
Model Predictive Control and Reinforcement Learning
– TD Methods and Function Approximation –

Joschka Boedecker and Moritz Diehl

University of Freiburg

Fall School on Model Predictive Control and Reinforcement Learning
Freiburg, 6-10 October 2025

Recap: Dynamic Programming

Last lecture: Planning by dynamic programming, solve a known, discrete MDP.

Policy Iteration
Alternate evaluating the value function vπ and improving the policy π to convergence.

π0
E−−−→ V π0 I−−−→ π1

E−−−→ V π1 I−−−→ π2
E−−−→ · · · I−−−→ π∗ E−−−→ V ∗

Value Iteration
Evaluate just once and combine it with the policy improvement step.

Vk+1(s)
.
= max

a
E [Rt+1 + γVk(St+1)|St = s,At = a]

= max
a

∑
s′

P(s′|s, a) [r(s, a) + γVk(s′)]

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 1

Approximate Dynamic Programming

Dynamic programming is optimal, but it requires knowledge of the dynamics and is too
computationally expensive → Approximate Dynamic Programming

Vk+1(s) =
∑
s′,r

P(s′|s, a) [r(s, a) + γVk(s′)]

In this lecture:
I Local state updates: We update only the visited states s, s′ instead of solving the entire

system at once.
I No model required: The transition model P(s′|s, a) (and the reward function r(s, a)) is

not needed; we sample s′, r directly from interaction.
I Function approximation: Instead of a tabular V we use function approximators.

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 2

Overview

Temporal Difference Methods
Model-free Learning
TD Prediction (learning V π and Qπ)
TD Control (learning π?)

RL with Function Approximation
Incorporating Function Approximation in RL
Semi-gradient Methods
Deep Q-Networks (DQN)

Summary

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 3

Table of Contents

Temporal Difference Methods
Model-free Learning
TD Prediction (learning V π and Qπ)
TD Control (learning π?)

RL with Function Approximation
Incorporating Function Approximation in RL
Semi-gradient Methods
Deep Q-Networks (DQN)

Summary

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 4

Temporal Difference Learning

This lecture: Model-free prediction and control. Estimate/ optimize the value function of an
unknown MDP using Temporal Difference Learning.
I TD is model-free: no knowledge required about MDP dynamics
I TD methods learn from episodes of experiences

experiences = sequences of states, actions, and rewards
I TD learns from incomplete episodes by bootstrapping
I Bootstrapping: update estimated based on other estimates without waiting for a final

outcome (update a guess towards a guess)

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 5

Model-free Prediction

I Goal: learn the state-value function V π for a given policy π

S0,A0,R1, ...,ST ∼ π

I Recall: the return is the total discounted reward

Gt = Rt+1 + γRt+2 + ...+ γT−1RT

I Recall: the value function is the expected return

V π(s) = Eπ[Gt|St = s] = Eπ [Rt+1 + γV π(St+1)|St = s]

I Idea: estimate V π from experience by averaging the returns observed after visits to that
state → Use empirical mean return instead of expected return

I Estimating V π directly from Gt leads to Monte Carlo methods (not in the focus of this
school). Estimating V π from Rt+1 + γV π(St+1) leads to Temporal Difference methods.

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 6

Incremental and Running Mean

I We can compute the mean of a sequence x1, x2, . . . incrementally:

µk =
1
k

k∑
j=1

xj

=
1
k

xk +

k−1∑
j=1

xj


=

1
k

xk + (k − 1) 1
k − 1

k−1∑
j=1

xj


=

1
k
(xk + (k − 1)µk−1)

= µk−1 +
1
k
(xk − µk−1)

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 7

Incremental and Running Mean

I Thus, we can update V incrementally by:

V (St)← V (St) +
1

N (St)
(Rt+1 + γV (St+1)−V (St)),

where 1
N(s) is the state-visitation counter

I Instead 1
k , we can use step size α to calculate a running mean:

V (St)← V (St) + α(Rt+1 + γV (St+1)−V (St))

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 8

TD Prediction

Monte Carlo Update
Update value V (St) towards the actual return Gt.

V (St)← V (St) + α[Gt −V (St)]

α is a step-size parameter.

Simplest temporal-difference learning algorithm: TD(0)
Update value V (St) towards the estimated return Rt+1 + γV (St+1).

V (St)← V (St) + α[Rt+1 + γV (St+1)−V (St)]

I Rt+1 + γV (St+1) is called the TD target
I δt = Rt+1 + γV (St+1)−V (St) is called the TD error

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 9

TD Prediction

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 10

Generalized Policy Iteration

improvement
.

.

.

.

I Policy Evaluation: estimate V π

I Policy Improvement: greedy

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 11

Generalized Policy Iteration with TD Evaluation

improvement
.

.

.

.

I Temporal Difference Policy Evaluation: V ≈ V π

I Policy Improvement: greedy?

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 12

TD Estimation of Action Values

I Greedy policy improvement over V (s) requires a model of the MDP

π(s) = argmax
a∈A

∑
s′

P(s′|s, a)[r(s, a) + γV (s′)]

I Greedy policy improvement over Q(s, a) is model-free

π(s) = argmax
a∈A

Q(s, a)

Generalized Policy Iteration with action-value function:
I Monte Carlo Policy Evaluation: Q ≈ Qπ

I Policy Improvement: greedy?

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 13

ε-greedy Policy Improvement

I We have to ensure that each state-action pair is visited a sufficient (infinite) number of
times

I Simple idea: ε-greedy
I All actions have non-zero probability
I With probability ε choose a random action, with probability 1− ε take the greedy action.

π(a | s) =

{
ε

|A| + 1− ε if a = argmaxa′∈A Q(s, a′)
ε

|A| otherwise

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 14

Off-policy Learning

I We want to learn the optimal policy, but we have to account for the problem of
maintaining exploration

I We call the (optimal) policy to be learned the target policy π and the policy used to
generate behaviour the behaviour policy b

I We say that learning is from data off the target policy – thus, those methods are referred
to as off-policy learning

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 15

TD Control: Q-learning

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 16

Q-learning Example

0 1 2 3
a, 0 a,−1

b,+1

b,−1

traj1 : 0 → 1 → 2
traj2 : 0 → 1 → 3
traj3 : 0 → 1 → 2

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 17

Table of Contents

Temporal Difference Methods
Model-free Learning
TD Prediction (learning V π and Qπ)
TD Control (learning π?)

RL with Function Approximation
Incorporating Function Approximation in RL
Semi-gradient Methods
Deep Q-Networks (DQN)

Summary

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 18

Function Approximation in Reinforcement Learning

I Up to this point, we represented all elements of our RL systems by tables (value functions,
models and policies)

I If the state and action spaces are very large or infinite, this is not a feasible solution
I We can apply function approximation to find a more compact representation of RL

components and to generalize over states and actions
I Reinforcement Learning with function approximation comes with new issues that do not

arise in Supervised Learning – such as non-stationarity, bootstrapping and delayed targets

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 19

Function Approximation in Reinforcement Learning

I Here: we estimate value-functions V π(·) and Qπ(·, ·) by function approximators v̂(·,w)
and q̂(·, ·,w), parameterized by weights w

st

w

v̂(st,w)

st at

w

q̂(st, at,w)

st

w

q̂(st, a
0,w)q̂(st, a

1,w) q̂(st, a
2,w)

I But we can also represent models or policies

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 20

Function Approximation in Reinforcement Learning

We can use different types of function approximators:
I Linear combinations of features
I Neural networks
I Decision trees
I Gaussian processes
I Nearest neighbor methods
I …

Here: We focus on differentiable FAs and update the weights via gradient descent.

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 21

Function Approximation in Reinforcement Learning

We want to update our weights w.r.t. the Mean Squared Value Error of our prediction:

wt+1 = wt −
1
2
α∇[V π(St)− v̂(St,wt)]

2

= wt + α[V π(St)− v̂(St,wt)]∇v̂(St,wt)

However, we do not have V π(St).

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 22

Function Approximation in Reinforcement Learning

Gradient MC
w← w + α[Gt − v̂(St,w)]∇v̂(St,w)

Semi-gradient TD(0)
w← w + α[Rt+1 + γv̂(St+1,w)− v̂(St,w)]∇v̂(St,w)

Why are bootstrapping methods, defined this way, called semi-gradient methods?

They take into account the effects of changing w w.r.t. the prediction, but not w.r.t. the
target!

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 23

Function Approximation in Reinforcement Learning

Gradient MC
w← w + α[Gt − v̂(St,w)]∇v̂(St,w)

Semi-gradient TD(0)
w← w + α[Rt+1 + γv̂(St+1,w)− v̂(St,w)]∇v̂(St,w)

Why are bootstrapping methods, defined this way, called semi-gradient methods?
They take into account the effects of changing w w.r.t. the prediction, but not w.r.t. the
target!

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 23

Deep Q-Networks (DQN)

DQN provides a stable solution to deep RL:
I Use experience replay
I Sample minibatches (as opposed to full Batches)
I Freeze target Q-networks
I Optional: Clip rewards or normalize network adaptively to sensible range

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 24

Deep Q-Networks: Experience Replay

To remove correlations, build data set from agent’s own experience
I Take action At according to ε-greedy policy
I Store transition (St,At,Rt+1,St+1) in replay memory D
I Sample random mini-batch of transitions (S ,A,S ,S ′) from D
I Optimize MSE between Q-network and Q-learning targets, e.g.

L(w) = E(S,A,R,S′)∼D
[
(R + γmax

a′
Q(S ′, a′,w)−Q(S ,A,w))2]

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 25

Deep Q-Networks: Target Networks

To avoid oscillations, fix parameters used in Q-learning target
I Compute Q-learning targets w.r.t. old, fixed parameters w−

R + γmax
a′

Q(S ′,A′,w−)

I Optimize MSE between Q-network and target network

L(w) = E(S,A,R,S′)∼D
[
(R + γmax

a′
Q(S ′, a′,w−)−Q(S ,A,w))2]

I Periodically update fixed parameters w− ← w
I hard update: update target network every N steps
I slow update: slowly update weights of target network every step by

w− ← (1− τ)w− + τw

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 26

Deep Q-Networks (DQN)

Initialize replay memory D to capacity N and Q-network weights w with w− = w
for episode i = 1, ..,M do

for t = 1, ..,T do
Select action At ε-greedily
Store transition (St,At,St+1,Rt) in D
Sample minibatch of transitions (Sj,Aj,S ′

j ,Rj) from D with batchsize B
Compute target yj for each sample j = 1, . . . ,B:

Yj =

{
Rj if S ′

j is terminal
Rj + γ maxa′Q(S ′

j , a′,w−) else

Update the parameters of Q according to:

∇wL̂(w) =
α

B

B∑
j=1

(
Yj −Q(Sj,Aj,w)

)
∇wQ(Sj,Aj,w)

Update target network with hard or slow update
end

end

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 27

Deep Q-Networks: Reinforcement Learning in Atari

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 28

Deep Q-Networks: Reinforcement Learning in Atari

I End-to-end learning of values Q(s, a) from pixels s
I Input state s is a stack of raw pixels from the last 4 frames
I Output is Q(s, a) for 18 joystick/button positions
I Reward is change in score for that step

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 29

How much does DQN help?

DQN
Q-Learning Q-Learning Q-Learning Q-learning

+ Replay + Replay
+ Target Q + Target Q

Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 831 2894
Space Invaders 302 373 826 1089

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 30

Summary by Learning Goals

I Model-free learning: Temporal Difference (TD) methods estimate value functions from
experience, using bootstrapping to learn incrementally without a model of the
environment.

I Policy improvement and control: TD control methods (e.g., Q-learning) enable learning
optimal policies, often combined with exploration strategies like ε-greedy and off-policy
updates.

I Function approximation and deep RL: Large or continuous state spaces require
function approximators (linear, neural networks), with techniques like DQN using
experience replay and target networks for stability.

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 31

	Temporal Difference Methods
	Model-free Learning
	TD Prediction (learning V and Q)
	TD Control (learning)

	RL with Function Approximation
	Incorporating Function Approximation in RL
	Semi-gradient Methods
	Deep Q-Networks (DQN)

	Summary

