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Jonathan Frey.

Fall School on Model Predictive Control and Reinforcement Learning
Freiburg, 6-10 October 2025



Outline of the lecture

Nonlinear MPC solves Nonlinear Programs

Optimality Conditions for Constrained Optimization

Nonlinear Programming Algorithms

Sensitivity Computation

MPC and RL – Lecture 4: Constrained Nonlinear Optimization J. Boedecker and M. Diehl, University of Freiburg 1



Outline of the lecture

Nonlinear MPC solves Nonlinear Programs

Optimality Conditions for Constrained Optimization

Nonlinear Programming Algorithms

Sensitivity Computation

MPC and RL – Lecture 4: Constrained Nonlinear Optimization J. Boedecker and M. Diehl, University of Freiburg 1



Recap and Today’s topic

Minimize (or maximize) an objective function F (w) depending on decision variables w subject
to equality and/or inequality constrains

An optimization problem

min
w

F (w) (1a)

s.t. G(w) = 0 (1b)

H(w) ≥ 0 (1c)

Terminology

▶ w - decision variable

▶ F : objective/cost function

▶ G,H: equality and inequality constraint
functions

▶ Optimization is a powerful tool used in all quantitative sciences

▶ Only in few special cases a closed form solution exist

▶ Use an iterative algorithm to find solution

▶ The optimization problem may be parametric, and all functions depend on a fixed
parameter p
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Direct optimal control methods formulate Nonlinear Programs (NLP)

Continuous-time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t)= fc(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Direct methods like direct collocation,
multiple shooting. First discretize, then
optimize.
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0 ≥ r(x(T ))

Direct methods like direct collocation,
multiple shooting. First discretize, then
optimize.

Discrete-time OCP (an NLP)

min
x,u

∑N−1
k=0 ℓ(xk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk)

0 ≥ h(xk, uk), k = 0, . . . , N−1

0 ≥ r(xN )
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Nonlinear MPC solves Nonlinear Programs (NLP)

Discrete time NMPC Problem (an NLP)

min
x,u

∑N−1
k=0 ℓ(xk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk)

0 ≥ h(xk, uk), k = 0, . . . , N−1

0 ≥ r(xN )

Variables x = (x0, . . . , xN ) and
u = (u0, . . . , uN−1) can be summarized in
vector w = (x, u) ∈ Rn.
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Variables x = (x0, . . . , xN ) and
u = (u0, . . . , uN−1) can be summarized in
vector w = (x, u) ∈ Rn.

Nonlinear Program
(NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0
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The Map of Numerical Optimal Control

OCP Single Shooting

Collocation

Multiple Shooting

In
te
gr
at
or NLP SQP

Interior-Point

S
en
si
ti
vi
ti
es

Interior-Point
QP solver

Active-set
QP solver
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Outline of the lecture

Nonlinear MPC solves Nonlinear Programs

Optimality Conditions for Constrained Optimization

Nonlinear Programming Algorithms

Sensitivity Computation
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FONC for equality constraints

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

L(w, λ) = F (w)− λ⊤G(w) is the Lagrangian

Definition (LICQ)

A point w satisfies Linear Independence
Constraint Qualification LICQ if and only
if ∇G (w) is full column rank

First-order Necessary Conditions

Let F,G in C1. If w∗ is a (local) minimizer, and w∗ satisfies LICQ, then there is a unique
vector λ such that:

∇wL(w∗, λ∗) = ∇F (w∗)−∇G(w∗)λ = 0 Dual feasibility

∇λL(w∗, λ∗) = G(w∗) = 0 Primal feasibility
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The KKT conditions

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0

L(w, λ) = F (w)− λ⊤G(w)− µ⊤H(w)

Definition (LICQ)

A point w satisfies LICQ if and only if

[∇G (w) , ∇HA (w)]

is full column rank

Active set A = {i | Hi(w) = 0}

Theorem (KKT conditions)

Let F, G, H be C1. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique
vectors λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗ ) = 0, µ∗ ≥ 0, Dual feasibility

G (w∗) = 0, H (w∗) ≥ 0 Primal feasibility

µ∗
iHi(w

∗) = 0, ∀ i Complementary slackness
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The complementary slackness condition

Active constraints:

▶ Hi(w
∗) > 0 then µ∗

i = 0, and Hi is
inactive

▶ µ∗
i > 0 and Hi(w) = 0 then Hi(w) is

strictly active

▶ µ∗
i = 0 and Hi(w) = 0 then then Hi(w) is

weakly active

▶ We define the active set A∗ as the set of
indices i of the active constraints
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Some intuitions on the KKT conditions

min
w∈Rn

F (w)

s.t. H(w) ≥ 0

▶ −∇F is the gravity

▶ µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

▶ ∇H gives the direction of the force and µ
adjusts the magnitude.

▶ Weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

▶ Inactive constraint H (w) > 0, µ = 0

H (w) > 0, µ = 0

▶ Complementary slackness µH = 0
describes a contact problem

!rF (w)

7rH(w)

7 =0.857
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w
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Balance of the forces:

∇L(w, µ) = ∇F (w)− µ∇H(w) = 0
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Summary of optimality conditions

Optimality conditions for NLP with equality and/or inequality constraints:

▶ First-Order Necessary Conditions: Under LICQ and differentiability, a local optimum of
the NLP satisfies the KKT conditions.

▶ Second-Order (Necessary or) Sufficient Conditions require positive-(semi)-definiteness
of the Hessian in so called critical directions (feasible and non-ascent directions)

Nonconvex problem ⇒ minimum is not necessarily global.
But some nonconvex problems have a unique minimum
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The Map of Numerical Optimal Control

OCP Single Shooting

Collocation

Multiple Shooting
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te
gr
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QP solver

Active-set
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General Nonlinear Program (NLP)

In direct methods, we have to solve the discretized optimal control problem, which is a
Nonlinear Program (NLP)

General Nonlinear Program (NLP)

min
w

F (w) s.t.

{
G(w) = 0
H(w) ≥ 0

We first treat the case without inequalities

NLP only with equality constraints

min
w

F (w) s.t. G(w) = 0
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Lagrange function and optimality conditions

Lagrange function

L(w, λ) = F (w)− λ⊤G(w)

Then for an optimal solution w∗ exist multipliers λ∗ such that

Nonlinear root-finding problem

∇wL(w∗, λ∗) = 0
G(w∗) = 0
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Newton’s Method on optimality conditions

How to solve nonlinear equations

∇wL(w∗, λ∗) = 0
G(w∗) = 0 ?

Linearize!
∇wL(wk, λk) +∇2

wL(wk, λk)∆w −∇wG(wk)∆λ = 0
G(wk) +∇wG(wk)⊤∆w = 0

This is equivalent, due to ∇L(wk, λk) = ∇F (wk)−∇G(wk)λk with the shorthand
λ+ = λk +∆λ to

∇wF (wk) +∇2
wL(wk, λk)∆w −∇wG(wk)λ+ = 0

G(wk) +∇wG(wk)⊤∆w = 0

MPC and RL – Lecture 4: Constrained Nonlinear Optimization J. Boedecker and M. Diehl, University of Freiburg 14



Newton Step = Quadratic Program

Conditions
∇wF (wk) +∇2

wL(wk, λk)∆w −∇wG(wk)λ+ = 0
G(wk) +∇wG(wk)⊤∆w = 0

are optimality conditions of a quadratic program (QP), namely:

Quadratic program

min
∆w

∇F (wk)⊤∆w +
1

2
∆w⊤Ak∆w

s.t. G(wk) +∇G(wk)⊤∆w = 0,

with
Ak = ∇2

wL(wk, λk)
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Newton’s method

The full step Newton’s Method iterates by solving in each iteration the Quadratic Progam

min
∆w

∇F (wk)⊤∆w +
1

2
∆w⊤Ak∆w

s.t. G(wk) +∇G(wk)⊤∆w = 0,

with Ak = ∇2
wL(wk, λk). This obtains as solution the step ∆wk and the new multiplier

λ+
QP = λk +∆λk

New iterate

wk+1 = wk +∆wk

λk+1 = λk +∆λk = λ+
QP

This Newton’s method is also called “Sequential Quadratic Programming (SQP) for equality
constrained optimization” (with “exact Hessian” and “full steps”)
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NLP with Inequalities

Regard again NLP with both, equalities and inequalities:

NLP with equality and inequality constraints

min
w

F (w) s.t.

{
G(w) = 0
H(w) ≥ 0

Lagrangian function for NLP with equality and inequality constraints

L(w, λ, µ) = F (w)− λ⊤G(w)− µ⊤H(w)
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Optimality conditions with inequalities

Theorem (Karush-Kuhn-Tucker (KKT) conditions)

Let F, G, H be C2. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique
vectors λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗ ) = 0

G (w∗) = 0

H(w∗) ≥ 0

µ∗ ≥ 0

H(w∗)⊤µ∗ = 0

▶ These contain nonsmooth conditions (the last three) which are called complementarity
conditions

▶ This system cannot be solved by Newton’s Method. But still with SQP...
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Sequential Quadratic Programming (SQP)

By Linearizing all functions within the KKT Conditions, and setting λ+ = λk +∆λ and
µ+ = µk +∆µ, we obtain the KKT conditions of a Quadratic Program (QP) (we omit these
conditions).

QP with inequality constraints

min
∆w

∇F (wk)⊤∆w +
1

2
∆w⊤Ak∆w

s.t.

{
G(wk) +∇G(wk)⊤∆w = 0
H(wk) +∇H(wk)⊤∆w ≥ 0

with
Ak = ∇2

wL(wk, λk, µk)

and its solution delivers
∆wk, λ+

QP, µ+
QP
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Constrained Gauss-Newton Method

In special case of least squares objectives

Least squares objective function

F (w) =
1

2
∥R(w)∥22

can approximate Hessian ∇2
wL(wk, λk, µk) by much cheaper

Ak = ∇R(w)∇R(w)⊤.

Need no multipliers to compute Ak! QP= linear least squares:

Gauss-Newton QP

min
∆w

1

2
∥R(wk) +∇R(wk)⊤∆w∥22

s.t.
G(wk) +∇G(wk)⊤∆w = 0
H(wk) +∇H(wk)⊤∆w ≥ 0

Convergence: linear (better if ∥R(w∗)∥ small)
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Interior point methods

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

KKT conditions

∇F (w)−∇H(w)⊤µ = 0

0 ≤ µ ⊥ H(w) ≥ 0

Main difficulty: inequality conditions
introduce nonsmoothness in the KKT
conditions
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Hi(w)

-0.5
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1.5
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7
i

0 5 7i ? Hi(w) 6 0
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The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

@
(H

i(
w

))

= =5.000

@(Hi(w))
!= log(Hi(w))

approximate:

χ(Hi(w)) =

{
0 if Hi(w) ≥ 0

∞ if Hi(w) < 0
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The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective
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The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective
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The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective
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The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective
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The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective
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approximate:
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An example of the barrier problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem

min
w

0.5w2 − 2− τ log(w + 1)− τ log(1− w) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w
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= =5.000
F (w)
F= (w)
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An example of the barrier problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem
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An example of the barrier problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem

min
w
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An example of the barrier problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem

min
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An example of the barrier problem

Example NLP

min
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An example of the barrier problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem
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An example of the barrier problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem
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Primal-dual interior point methods

Barrier problem

min
w

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

KKT conditions

∇F (w)− τ

m∑
i−1

1

Hi(w)
∇Hi(w) = 0

Introduce variable µi =
τ

Hi(w)

Smoothed KKT conditions

∇F (w)−∇H(w)⊤µ = 0

Hi(w)µi = τ

(Hi(w) > 0, µi > 0)
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Primal-dual interior point methods

Barrier problem

min
w

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

KKT conditions

∇F (w)− τ

m∑
i−1

1

Hi(w)
∇Hi(w) = 0

Introduce variable µi =
τ

Hi(w)

Smoothed KKT conditions

∇F (w)−∇H(w)⊤µ = 0

Hi(w)µi = τ

(Hi(w) > 0, µi > 0)
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Primal-dual interior point methods

Barrier problem

min
w

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

KKT conditions

∇F (w)− τ

m∑
i−1

1

Hi(w)
∇Hi(w) = 0

Introduce variable µi =
τ

Hi(w)

Smoothed KKT conditions

∇F (w)−∇H(w)⊤µ = 0

Hi(w)µi = τ

(Hi(w) > 0, µi > 0)
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Primal-dual interior point methods

Barrier problem

min
w

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

KKT conditions

∇F (w)− τ

m∑
i−1

1

Hi(w)
∇Hi(w) = 0

Introduce variable µi =
τ

Hi(w)

Smoothed KKT conditions

∇F (w)−∇H(w)⊤µ = 0

Hi(w)µi = τ

(Hi(w) > 0, µi > 0)
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Primal-dual interior point method

Nonlinear programming problem

min
w

F (w)

s.t. G(w) = 0

H(w) ≥ 0

Smoothed KKT conditions

Rτ (w, s, λ, µ) =


∇wL(w, λ, µ)

G(w)
H(w)− s

diag(s)µ− τe

 = 0

(s, µ > 0)

e = (1, . . . , 1)

Solve approximately with Newton’s method
for fixed τ

Rτ (w, s, λ, µ) +∇Rτ (w, s, λ, µ)
⊤∆z = 0

with z = (w, s, λ, µ)

Line-search

Find α ∈ (0, 1)

wk+1 = wk + α∆w

sk+1 = sk + α∆s

λk+1 = λk + α∆λ

µk+1 = µk + α∆µ

such that sk+1 > 0, µk+1 > 0

and reduce τ ...
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Summary Newton-type optimization

▶ Newton type optimization solves the necessary optimality conditions

▶ Newton’s method linearizes the nonlinear system in each iteration

▶ for constraints, need Lagrangian function, and KKT conditions

▶ for equalities KKT conditions are smooth, can apply Newton’s method

▶ for inequalities KKT conditions are non-smooth, can apply Sequential Quadratic
Programming (SQP)

▶ QPs with inequalities can be solved with interior point methods

▶ Also NLPs with inequalities can be solved with interior point methods (e.g. by the IPOPT
solver)
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Outline of the lecture

Nonlinear MPC solves Nonlinear Programs

Optimality Conditions for Constrained Optimization

Nonlinear Programming Algorithms

Sensitivity Computation
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Solution sensitivities – Intro

Motivation
▶ Embedding optimization solvers in neural networks requires solution sensitivities
▶ Learning-enhanced MPC schemes, MPC-RL

wsol(p) := arg min
w∈Rnw

F (w; p)

subject to G(w; p) = 0,

H(w; p) ≤ 0

Wanted: ∂wsol

∂p (p)

($$)

Need to introduce implicit functions
▶ Given a parameter p, we are interested in finding solution z(p):

R(z, p) = 0,

with R : Rnz × Rnp → Rnz . The resulting function z(p) is defined implicitly.
▶ Central questions are:

▶ When does a solution exist?
▶ Is the solution (locally) unique? Is it the function z(p) single or multi-valued?
▶ Is z(p) differentiable and how do we compute its derivatives?
▶ How to efficiently compute approximations ẑ(p) ≈ z(p), and how can the numerical error be

quantified?
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Illustration of a solution map

Example solution map S(p) which can be single-valued (unique minimizer), set-valued
(nonunique local minimizers), set-valued with isolated arcs (multiple strict local minima) empty.
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First-order approximations of solution maps

▶ Often, we may solve an equation R(z, p∗) = 0 and obtain z(p∗). Then our problem data
may slightly change to a new p, but it may be computationally expensive to evaluate the
new z(p).

▶ Instead, we may compute a first-order Taylor approximation:

z(p) ≈ z(p∗) +
dz(p∗)

dp
(p− p∗).

▶ The evaluation z(p∗) is available from the last solve, the derivative ∇pz(p
∗) = dz(p∗)

dp

⊤

from the implicit function theorem.

▶ Recall, the main idea of Newton’s method was to use sequence of linearizations.

1. use Newton’s method to compute evaluations of z(p∗),
2. show how to directly compute a linear approximation of z(p).
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Implicit function theorem

Theorem (Implicit function theorem)

Let R : Rnz ×Rnp → Rnz be a C1 function and (z∗, p∗) ∈ Rnz ×Rnp such that R(z∗, p∗) = 0.

There exists a neighborhood U ⊂ Rnp of p∗ and a differentiable function z(p) such that
R(z(p), p) = 0 for all p ∈ U , and z(p) is the unique solution in V , a neighborhood of z∗, if
and only if the partial Jacobian ∂R

∂z (z
∗, p∗) is invertible.

In addition, z(·) is C1 differentiable on U , with

dz(p)

dp
= −

(∂R
∂z

(z, p)
)−1 ∂R

∂p
(z, p) for every p ∈ U . (2)

Proposition (Lipschitz from differentiability)

If f(·) is continuously differentiable on an open set O and C is a compact convex subset of O,
then f(·) is Lipschitz continuous relative to C with constant L = maxz∈C ∥∇f(z)∥.
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KKT conditions for parametric NLPs (p-NLP)

Disclaimer: we will emphasize the dependence on p, otherwise everything identical to above!

The KKT conditions of (p-NLP) read as:

∇wF (w, p)−
nG∑
i=1

λi∇wGi(w, p)−
nH∑
i=1

µi∇wHi(w, p) = 0 ,

G(w, p) = 0,

H(w, p) ≥ 0, µ ≥ 0,

Hi(w, p)µi = 0, i = 1, . . . , nH .

Under a CQ they are necessary for optimality. Under convexity they are also sufficient.
A primal-dual KKT point is the vector

z(p) =
(
w(p), λ(p), µ(p)

)
∈ Rnw × RnG × RnH .

Given a point w and parameter p, the set of multipliers (λ, µ) that satisfy the KKT conditions
are denoted by M(w, p). Recall that, if LICQ holds, at a stationary point the set M(w, p) is a
singleton.
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z(p) =
(
w(p), λ(p), µ(p)

)
∈ Rnw × RnG × RnH .

Given a point w and parameter p, the set of multipliers (λ, µ) that satisfy the KKT conditions
are denoted by M(w, p). Recall that, if LICQ holds, at a stationary point the set M(w, p) is a
singleton.
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Active set definitions

▶ The active set

A(w, p) = {i ∈ {1, . . . , nH} | Hi(w, p) = 0}

▶ Strongly (strictly) active set

A+(w, µ, p) = {i ∈ A(w, p) | µi > 0}

▶ Weakly active set

A0(w, µ, p) = {i ∈ A(w, p) | µi = 0}

▶ Relations:
A0(w, µ, p) ∪ A+(w, µ, p) = A(w, p),

A0(w, µ, p) ∩ A+(w, µ, p) = ∅.
▶ We say that strict complementarity slackness (SCS) holds if A0(w, µ, p) = ∅. Most

difficulties arise because usually small changes of p result in changes of A0(w, µ, p).
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The critical cone

Definition (Critical cone)

Let (w, λ, µ) be a KKT point.
The critical cone C(w, µ, p) is the following set:

C(w, µ, p) :=

{
d ∈ Rnw | ∇wG(w, p)⊤d = 0, ∇wHi(w, p)

⊤d

{
= 0, i ∈ A+(w, µ, p),

≥ 0, i ∈ A0(w, µ, p)

}
.

For more strict conditions, often a larger set than the critical cone is used:

D(w, µ, p) :=
{
d ∈ Rn | ∇G(w)⊤d = 0, ∇Hi(w)

⊤d = 0, i ∈ A+(w, µ)
}
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Second-order sufficent conditions for parametric NLPs

Disclaimer: we will emphasize the dependence on p, otherwise everything identical to above!

Definition (Second-order sufficient condition (SOSC))

SOSC holds at w if there exists (λ, µ) ∈ M(w, p) such that

d⊤∇2
wwL(w, λ, µ, p)d > 0 ∀d ∈ C(w, µ, p) \ {0}. (3)

Definition (Strong second-order sufficient condition (SSOSC))

SSOSC holds at w if there exists (λ, µ) ∈ M(w, p) such that

d⊤∇2
wwL(w, λ, µ, p)d > 0 ∀d ∈ D(w, µ, p) \ {0}. (4)
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Second-order sufficent conditions for parametric NLPs

Disclaimer: we will emphasize the dependence on p, otherwise everything identical to above!

Definition (Second-order sufficient condition (SOSC))

SOSC holds at w if there exists (λ, µ) ∈ M(w, p) such that

d⊤∇2
wwL(w, λ, µ, p)d > 0 ∀d ∈ C(w, µ, p) \ {0}. (3)

Definition (Strong second-order sufficient condition (SSOSC))

SSOSC holds at w if there exists (λ, µ) ∈ M(w, p) such that

d⊤∇2
wwL(w, λ, µ, p)d > 0 ∀d ∈ D(w, µ, p) \ {0}. (4)
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Parametric solution z(p) - solution manifold
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Parametric solution as function of p - linear approximation

The active set is fixed and SCS holds (we are far from the kinks)
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KKT conditions at the fixed active set and SCS

▶ Note that under SCS µA > 0, and for inactive constraints it holds µĀ = 0, where
Ā(w, p) := {1, . . . , nH} \ A(w, p).

▶ With a slight abuse of notation we redefine z and write z = (w, λ, µA), and µĀ = 0,
HĀ(w, p) > 0.

▶ If the active set is known, then the KKT conditions are a smooth nonlinear root-finding
problem:

R(z, p) =

∇wL(w, λ, µA, p)
−G(w, p)
−HA(w, p)

 = 0.

▶ From IFT: dz(p)
dp = −

(
∂R
∂z (z, p)

)−1
∂R
∂p (z, p) for every p ∈ U , can we directly apply to the

KKT system?
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IFT for a KKT system with fixed active set and SCS

1) HA(w, p) should not change. The active set is fixed for all p ∈ U =⇒ µiHi(w, p) = 0,
by differentiating we obtain

∂µi

∂p
Hi(w, p) + µi

(∂Hi(w, p)

∂w

∂w

∂p
+

∂Hi

∂p

)
= 0, i = 1, . . . , nH .

▶ If i ∈ A(w, p), then µi > 0, thus ∂Hi(w,p)
∂w

∂w
∂p + ∂Hi

∂p = 0, i.e., the constraints stay active.

▶ If i ∈ Ā(w, p), then Hi(w, p) > 0, µi = 0, thus ∂µi

∂p = 0, i.e., the multiplier stays zero.

2) The Jacobian must be invertible.

M :=
∂R(z, p)

∂z
=

 ∇2
wwL −∇wG(w, p) −∇wHA(w, p)

−∇wG(w, p)⊤ 0 0
−∇wHA(w, p)

⊤ 0 0


=

[
∇2

wwL −∇wḠA(w, p)
−∇wḠA(w, p)

⊤ 0

]
,

r :=
∂R(z, p)

∂p
=

 ∇2
wpL

−∇pG(w, p)⊤

−∇pHA(w, p)
⊤

 =

[
∇2

wpL
−∇pḠA(w, p)

⊤

]
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IFT for parametric NLPs – Fiacco’s theorem under SCS

Theorem (Fiacco, 1976)

Suppose w∗ satisfies the KKT conditions for NLP(p∗), SOSC, LICQ and SCS hold. Then,

1. the primal-dual solution z∗ = (w∗, λ∗, µ∗
A) is unique;

2. there exists a unique continuously differentiable function z(·) defined in a neighborhood U
of p∗ such that z(p) = (w(p), λ(p), µA(p)) is a KKT point and w(p) a local minimizer of
NLP(p), with

dz(p∗)

dp
= −M−1r . (5)

3. SOSC, LICQ and SCS hold for z(p), p ∈ U .

Sketch of proof : SOSC and LICQ imply the KKT matrix M being invertible. The active set
does not change for a ball U with a sufficiently small radius. The IFT can be applied to the
KKT system.
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QP interpretation

In detail, Equation (5) gives the sensitivity
dw(p)
dp

−dλ(p)
dp

−dµA(p)
dp

 = −

∇2
wwL(w, λ, µ, p) ∇wG(w, p) ∇wHA(w, p)
∇wG(w, p)⊤ 0 0
∇wHA(w, p)

⊤ 0 0

−1 ∇2
wpL(w, λ, µ, p)
∇pG(w, p)⊤

∇pHA(w, p)
⊤

 .

(6)

Solving this linear system is equivalent to solving the QP, with δw = dw(p)
dp :

min
δw

1

2
δw⊤(∇2

wwL)δw + (∇2
wpL)⊤δw

s.t. ∇wG(w, p)⊤δw +∇pG(w, p)⊤ = 0

∇wHA(w, p)
⊤δw +∇pHA(w, p)

⊤ = 0.

(7)
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Computing a linear approximation directly

The directional derivative in ∆p = p− p̄:

ŵ(p) = w(p̄) +
dw

dp
(p− p̄) = w(p̄) +

dw

dp
∆p︸ ︷︷ ︸

:=∆w

can be computed directly:

min
∆w

1

2
∆w⊤(∇2

wwL)∆w + (∇2
wpL∆p)∆w

s.t. ∇wG(w, p)⊤∆w +∇pG(w, p)⊤∆p = 0

∇wHA(w, p)
⊤∆w +∇pHA(w, p)

⊤∆p = 0.

(8)

This QP is even more similar to an SQP subproblem.
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Tangential predictor - just before the kink
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Tangential predictor - just after the kink
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The IFT tangential predictors are valid at smooth pieces in neighborhoods where SCS holds, at
a kink and past it they are not defined.

We need a better way to compute directional derivatives at kinks, and approximations across
them.

MPC and RL – Lecture 4: Constrained Nonlinear Optimization J. Boedecker and M. Diehl, University of Freiburg 43



Sensitivity at active set changes

For a direction ∆p = p− p∗, we consider a scalar parameter t ∈ R, with p = p∗ + t∆p,
t ∈ [0, 1]. Thus we can regard the parametric NLP: NLP(t) instead of NLP(p).

Theorem (One-sided differentiability, Jittorntrum 1981, Diehl 2001)

Consider the parametric NLP(t), with p = p∗ + t(p− p∗), t ∈ [0, 1]. Let
z(0) = (w(0), λ(0), µ(0)) be a KKT point at p∗ that satisfies LICQ and SSOSC, with a
partition of strongly and weakly active constraints into HA+(w, t) and HA0(w, t), resp.
Assume (δw, δλ, δµA+ , δµA0) is the solution of the following QP, with functions evaluated at
the solution (w(0), λ(0), µ(0)):

min
δw

1

2
δw⊤(∇2

wwL)δw + (∇wtL)⊤δw

s.t. ∇tG(w, t)⊤ +∇wG(w, t)⊤δw = 0,

∇tHA+(w, t)⊤ +∇wHA+(w, t)⊤δw = 0,

∇tHA0(w, t)⊤ +∇wHA0(w, t)⊤δw ≥ 0,

(9)
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Sensitivity at active set changes (continued)

Theorem (One-sided differentiability (continued), Jittorntrum 1981, Diehl 2001)

] ... which satisfies the strict complementarity for the multiplier vector δµA0 of the QP
inequality constraints.
Then there exist an ε > 0 and a differentiable function z : [0, ε) → Rnw × RnG × RnH , which
are KKT points of NLP(ε) that satisfy LICQ and SSOSC for t ∈ [0, ε). At t = 0, the one-sided
derivative of z(t) is given by:

lim
t→0,t>0

1

t

w(t)− w(0)
λ(t)− λ(0)
µ(t)− µ(0)

 =


δw
δλδµ


 =


δw
δλ

δµA+

δµA0

0

 (10)
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Some remarks on the theorem

▶ Note that the QP (9) has always a unique solution. The QP is feasible, since δw = 0 is a
feasible solution. By the hypothesis of the theorem LICQ and SSOSC hold, hence the QP
is solvable and has a unique solution.

▶ We have the same assumptions as Fiacco’s theorem, but show on top of that, starting at
z(0), any z(ε), moving along ε∆p, which as no new active constraints, is differentiable.
Only weakly active constraints are allowed to become inactive.

▶ The only additional assumption was the strict complementarity in the QP, which ensures
no active set changes along our direction of interest.

▶ We looked only at the r.h.s. derivative, but regarding a t ∈ (−ε, 0], we can make similar
conclusions for the l.h.s. derivative.

▶ If SCS holds, there is no ineq. constraint in the QP, and the curve z(t) is cont.
differentiable at t = 0 (Fiacco’s theorem under SCS).
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Summary of QPs for computing linear predictions

We need to compute directional derivatives for ∆p = p− p∗. This can be represented via a
scalar parameter t, with p = p∗ + t∆p, t ∈ [0, 1].

Under SCS, solve an equality-constrained
QP (IFT)

min
δw

1

2
δw⊤(∇2

wwL)δw + (∇wtL)⊤δw

s.t. ∇tG(w, t) +∇wG(w, t)⊤δw = 0,

∇tHA(w, t) +∇wHA(w, t)
⊤δw = 0.

Without SCS, solve an inequality-constrained QP
(complete Fiacco’s theorem)

min
δw

1

2
δw⊤(∇2

wwL)δw + (∇wtL)⊤δw

s.t. ∇tG(w, t) +∇wG(w, t)⊤δw = 0,

∇tHA+(w, t) +∇wHA+(w, t)⊤δw = 0,

∇tHA0(w, t) +∇wHA0(w, t)⊤δw ≥ 0.
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Parametric solution as function of p - generalized approximation
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Solving a QP at a kink gives a reasonable way to compute directional derivatives, as they
always exist. This is formalized next.
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What about active set changes?
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▶ As long as the active set match, and the derivative is Lipschitz (at least along the
direction of interest) we have quadratic accuracy O(∥∆p∥2).

▶ Past a kink, the (directional) derivative is invalid. However, by solving an even more
general QP (see next three slides) we can still obtain a good approximation. We can
interpret this QP as a piecewise linear approximation of z(p).
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Recall: QP Subproblem in Sequential Quadratic Programming (SQP)

SQP subproblem with inequality constraints

min
∆w

∇F (wk)T∆w +
1

2
∆wTAk∆w

s.t.

{
G(wk) +∇G(wk)T∆w = 0
H(wk) +∇H(wk)T∆w ≥ 0

with
Ak = ∇2

wL(wk, λk, µk)

The solution to the QP subproblem delivers

wk +∆wQP ≈ w∗, λQP ≈ λ∗, µQP ≈ µ∗
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Generalized Tangential Predictor

Theorem (Generalized Tangential Predictor)

Consider the parametric NLP(p) and let z∗ = (w∗, λ∗, µ∗) be a KKT point at p∗ that satisfies
LICQ and SSOSC. For a parameter step ∆p := p̄− p∗ from p∗ to a neighboring parameter p̄
regard the solution of the following QP, with functions evaluated at (z∗, p∗):

min
∆w

1

2
∆w⊤(∇2

wwL)∆w +∆w⊤((∇wtL)∆p+∇wF )

s.t. ∇pG
⊤∆p+∇wG

⊤∆w = 0,

∇pH
⊤∆p+∇wH

⊤∆w ≥ 0,

(11)

The solution delivers a generalized tangential predictor to the possibly nonsmooth parametric
solution wsol(p), i.e., ∥w∗ +∆w − wsol(p)∥ = O(∥∆p∥2).
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Generalized Tangential Predictor - SQP Interpretation

Theorem (Generalized Tangential Predictor via SQP, Diehl 2001)

Consider the parametric NLP(p) and let z∗ = (w∗, λ∗, µ∗) be a KKT point at p∗ that satisfies
LICQ and SSOSC. For a parameter step ∆p := p̄− p∗ from p∗ to a neighboring parameter p̄
regard the solution of the following QP, with functions evaluated at (z∗, p∗):

min
∆y=(∆w,∆p)

1

2
∆y⊤(∇2

yyL)∆y +∆y⊤∇yF

s.t. p∗ − p̄+∆p = 0,

G+∇yG
⊤∆y = 0,

H +∇yH
⊤∆y ≥ 0,

(12)

The solution delivers a generalized tangential predictor to the possibly nonsmooth parametric
solution wsol(p), i.e., ∥w∗ +∆w − wsol(p)∥ = O(∥∆p∥2).

Note: The above QP is identical to the SQP subproblem for a ”lifted” NLP where the
parameters p are extra variables constrained by the extra constraint p− p̄ = 0.
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Alternative ways to deal with inequality constraints

▶ Under SCS, SOSC and LICQ =⇒ IFT =⇒ z(p) is a C1 function (and thus Lipschitz).

▶ Without SCS =⇒ no IFT since z(p) is not differentiable, only directional derivatives
dz(p)
dp ∆p exist.

▶ even in case of (some) changes in the active set, we can compute the directional derivatives,
and obtain z(p) as a piecewise linear function

All complications arise because of inequality constraints... can we get rid of them?

▶ use the barrier reformulation of the NLP

▶ simple and practical way

▶ heuristic and approximate
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Log-barrier approximation - usually paired with IP methods

Log-barrier parametric NLP:

min
w∈Rnw

F (w, p)− τ

nH∑
i=1

log(Hi(w, p))

s.t. G(w, p) = 0.

▶ only equality constraints (SSOSC = SSOC), and under SOSC and LICQ we can apply the
IFT to compute the sensitivity

▶ IFT is applied to the smoothed KKT system:

Rτ (w, s, λ, µ, p) =


∇wL(w, λ, µ, p)

G(w, p)
H(w, p)− s
diag(s)µ− τe

 = 0, (s, µ > 0)

▶ Note that both τ and p are parameters, but we only vary p and assumed τ to be fixed.
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Parametric solution z(p) – smoothed solution manifold τ = 0.1
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Parametric solution z(p) – smoothed solution manifold τ = 0.002

-3 -2 -1 0 1 2

p

-1.5

-1

-0.5

0

0.5

1

1.5

w
1
(p

)

Original
Barrier

-3 -2 -1 0 1 2

p

0.1

0.15

0.2

0.25

0.3

0.35

w
2
(p

)

Original
Barrier

-1.5 -1 -0.5 0 0.5 1 1.5

w1(p)

0.1

0.15

0.2

0.25

0.3

0.35

w
2
(p

)

Original
Barrier

MPC and RL – Lecture 4: Constrained Nonlinear Optimization J. Boedecker and M. Diehl, University of Freiburg 56



An efficient implementation of sensitivity computation in acados

Setting: solve NLP with acados SQP

▶ SQP solves QP in ∆w space of primal variables

Theorem: Denote QP solution map at NLP solution ∆wsol
QP(p, z

⋆). For exact Hessian QP, the

solution maps wsol(θ) and w⋆ +∆wsol
QP(p, z

⋆), and their sensitivities, ∂wsol

∂p (p) and
∂∆wsol

QP

∂p (p, z⋆) coincide.

Blending SQP with IP QP solver (HPIPM): Shrink τ in QP solver to τmin > 0 instead of 0.

▶ Not an SQP method for τmin > 0

▶ Convergence to IP-smoothed KKT solution
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Hessian approximations & Two-solver approach

▶ Hessian approximations often beneficial in SQP
▶ convergence
▶ computational complexity
▶ regularity

▶ Regularization needed when dealing with indefinite Hessians

▶ IFT requires exact Hessian

=⇒ Two-solver approach

1. Nominal solver: can use approximate Hessian, regularization etc.

2. Sensitivity solver
▶ load solution
▶ evaluate exact Hessian
▶ evaluate partial derivatives w.r.t. θ
▶ solve linear system efficiently with HPIPM Riccati
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