Model Predictive Control and Reinforcement Learning – Lecture 5: Actor-Critic Methods –

Joschka Boedecker

University of Freiburg

Fall School on Model Predictive Control and Reinforcement Learning Freiburg, 6-10 October 2025

universität freiburg

Policy Gradient Methods

- ▶ Up to this point, we represented a model or a value function by some parameterized function approximator and extracted the policy implicitly
- Now, we are going to talk about Policy Gradient Methods: methods which consider a parameterized policy

$$\pi_{\boldsymbol{\theta}}(a \mid s) = \Pr\{A_t = a \mid S_t = s, \boldsymbol{\theta}_t = \boldsymbol{\theta}\},\$$

with parameters heta

▶ Policy Gradient Methods are able to represent stochastic policies and scale naturally to very large or continuous action spaces

Overview

Preliminaries

Policy Gradient REINFORCE

Actor-Critic Methods

Deep Actor-Critic Methods
Proximal Policy Optimization
Deep Deterministic Policy Gradient
Soft Actor-Critic

Wrapup

Table of Contents

Preliminaries

Policy Gradient
REINFORCE
Actor-Critic Methods

Deep Actor-Critic Methods
Proximal Policy Optimization
Deep Deterministic Policy Gradient
Soft Actor-Critic

Wrapup

Policy Gradient Methods

► Remember, we consider a parameterized *policy*

$$\pi_{\boldsymbol{\theta}}(a \mid s) = \Pr\{A_t = a \mid S_t = s, \boldsymbol{\theta}_t = \boldsymbol{\theta}\},\$$

with parameters heta

We update these parameters based on the gradient of some performance measure $J(\theta)$ that we want to maximize, i.e. via gradient ascent:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha \widehat{\nabla J(\boldsymbol{\theta}_t)},$$

where $\widehat{\nabla J(m{ heta}_t)} \in \mathbb{R}^d$ is a stochastic estimate whose expectation approximates the gradient of the performance measure w.r.t. $m{ heta}_t$

Policy Gradient Theorem

Policy Objective Functions:

• We consider episodic problems where we define performance as: $J(\boldsymbol{\theta}) = V^{\pi_{\boldsymbol{\theta}}}(S_0)$

Policy Gradient Theorem

For any differentiable policy $\pi(a|s, \theta)$ and any of the above policy objective functions, the policy gradient is:

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\pi} [\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} (A \mid S) Q^{\pi_{\boldsymbol{\theta}}} (S, A)]$$

Reminder: $V^{\pi_{m{ heta}}} = \sum_a \pi_{m{ heta}}(a|s) Q^{\pi_{m{ heta}}}(s,a)$

Policy Gradient Theorem

Proof (episodic case):

$$\begin{split} \nabla_{\boldsymbol{\theta}} \, V^{\pi_{\boldsymbol{\theta}}}(s) &= \nabla_{\boldsymbol{\theta}} \left[\sum_{a} \pi_{\boldsymbol{\theta}}(a \mid s) \, Q^{\pi_{\boldsymbol{\theta}}}(s, a) \right], \quad \text{for all } s \in \mathcal{S} \\ &= \sum_{a} \left[\nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(a \mid s) \, Q^{\pi_{\boldsymbol{\theta}}}(s, a) + \pi_{\boldsymbol{\theta}}(a \mid s) \nabla_{\boldsymbol{\theta}} \, Q^{\pi_{\boldsymbol{\theta}}}(s, a) \right] \text{ (product rule of calculus)} \\ &= \sum_{a} \left[\nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(a \mid s) \, Q^{\pi_{\boldsymbol{\theta}}}(s, a) + \pi_{\boldsymbol{\theta}}(a \mid s) \nabla_{\boldsymbol{\theta}} \sum_{s', r} P(s', r \mid s, a) \, \left(r + V^{\pi_{\boldsymbol{\theta}}}(s') \right) \right] \\ &= \sum_{a} \left[\nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(a \mid s) \, Q^{\pi_{\boldsymbol{\theta}}}(s, a) + \pi_{\boldsymbol{\theta}}(a \mid s) \sum_{s'} P(s' \mid s, a) \nabla_{\boldsymbol{\theta}} \, V^{\pi_{\boldsymbol{\theta}}}(s') \right] \\ &= \sum_{a} \left[\nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(a \mid s) \, Q^{\pi_{\boldsymbol{\theta}}}(s, a) + \pi_{\boldsymbol{\theta}}(a \mid s) \sum_{s'} P(s' \mid s, a) \sum_{a'} \left[\nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(a' \mid s') \, Q^{\pi_{\boldsymbol{\theta}}}(s', a') + \pi_{\boldsymbol{\theta}}(a' \mid s') \sum_{s''} P(s'' \mid s', a') \nabla_{\boldsymbol{\theta}} \, V^{\pi_{\boldsymbol{\theta}}}(s'') \right] \right] \\ &= \sum_{a} \sum_{b=0}^{\infty} \Pr(s \to x, k, \pi_{\boldsymbol{\theta}}) \sum_{a'} \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(a \mid x) \, Q^{\pi_{\boldsymbol{\theta}}}(x, a) \end{split}$$

Policy Gradient Theorem

Proof (episodic case):

$$\begin{split} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) &= \nabla_{\boldsymbol{\theta}} \, V^{\pi_{\boldsymbol{\theta}}} \left(s_0 \right) \\ &= \sum_{s} \left(\sum_{k=0}^{\infty} \Pr \left(s_0 \rightarrow s, k, \pi_{\boldsymbol{\theta}} \right) \right) \sum_{a} \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}} (a|s) \, Q^{\pi_{\boldsymbol{\theta}}} (s, a) \\ &= \sum_{s} \eta(s) \sum_{a} \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}} (a|s) \, Q^{\pi_{\boldsymbol{\theta}}} (s, a) \\ &= \sum_{s'} \eta \left(s' \right) \sum_{s} \frac{\eta(s)}{\sum_{s'} \eta \left(s' \right)} \sum_{a} \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}} (a|s) \, Q^{\pi_{\boldsymbol{\theta}}} (s, a) \\ &= \sum_{s'} \eta \left(s' \right) \sum_{s} \rho^{\pi}(s) \sum_{a} \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}} (a|s) \, Q^{\pi_{\boldsymbol{\theta}}} (s, a) \\ &\propto \sum_{s} \rho^{\pi}(s) \sum_{a} \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}} (a|s) \, Q^{\pi_{\boldsymbol{\theta}}} (s, a) \\ &(\text{Q.E.D.}) \end{split}$$

Score Function

Likelihood ratios exploit the following identity:

We want the expectation of this
$$\overline{\nabla_{\pmb{\theta}}\pi_{\pmb{\theta}}(a\mid s)} = \pi_{\pmb{\theta}}(a\mid s) \frac{\nabla_{\pmb{\theta}}\pi_{\pmb{\theta}}(a\mid s)}{\pi_{\pmb{\theta}}(a\mid s)} \\
= \underbrace{\pi_{\pmb{\theta}}(a\mid s)\nabla_{\pmb{\theta}}\log\pi_{\pmb{\theta}}(a\mid s)}_{\text{Easy to take the expectation because we can sample from π!}$$

▶ $\nabla_{\theta} \log \pi_{\theta}(a \mid s)$ is called the **score function**

Score Function: Example

Consider a Gaussian policy, where the mean is a linear combination of state features: $\pi_{\theta}(a \mid s) \sim \mathcal{N}(s^{\top}\theta, \sigma^2)$, i.e.

$$\pi_{\boldsymbol{\theta}}(a \mid s) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(s^{\top}\boldsymbol{\theta} - a)^2}{\sigma^2}\right)$$

Exercise (5min)

Derive the score function.

Score Function: Example

Consider a Gaussian policy, where the mean is a linear combination of state features: $\pi_{\theta}(a \mid s) \sim \mathcal{N}(s^{\top}\theta, \sigma^2)$, i.e.

$$\pi_{\boldsymbol{\theta}}(a \mid s) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2} \frac{(s^{\mathsf{T}}\boldsymbol{\theta} - a)^2}{\sigma^2})$$

Solution

The log yields

$$\log \pi_{\boldsymbol{\theta}}(a \mid s) = -\frac{1}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}(s^{\mathsf{T}}\boldsymbol{\theta} - a)^2$$

and the gradient

$$\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(a \mid s) = -\frac{1}{2\sigma^2} (s^{\mathsf{T}} \boldsymbol{\theta} - a) 2s = \frac{(a - s^{\mathsf{T}} \boldsymbol{\theta})s}{\sigma^2}.$$

REINFORCE

- ► REINFORCE: Monte Carlo Policy Gradient
- lacktriangle Builds upon Monte Carlo returns as an unbiased sample of Q^π
- ▶ However, therefore REINFORCE can suffer from high variance

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π_*

Input: a differentiable policy parameterization $\pi(a|s, \theta)$

Algorithm parameter: step size $\alpha > 0$

Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ (e.g., to 0)

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \boldsymbol{\theta})$

Loop for each step of the episode t = 0, 1, ..., T - 1:

$$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k \tag{G_t}$$

$$\theta \leftarrow \theta + \alpha \gamma^t G \nabla \ln \pi (A \mid S, \theta)$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t G \nabla \ln \pi(A_t | S_t, \boldsymbol{\theta})$$

Variance Reduction with Baselines

- ▶ Vanilla REINFORCE provides *unbiased* estimates of the gradient $\nabla J(\theta)$, but it can suffer from high variance
- ► Goal: reduce variance while remaining unbiased
- ightharpoonup Observation: we can generalize the policy gradient theorem by including an arbitrary action-independent baseline b(s), i.e.

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \propto \sum_{s} \rho^{\pi}(s) \sum_{a} (Q^{\pi}(s, a) - b(s)) \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(a \mid s)$$

$$= \sum_{s} \rho^{\pi}(s) \left[\sum_{a} Q^{\pi}(s, a) \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(a \mid s) - b(s) \underbrace{\nabla_{\boldsymbol{\theta}} \sum_{a} \pi_{\boldsymbol{\theta}}(a \mid s)}_{=0} \right]$$

$$= \sum_{s} \rho^{\pi}(s) \sum_{a} Q^{\pi}(s, a) \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}}(a \mid s)$$

Baselines can reduce the variance of gradient estimates significantly!

Variance Reduction with Baselines

- A constant value can be used as a baseline
- ▶ The state-value function can be used as a baseline

Question

Is the Q-function a valid baseline?

Question

Assume an approximation of the state-value function as a baseline. Is REINFORCE then biased?

REINFORCE with Baselines

Indeed, an estimate of the state value function, $\hat{v}(S_t, w)$, is a very reasonable choice for b(s):

REINFORCE with Baseline (episodic), for estimating $\pi_{\theta} \approx \pi_{*}$

Input: a differentiable policy parameterization $\pi(a|s, \theta)$

Input: a differentiable state-value function parameterization $\hat{v}(s,\!\mathbf{w})$

Algorithm parameters: step sizes $\alpha^{\theta} > 0$, $\alpha^{\mathbf{w}} > 0$

Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ and state-value weights $\mathbf{w} \in \mathbb{R}^d$ (e.g., to 0)

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \boldsymbol{\theta})$

Loop for each step of the episode t = 0, 1, ..., T - 1:

$$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$

$$\delta \leftarrow G - \hat{v}(S_t, \mathbf{w})$$

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S_t, \mathbf{w})$$
(G_t)

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} \gamma^t \delta \nabla \ln \pi (A_t | S_t, \boldsymbol{\theta})$$

Table of Contents

Preliminaries

Policy Gradient REINFORCE Actor-Critic Methods

Deep Actor-Critic Methods
Proximal Policy Optimization
Deep Deterministic Policy Gradient
Soft Actor-Critic

Wrapup

Actor-Critic Methods

Methods that learn approximations to both policy and value functions are called actor-critic methods

actor: learned policy

critic: learned value function (usually a state-value function)

Question

Is REINFORCE-with-baseline considered as an actor-critic method?

Actor-Critic Methods

- REINFORCE-with-baseline is unbiased, but tends to learn slowly and has high variance
- ► To gain from advantages of TD methods we use actor-critic methods with a bootstrapping critic

One-step actor-critic methods

Replace the full return of REINFORCE with one-step return as follows:

$$\begin{aligned} \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t + \alpha \left(G_{t:t+1} - \hat{v}(S_t, \boldsymbol{w}) \right) \frac{\nabla \pi(A_t \mid S_t, \boldsymbol{\theta}_t)}{\pi(A_t \mid S_t, \boldsymbol{\theta}_t)} \\ &= \boldsymbol{\theta}_t + \alpha \left(R_{t+1} + \gamma \hat{v}(S_{t+1}, \boldsymbol{w}) - \hat{v}(S_t, \boldsymbol{w}) \right) \frac{\nabla \pi(A_t \mid S_t, \boldsymbol{\theta}_t)}{\pi(A_t \mid S_t, \boldsymbol{\theta}_t)} \\ &= \boldsymbol{\theta}_t + \alpha \delta_t \frac{\nabla \pi(A_t \mid S_t, \boldsymbol{\theta}_t)}{\pi(A_t \mid S_t, \boldsymbol{\theta}_t)} \end{aligned}$$

Actor-Critic Methods

One-step Actor–Critic (episodic), for estimating $\pi_{\theta} \approx \pi_*$

```
Input: a differentiable policy parameterization \pi(a|s,\theta)
Input: a differentiable state-value function parameterization \hat{v}(s,\mathbf{w})
Parameters: step sizes \alpha^{\theta} > 0, \alpha^{\mathbf{w}} > 0
Initialize policy parameter \theta \in \mathbb{R}^{d'} and state-value weights \mathbf{w} \in \mathbb{R}^{d} (e.g., to 0)
Loop forever (for each episode):
    Initialize S (first state of episode)
    I \leftarrow 1
     Loop while S is not terminal (for each time step):
         A \sim \pi(\cdot|S, \boldsymbol{\theta})
         Take action A, observe S', R
         \delta \leftarrow R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w}) (if S' is terminal, then \hat{v}(S', \mathbf{w}) \doteq 0)
         \mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S.\mathbf{w})
         \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} I \delta \nabla \ln \pi (A|S, \boldsymbol{\theta})
         I \leftarrow \gamma I
          S \leftarrow S'
```

Table of Contents

Preliminaries

Policy Gradient REINFORCE Actor-Critic Methods

Deep Actor-Critic Methods
Proximal Policy Optimization
Deep Deterministic Policy Gradient
Soft Actor-Critic

Wrapup

Proximal Policy Optimization

- Motivation: how can we take the biggest possible improvement step on a policy using the data we currently have, without stepping so far that we accidentally cause performance collapse?
- We collect data with $\pi_{\boldsymbol{\theta}_{\mathsf{old}}}$
- lacktriangle And we want to optimize some objective to get a new policy $\pi_{m{ heta}}$
- ▶ In PPO, we *ignore* the change in state distribution and optimize a **surrogate objective**:

$$\begin{split} J_{\text{old}}(\theta) &= \mathbb{E}_{S \sim \rho^{\pi_{\boldsymbol{\theta}_{\text{old}}}}, A \sim \pi_{\boldsymbol{\theta}}}[\mathcal{A}^{\pi_{\boldsymbol{\theta}_{\text{old}}}}(S, A)] \\ &= \mathbb{E}_{(S, A) \sim \pi_{\boldsymbol{\theta}_{\text{old}}}}\left[\frac{\pi_{\boldsymbol{\theta}}}{\pi_{\boldsymbol{\theta}_{\text{old}}}} \mathcal{A}^{\pi_{\boldsymbol{\theta}_{\text{old}}}}(S, A)\right] \end{split}$$

- ▶ Improvement Theory: $\eta(\pi_{\theta}) \ge J_{\text{old}}(\theta) c \cdot \max_{s} D_{\text{KL}}(\pi_{\theta_{\text{old}}} || \pi_{\theta})$
- If we keep the KL-divergence between our old and new policies small, optimizing the surrogate is close to optimizing $\eta(\pi_{\theta})!$

Proximal Policy Optimization

► Adaptive Penalty Surrogate Objective:

$$\mathbb{E}_{(S,A) \sim \pi_{\boldsymbol{\theta}_{\mathsf{old}}}} \left[\frac{\pi_{\boldsymbol{\theta}}}{\pi_{\boldsymbol{\theta}_{\mathsf{old}}}} \mathcal{A}^{\pi_{\boldsymbol{\theta}_{\mathsf{old}}}}(S,A) - \beta \, D_{\mathrm{KL}}(\pi_{\boldsymbol{\theta}_{\mathsf{old}}} || \pi_{\boldsymbol{\theta}}) \right]$$

Clipped Surrogate Objective:

$$\mathbb{E}_{(S,A) \sim \pi_{\boldsymbol{\theta}_{\mathsf{old}}}} \left[\min \left(\frac{\pi_{\boldsymbol{\theta}}}{\pi_{\boldsymbol{\theta}_{\mathsf{old}}}} \mathcal{A}^{\pi_{\boldsymbol{\theta}_{\mathsf{old}}}}(S,A), \; \mathsf{clip}(\frac{\pi_{\boldsymbol{\theta}}}{\pi_{\boldsymbol{\theta}_{\mathsf{old}}}}, 1 - \epsilon, 1 + \epsilon) \mathcal{A}^{\pi_{\boldsymbol{\theta}_{\mathsf{old}}}}(S,A) \right) \right]$$

Proximal Policy Optimization

Algorithm 1 PPO-Clip

- 1: Input: initial policy parameters θ_0 , initial value function parameters ϕ_0
- 2: for $k = 0, 1, 2, \dots$ do
- 3: Collect set of trajectories $\mathcal{D}_k = \{\tau_i\}$ by running policy $\pi_k = \pi(\theta_k)$ in the environment.
- 4: Compute rewards-to-go \hat{R}_t .
- 5: Compute advantage estimates, \hat{A}_t (using any method of advantage estimation) based on the current value function V_{ϕ_k} .
- 6: Update the policy by maximizing the PPO-Clip objective:

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|\mathcal{D}_k| T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \min\left(\frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta_k}(a_t | s_t)} A^{\pi_{\theta_k}}(s_t, a_t), \ g(\epsilon, A^{\pi_{\theta_k}}(s_t, a_t))\right),$$

typically via stochastic gradient ascent with Adam.

7: Fit value function by regression on mean-squared error:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \left(V_{\phi}(s_t) - \hat{R}_t \right)^2,$$

typically via some gradient descent algorithm.

8: end for

credits: https://spinningup.openai.com/en/latest/algorithms/ppo.html

Deep Deterministic Policy Gradient

- ▶ DDPG is an actor-critic method (*Continuous DQN*)
- ▶ Recall the DQN-target: $Y_j = R_j + \gamma \max_a Q_{\mathbf{w}^-}(S_{j+1}, a)$
- ▶ In case of continuous actions, the maximization step is not trivial
- Therefore, we approximate deterministic actor μ representing the $\arg\max_a Q_{\mathbf{w}}(S_{j+1}, a)$ by a neural network and update its parameters following the

Deterministic Policy Gradient Theorem

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{\mu} \left[\nabla_{\boldsymbol{\theta}} \mu_{\boldsymbol{\theta}}(S) \nabla_{a} Q_{\mathbf{w}}(S, a) |_{a = \mu(S)} \right].$$

lacktriangle Exploration by adding Gaussian noise to the output of μ

Deep Deterministic Policy Gradient

The Q-function is fitted to the adapted TD-target:

$$Y_j = R_j + \gamma Q_{\mathbf{w}^-}(S_{j+1}, \mu_{\boldsymbol{\theta}^-}(S_{j+1}))$$

The parameters of the target networks of the actor θ^- and the critic \mathbf{w}^- are then adjusted with a soft update

$$\mathbf{w}^- \leftarrow (1-\tau)\mathbf{w}^- + \tau\mathbf{w}$$
 and $\boldsymbol{\theta}^- \leftarrow (1-\tau)\boldsymbol{\theta}^- + \tau\boldsymbol{\theta}$

with $\tau \in (0,1]$

- DDPG is very popular and builds the basis for more SOTA actor-critic algorithms
- ▶ However, it can be quite unstable and sensitive to its hyperparameters

Deep Deterministic Policy Gradient

Algorithm 1: DDPG

Initialize replay memory D to capacity N Initialize critic Q and actor μ with random weights for episode i=1,...,M do

for
$$t = 1, ..., T$$
 do

select action $A_t = \mu(s_t, \boldsymbol{\theta}) + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma)$

Store transition (S_t, A_t, S_{t+1}, R_t) in D

Sample minibatch of transitions (S_i, A_j, R_j, S_{i+1}) from D

Set
$$y_j = \begin{cases} R_j & \text{if } S_{j+1} \text{ is terminal } \\ R_j + \gamma \ Q(S_{j+1}, \mu(S_{j+1}, \boldsymbol{\theta}^-), \mathbf{w}^-) & \text{else} \end{cases}$$

Update the parameters of ${\it Q}$ according to the TD-error

Update the parameters of $\boldsymbol{\mu}$ according to:

$$\nabla_{\theta} J \approx \frac{1}{N} \sum_{j} \nabla_{a} Q_{\mathbf{w}}(S_{j}, a)|_{a = \mu(S_{j})} \nabla_{\boldsymbol{\theta}} \mu_{\boldsymbol{\theta}}(S_{j})$$

Adjust the parameters of the target networks via a soft update

- Soft Actor-Critic: entropy-regularized value-learning
- The policy is trained to maximize a trade-off between expected return and entropy $(H(p) = \mathbb{E}_{x \sim p}[-\log p(x)])$, a measure of randomness in the policy:

$$\pi_* = \operatorname*{arg\,max}_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} R_{t+1} + \alpha H(\pi(\cdot|S_t = s_t)) \right]$$

► The value functions are then defined as:

$$V^{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} R_{t+1} + \alpha H(\pi(\cdot \mid S_t = s_t)) | S_0 = s, A_0 = a\right]$$

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} R_{t+1} + \alpha \sum_{t=1}^{\infty} \gamma^t H(\pi(\cdot \mid S_t = s_t)) | S_0 = s, A_0 = a\right]$$

And their relation as: $V^{\pi}(s) = \mathbb{E}_{\pi}[Q^{\pi}(s,a)] + \alpha H(\pi(\cdot \mid S_t = s))$

lacktriangle The corresponding Bellman equation for Q^π is

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{\pi} \Big[R_{t+1} + \gamma \big(Q^{\pi}(S_{t+1}, A_{t+1}) + \alpha H(\pi(\cdot \mid S_{t+1})) \big) \Big]$$

= $\mathbb{E}_{\pi} [R_{t+1} + \gamma V^{\pi}(S_{t+1})].$

Loss for the Q-networks:

$$L\left(\mathbf{w}_{i}, \mathcal{D}\right) = \underset{\left(S, A, R, S'\right) \sim \mathcal{D}}{\mathbb{E}} \left[\left(Q_{\mathbf{w}_{i}}(S, A) - y\left(R, S'\right)\right)^{2} \right]$$

where the target is:

$$y\left(r,s'\right) = r + \gamma \left(\min_{j=1,2} Q_{\mathbf{w}_{j}^{-}}\left(s',\tilde{A}'\right) - \alpha \log \pi_{\theta}\left(\tilde{A}'\mid s'\right)\right), \quad \tilde{A}' \sim \pi_{\theta}\left(\cdot\mid s'\right)$$

We want to find a policy which maximizes expected future return and expected future entropy, i.e. which maximizes $V^{\pi}(s)$:

$$V^{\pi}(s) = \mathbb{E}_{A \sim \pi(\cdot \mid s)} \left[Q^{\pi}(s, A) \right] + \alpha H(\pi(\cdot \mid s))$$
$$= \mathbb{E}_{A \sim \pi(\cdot \mid s)} \left[Q^{\pi}(s, A) - \alpha \log \pi(A \mid s) \right]$$

► To optimize the policy despite the sampling of actions, we make use of the reparameterization trick:

$$\tilde{A}_{\theta}(s,\xi) = \tanh(\mu_{\theta}(s) + \sigma_{\theta}(s) \odot \xi), \quad \xi \sim \mathcal{N}(0,I)$$

We can thus rewrite the expectation from above as:

$$\mathbb{E}_{A \sim \pi_{\theta}} \left[Q^{\pi_{\theta}}(s, A) - \alpha \log \pi_{\theta}(A \mid s) \right] = \mathbb{E}_{\xi \sim \mathcal{N}(0, I)} \left[Q^{\pi_{\theta}} \left(s, \tilde{A}_{\theta}(s, \xi) \right) - \alpha \log \pi_{\theta} \left(\tilde{A}_{\theta}(s, \xi) \mid s \right) \right]$$

Final policy loss is then:

$$\max_{\theta} \mathbb{E}_{s,\xi} \left[\min_{j=1,2} Q_{\mathbf{w}_{j}^{-}} \left(s, \tilde{A}_{\theta}(s,\xi) \right) - \alpha \log \pi_{\theta} \left(\tilde{A}_{\theta}(s,\xi) \mid s \right) \right]$$

Algorithm 1 Soft Actor-Critic

- Input: initial policy parameters θ, Q-function parameters φ₁, φ₂, empty replay buffer D
- Set target parameters equal to main parameters φ_{target} ← φ₁, φ_{target} ← φ₂
- 3: repeat Observe state s and select action $a \sim \pi_a(\cdot|s)$
- Execute a in the environment
- Observe next state s', reward r, and done signal d to indicate whether s' is terminal
- Store (s, a, r, s', d) in replay buffer D
- If s' is terminal, reset environment state.
- if it's time to update then
- for j in range(however many updates) do
- 11: Randomly sample a batch of transitions, $B = \{(s, a, r, s', d)\}$ from D
- 12: Compute targets for the O functions:

$$y(r, s', d) = r + \gamma(1 - d) \left(\min_{i=1,2} Q_{\phi_{targ,i}}(s', \tilde{a}') - \alpha \log \pi_{\theta}(\tilde{a}'|s') \right), \quad \tilde{a}' \sim \pi_{\theta}(\cdot|s')$$

Update Q-functions by one step of gradient descent using 13:

$$\nabla_{\phi_i} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} (Q_{\phi_i}(s,a) - y(r,s',d))^2$$
 for $i = 1, 2$

14: Update policy by one step of gradient ascent using

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} \left(\min_{i=1,2} Q_{\phi_i}(s, \bar{a}_{\theta}(s)) - \alpha \log \pi_{\theta} \left(\bar{a}_{\theta}(s) | s \right) \right),$$

where $\tilde{a}_{\theta}(s)$ is a sample from $\pi_{\theta}(\cdot|s)$ which is differentiable wrt θ via the reparametrization trick.

Update target networks with 15:

$$\phi_{\mathrm{targ},i} \leftarrow \rho \phi_{\mathrm{targ},i} + (1-\rho)\phi_i \qquad \qquad \text{for } i=1,2$$

- end for end if
- 18: until convergence

credits: https://spinningup.openai.com/en/latest/algorithms/sac.html

▶ Performance comparison from (Haarnoja et al., 2018):

Summary by Learning Goals

Having heard this lecture, you can now...

- understand policy gradient methods and derive the policy gradient theorem
- design and implement actor-critic methods that combine policy and value function learning
- apply state-of-the-art algorithms (PPO, DDPG, SAC) to continuous control problems

If you want to get an even more detailed overview about the current SOTA, you can have a look at Stable Baselines3, which is a good start for training your own RL agents:

https://github.com/DLR-RM/stable-baselines3