Qo (5, a(s)) — alogmy (g(s)| 5) )
B &\

where ig(s) is a sample from mo(s) which is differentiable wrt @ via the
reparametrization trick.

15: Update target networks with

Drargi ¢ Prargi + (1 — p)oi fori=1,2
16: end for
17 end if

18: until convergence

credits: https://spinningup.openai.com/en/latest/algorithms/sac.html
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Soft Actor-Critic

» Performance comparison from (Haarnoja et al., 2018):

4000 6000
15000
5000
3000
£ £ 4000 £
] - 10000
2 2000 s s
o g, 3000 2
g g g
g g <5
HS 1000 " 2 2000 2 5000
1000
0 0 o
00 02 04 06 08 10 00 02 04 06 08 10 00 05 10 15 20 25 80
million steps million steps million steps
(a) Hopper-v1 (b) Walker2d-v1 (c) HalfCheetah-v1

average return
average return

00 05 10 15 20 25 30 0 2 4 6 10 0 4 6
million steps million steps million steps
(d) Ant-v1 (e) Humanoid-v1 (f) Humanoid (rllab)
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Summary by Learning Goals

Having heard this lecture, you can now. ..
» understand policy gradient methods and derive the policy gradient theorem
» design and implement actor-critic methods that combine policy and value function learning
» apply state-of-the-art algorithms (PPO, DDPG, SAC) to continuous control problems

If you want to get an even more detailed overview about the current SOTA, you can have a
look at Stable Baselines3, which is a good start for training your own RL agents:

https://github.com/DLR-RM/stable-baselines3
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