Model Predictive Control and Reinforcement Learning – TD Methods and Function Approximation –

Joschka Boedecker and Moritz Diehl

University of Freiburg

Fall School on Model Predictive Control and Reinforcement Learning Freiburg, 6-10 October 2025

universität freiburg

Recap: Dynamic Programming

Last lecture: Planning by dynamic programming, solve a known, discrete MDP.

Policy Iteration

Alternate evaluating the value function v_{π} and improving the policy π to convergence.

$$\pi_0 \xrightarrow{E} V^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} V^{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi^* \xrightarrow{E} V^*$$

Value Iteration

Evaluate just once and combine it with the policy improvement step.

$$\begin{aligned} V_{k+1}(s) &\doteq \max_{a} \mathbb{E} \left[R_{t+1} + \gamma V_{k}(S_{t+1}) \middle| S_{t} = s, A_{t} = a \right] \\ &= \max_{a} \sum_{s'} P(s'|s, a) \left[r(s, a) + \gamma V_{k}(s') \right] \end{aligned}$$

Approximate Dynamic Programming

Dynamic programming is optimal, but it requires knowledge of the dynamics and is too computationally expensive \to Approximate Dynamic Programming

$$V_{k+1}(s) = \sum_{s',r} P(s'|s,a) [r(s,a) + \gamma V_k(s')]$$

In this lecture:

- **Local state updates:** We update only the visited states s, s' instead of solving the entire system at once.
- No model required: The transition model P(s'|s, a) (and the reward function r(s, a)) is not needed; we sample s', r directly from interaction.
- ► Function approximation: Instead of a tabular *V* we use function approximators.

Overview


```
Temporal Difference Methods Model-free Learning TD Prediction (learning V^{\pi} and Q^{\pi}) TD Control (learning \pi^{\star})
```

RL with Function Approximation Incorporating Function Approximation in RL Semi-gradient Methods Deep Q-Networks (DQN)

Summary

Table of Contents


```
Temporal Difference Methods Model-free Learning TD Prediction (learning V^{\pi} and Q^{\pi}) TD Control (learning \pi^{\star})
```

RL with Function Approximation
Incorporating Function Approximation in RL
Semi-gradient Methods
Deep Q-Networks (DQN)

Summary

Temporal Difference Learning

This lecture: Model-free prediction and control. Estimate/ optimize the value function of an *unknown* MDP using Temporal Difference Learning.

- ► TD is model-free: no knowledge required about MDP dynamics
- ► TD methods learn from episodes of *experiences experiences* = sequences of states, actions, and rewards
- TD learns from incomplete episodes by bootstrapping
- ▶ Bootstrapping: update estimated based on other estimates without waiting for a final outcome (update a guess towards a guess)

Model-free Prediction

▶ Goal: learn the state-value function V^{π} for a given policy π

$$S_0, A_0, R_1, ..., S_T \sim \pi$$

▶ Recall: the *return* is the total discounted reward

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Recall: the value function is the expected return

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}[R_{t+1} + \gamma V^{\pi}(S_{t+1})|S_t = s]$$

- Idea: estimate V^{π} from experience by averaging the returns observed after visits to that state \rightarrow Use empirical mean return instead of expected return
- Estimating V^{π} directly from G_t leads to Monte Carlo methods (not in the focus of this school). Estimating V^{π} from $R_{t+1} + \gamma V^{\pi}(S_{t+1})$ leads to Temporal Difference methods.

Incremental and Running Mean

 \blacktriangleright We can compute the mean of a sequence x_1, x_2, \ldots incrementally:

$$\mu_k = \frac{1}{k} \sum_{j=1}^k x_j$$

$$= \frac{1}{k} \left(x_k + \sum_{j=1}^{k-1} x_j \right)$$

$$= \frac{1}{k} \left(x_k + (k-1) \frac{1}{k-1} \sum_{j=1}^{k-1} x_j \right)$$

$$= \frac{1}{k} (x_k + (k-1)\mu_{k-1})$$

$$= \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1})$$

Incremental and Running Mean

ightharpoonup Thus, we can update V incrementally by:

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (R_{t+1} + \gamma V(S_{t+1}) - V(S_t)),$$

where $\frac{1}{N(s)}$ is the state-visitation counter

▶ Instead $\frac{1}{k}$, we can use step size α to calculate a running mean:

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

TD Prediction

Monte Carlo Update

Update value $V(S_t)$ towards the actual return G_t .

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

 α is a step-size parameter.

Simplest temporal-difference learning algorithm: TD(0)

Update value $V(S_t)$ towards the estimated return $R_{t+1} + \gamma V(S_{t+1})$.

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

- $ightharpoonup R_{t+1} + \gamma V(S_{t+1})$ is called the *TD target*
- lacktriangledown $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called the *TD error*

TD Prediction

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated
Algorithm parameter: step size \alpha \in (0,1]
Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
       A \leftarrow action given by \pi for S
      Take action A, observe R, S'
       V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]
       S \leftarrow S'
   until S is terminal
```

Generalized Policy Iteration

- ▶ Policy Evaluation: estimate V^{π}
- ► Policy Improvement: greedy

Generalized Policy Iteration with TD Evaluation

- ▶ Temporal Difference Policy Evaluation: $V \approx V^{\pi}$
- ► Policy Improvement: greedy?

TD Estimation of Action Values

lacktriangle Greedy policy improvement over V(s) requires a model of the MDP

$$\pi(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}} \sum_{s'} P(s'|s,a) [r(s,a) + \gamma \, V(s')]$$

lacktriangle Greedy policy improvement over Q(s,a) is model-free

$$\pi(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}} Q(s, a)$$

Generalized Policy Iteration with action-value function:

- ▶ Monte Carlo Policy Evaluation: $Q \approx Q^{\pi}$
- ► Policy Improvement: greedy?

ϵ -greedy Policy Improvement

- We have to ensure that each state-action pair is visited a sufficient (infinite) number of times
- ightharpoonup Simple idea: ϵ -greedy
- All actions have non-zero probability
- lacktriangle With probability ϵ choose a random action, with probability $1-\epsilon$ take the greedy action.

$$\pi(a \mid s) = \left\{ \begin{array}{ll} \frac{\epsilon}{|\mathcal{A}|} + 1 - \epsilon & \text{if } a = \arg\max_{a' \in \mathcal{A}} Q(s, a') \\ \frac{\epsilon}{|\mathcal{A}|} & \text{otherwise} \end{array} \right.$$

Off-policy Learning

- ► We want to learn the optimal policy, but we have to account for the problem of maintaining exploration
- We call the (optimal) policy to be learned the target policy π and the policy used to generate behaviour the behaviour policy b
- ▶ We say that learning is from data *off* the target policy thus, those methods are referred to as *off-policy learning*

TD Control: Q-learning

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in \mathbb{S}^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

$$S \leftarrow S'$$

until S is terminal

Q-learning Example

Table of Contents


```
Temporal Difference Methods Model-free Learning TD Prediction (learning V^{\pi} and Q^{\pi}) TD Control (learning \pi^*)
```

RL with Function Approximation Incorporating Function Approximation in RL Semi-gradient Methods Deep Q-Networks (DQN)

Summary

- ▶ Up to this point, we represented all elements of our RL systems by tables (value functions, models and policies)
- ▶ If the state and action spaces are very large or infinite, this is not a feasible solution
- ► We can apply function approximation to find a more compact representation of RL components and to generalize over states and actions
- ▶ Reinforcement Learning with function approximation comes with new issues that do not arise in Supervised Learning such as non-stationarity, bootstrapping and delayed targets

Here: we estimate value-functions $V^\pi(\cdot)$ and $Q^\pi(\cdot,\cdot)$ by function approximators $\hat{v}(\cdot,\mathbf{w})$ and $\hat{q}(\cdot,\cdot,\mathbf{w})$, parameterized by weights \mathbf{w}

▶ But we can also represent models or policies

We can use different types of function approximators:

- ► Linear combinations of features
- Neural networks
- Decision trees
- Gaussian processes
- Nearest neighbor methods

Here: We focus on differentiable FAs and update the weights via gradient descent.

We want to update our weights w.r.t. the Mean Squared Value Error of our prediction:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{1}{2}\alpha\nabla[V^{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t)]^2$$
$$= \mathbf{w}_t + \alpha[V^{\pi}(S_t) - \hat{v}(S_t, \mathbf{w}_t)]\nabla\hat{v}(S_t, \mathbf{w}_t)$$

However, we do not have $V^{\pi}(S_t)$.

Gradient MC

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha [\mathbf{G}_t - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})$$

Semi-gradient TD(0)

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha [R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})$$

Why are bootstrapping methods, defined this way, called semi-gradient methods?

Gradient MC

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha [\mathbf{G}_t - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})$$

Semi-gradient TD(0)

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha [R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})$$

Why are bootstrapping methods, defined this way, called semi-gradient methods? They take into account the effects of changing \mathbf{w} w.r.t. the prediction, but not w.r.t. the target!

Deep Q-Networks (DQN)

DQN provides a stable solution to deep RL:

- Use experience replay
- Sample minibatches (as opposed to full Batches)
- Freeze target Q-networks
- Optional: Clip rewards or normalize network adaptively to sensible range

Deep Q-Networks: Experience Replay

To remove correlations, build data set from agent's own experience

- ▶ Take action A_t according to ϵ -greedy policy
- ▶ Store transition $(S_t, A_t, R_{t+1}, S_{t+1})$ in replay memory D
- ightharpoonup Sample random mini-batch of transitions (S, A, S, S') from D
- Optimize MSE between Q-network and Q-learning targets, e.g.

$$L(\mathbf{w}) = \mathbb{E}_{(S,A,R,S') \sim D} \left[(R + \gamma \max_{a'} Q(S', a', \mathbf{w}) - Q(S, A, \mathbf{w}))^2 \right]$$

Deep Q-Networks: Target Networks

To avoid oscillations, fix parameters used in Q-learning target

► Compute Q-learning targets w.r.t. old, fixed parameters w⁻

$$R + \gamma \max_{a'} Q(S', A', \mathbf{w}^-)$$

Optimize MSE between Q-network and target network

$$L(\mathbf{w}) = \mathbb{E}_{(S,A,R,S') \sim D} \left[(R + \gamma \max_{a'} Q(S', a', \mathbf{w}^-) - Q(S, A, \mathbf{w}))^2 \right]$$

- ightharpoonup Periodically update fixed parameters $\mathbf{w}^- \leftarrow \mathbf{w}$
 - ightharpoonup hard update: update target network every N steps
 - slow update: slowly update weights of target network every step by

$$\mathbf{w}^- \leftarrow (1 - \tau)\mathbf{w}^- + \tau\mathbf{w}$$

Deep Q-Networks (DQN)

Initialize replay memory D to capacity N and Q-network weights \mathbf{w} with $\mathbf{w}^- = \mathbf{w}$ for episode i = 1, ..., M do

for t = 1, ..., T do

Select action A_t ϵ -greedily

Store transition (S_t, A_t, S_{t+1}, R_t) in D

Sample minibatch of transitions (S_i, A_i, S'_i, R_i) from D with batchsize B Compute target y_i for each sample $j = 1, \ldots, B$:

$$Y_j = \begin{cases} R_j & \text{if } S_j' \text{ is terminal} \\ R_j + \gamma \, \max_{a'} Q(S_j', a', \mathbf{w}^-) & \text{else} \end{cases}$$

Update the parameters of Q according to:

$$\nabla \mathbf{w} \widehat{L}(\mathbf{w}) = \frac{\alpha}{B} \sum_{j=1}^{B} \left(Y_j - Q(S_j, A_j, \mathbf{w}) \right) \nabla_{\mathbf{w}} Q(S_j, A_j, \mathbf{w})$$

Update target network with hard or slow update

end

end

Deep Q-Networks: Reinforcement Learning in Atari

Deep Q-Networks: Reinforcement Learning in Atari

- ightharpoonup End-to-end learning of values Q(s, a) from pixels s
- ▶ Input state s is a stack of raw pixels from the last 4 frames
- $lackbox{ Output is } Q(s,a) \text{ for 18 joystick/button positions}$
- ► Reward is change in score for that step

How much does DQN help?

				DQN
	Q-Learning	Q-Learning	Q-Learning	Q-learning
			+ Replay	+ Replay
		+ Target Q		+ Target Q
Breakout	3	10	241	317
Enduro	29	142	831	1006
River Raid	1453	2868	4103	7447
Seaquest	276	1003	831	2894
Space Invaders	302	373	826	1089

Summary by Learning Goals

- ▶ **Model-free learning:** Temporal Difference (TD) methods estimate value functions from experience, using bootstrapping to learn incrementally without a model of the environment.
- Policy improvement and control: TD control methods (e.g., Q-learning) enable learning optimal policies, often combined with exploration strategies like ϵ -greedy and off-policy updates.
- ► Function approximation and deep RL: Large or continuous state spaces require function approximators (linear, neural networks), with techniques like DQN using experience replay and target networks for stability.