Model Predictive Control and Reinforcement Learning

— TD Methods and Function Approximation —

Joschka Boedecker and Moritz Diehl
University of Freiburg

Fall School on Model Predictive Control and Reinforcement Learning
Freiburg, 6-10 October 2025

universitatfreiburg

B NTNU | sénctanatecmoingy

Recap: Dynamic Programming

Last lecture: Planning by dynamic programming, solve a known, discrete MDP.
Policy Iteration
Alternate evaluating the value function v, and improving the policy m to convergence.

E 1 E I E I E
) Vo 1 ym T2 cee ¥ V*

Value lteration

Evaluate just once and combine it with the policy improvement step.
Vit1(s) = maxE [Rey1 + 7 Vi(Si1)[S: = 5, 4¢ = d]

= mgxz P(S,|S, a) [7'(57 0/) + 'YVk(SI)]

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg

Approximate Dynamic Programming

Dynamic programming is optimal, but it requires knowledge of the dynamics and is too
computationally expensive — Approximate Dynamic Programming

(5) =D _P(s']s,a) [r(s, a) + 7 V()]

In this lecture:

» Local state updates: We update only the visited states s, s’ instead of solving the entire
system at once.

» No model required: The transition model P(s'|s, a) (and the reward function (s, a)) is
not needed; we sample ', r directly from interaction.

> Instead of a tabular V we use function approximators.

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg

Overview

Temporal Difference Methods
Model-free Learning
TD Prediction (learning V™ and Q™)
TD Control (learning 7*)

RL with Function Approximation
Incorporating Function Approximation in RL
Semi-gradient Methods
Deep Q-Networks (DQN)

Summary

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg

Table of Contents

Temporal Difference Methods
Model-free Learning
TD Prediction (learning V™ and Q™)
TD Control (learning 7*)

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 4

Temporal Difference Learning

This lecture: Model-free prediction and control. Estimate/ optimize the value function of an
unknown MDP using Temporal Difference Learning.

» TD is model-free: no knowledge required about MDP dynamics

» TD methods learn from episodes of experiences
experiences = sequences of states, actions, and rewards

» TD learns from incomplete episodes by bootstrapping

» Bootstrapping: update estimated based on other estimates without waiting for a final
outcome (update a guess towards a guess)

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg

Model-free Prediction

» Goal: learn the state-value function V™ for a given policy
So, Ag, Ry, ..., St ~ 7
» Recall: the return is the total discounted reward
Gy = Rip1 +YRipo+ ... + T IRy
» Recall: the value function is the expected return
V7(s) = Ex[Gi| Sy =] = B [Reg1 + 7 V7 (Si31) |51 = 5]

» Idea: estimate V™ from experience by averaging the returns observed after visits to that
state — Use empirical mean return instead of expected return

» Estimating V7 directly from G leads to Monte Carlo methods (not in the focus of this
school). Estimating V7™ from R;y1 + V™ (Si+1) leads to Temporal Difference methods.

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 6

Incremental and Running Mean

» We can compute the mean of a sequence z, 1, ... incrementally:

MkZ%ZUC'

j=1

e

k—1
1
j=1
1
= % :L’k+ ZIJ
1
= 7@+ (F = Dpr-1)
1
= pp—1 + %(xk — Hk—1)

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 7

Incremental and Running Mean

» Thus, we can update V incrementally by:

V(8) « V(5) + ﬁ(m AV (Si41) — V(S)),

where ﬁ is the state-visitation counter
s)

» [nstead % we can use step size « to calculate a running mean:

V(S:) + V(S:) + a(Rer1 + 7V (Si41) — V(Sh))

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 8

TD Prediction

Monte Carlo Update

Update value V(S;) towards the actual return G;.
V(St) — V(St) I Oé[Gt — V(St)]

« is a step-size parameter.

Simplest temporal-difference learning algorithm: TD(0)

Update value V(S;) towards the estimated return R;1 + vV (Sit1).

V(St) < V(St) + a[Riy1 + vV (St1) — V(St)]

» Rit1 + vV (Sit1) is called the TD target
> 6t = Rt+1 TP ’}/V(St+1) — V(St) is called the TD error

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg

TD Prediction

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size « € (0, 1]
Initialize V (s), for all s € 81, arbitrarily except that V (terminal) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:
A < action given by 7 for S
Take action A, observe R, S’
V(S) «+ V(S)+a[R+~V(S) - V(9]
S« S

until S is terminal

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 10

Generalized Policy lteration

Ve VT

T |4

improvement

» Policy Evaluation: estimate V™

> Policy Improvement: greedy

MPC and RL - Lecture 1

J. Boedecker and M. Diehl, University of Freiburg

Generalized Policy lteration with TD Evaluation

Ve VT

T |4

improvement

» Temporal Difference Policy Evaluation: V =~ V™
> Policy Improvement: greedy?

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 12

TD Estimation of Action Values

» Greedy policy improvement over V(s) requires a model of the MDP

w(s) = ar%eriaxz P(s']s,a)[r(s,a) + vV (s))

S/
> Greedy policy improvement over Q(s, a) is model-free

7(s) = arg max Q(s, a)
acA

Generalized Policy Iteration with action-value function:
» Monte Carlo Policy Evaluation: @ =~ Q™
» Policy Improvement: greedy?

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 13

e-greedy Policy Improvement

> We have to ensure that each state-action pair is visited a sufficient (infinite) number of
times

» Simple idea: e-greedy
» All actions have non-zero probability

» With probability € choose a random action, with probability 1 — € take the greedy action.

€

rlals) = mptl—e ifa=argmax,cy Q(s,a)
ﬁ otherwise

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 14

Off-policy Learning

» We want to learn the optimal policy, but we have to account for the problem of
maintaining exploration

> We call the (optimal) policy to be learned the target policy © and the policy used to
generate behaviour the behaviour policy b

» We say that learning is from data off the target policy — thus, those methods are referred
to as off-policy learning

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 15

TD Control: Q-learning

Q-learning (off-policy TD control) for estimating 7 ~ .,

Algorithm parameters: step size a € (0,1], small € > 0
Initialize Q(s,a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S, A) + a[R + ymax, Q(5,a) — Q(S, A)]
S+ 5

until S is terminal

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg

Q-learning Example

b,+1
traj;: 0 — 1 — 2
traj,: 0 — 1 — 3
trajs: 0 — 1 — 2

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 17

Table of Contents

RL with Function Approximation
Incorporating Function Approximation in RL
Semi-gradient Methods
Deep Q-Networks (DQN)

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 18

Function Approximation in Reinforcement Learning

» Up to this point, we represented all elements of our RL systems by tables (value functions,
models and policies)

> If the state and action spaces are very large or infinite, this is not a feasible solution

» We can apply function approximation to find a more compact representation of RL
components and to generalize over states and actions

» Reinforcement Learning with function approximation comes with new issues that do not
arise in Supervised Learning — such as non-stationarity, bootstrapping and delayed targets

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 19

Function Approximation in Reinforcement Learning

> Here: we estimate value-functions V™ (-) and Q™(-,-) by function approximators (-, w)
and ¢(-, -, w), parameterized by weights w

St St ag

l N l

| | —

(s8¢, W) q(st, ar, w) G(st,a',w) G4(st,a®,w) 4(ss,a?, w)

» But we can also represent models or policies

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 20

Function Approximation in Reinforcement Learning

We can use different types of function approximators:
» Linear combinations of features
Neural networks

>
» Decision trees

» Gaussian processes
>

Nearest neighbor methods
> .

Here: We focus on differentiable FAs and update the weights via gradient descent.

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 21

Function Approximation in Reinforcement Learning

We want to update our weights w.r.t. the Mean Squared Value Error of our prediction:

1 .
Wit = Wy — §OZV[V7‘-(S¢) — U(St,Wt)]z

=Ww; + CK[VTF(St) — @(St, Wt)]Vi)(St, Wt)

However, we do not have V7™(5,).

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 22

Function Approximation in Reinforcement Learning

Gradient MC

W W+ a[Gy — U(St, w)|[V(St, w)

Semi-gradient TD(0)
W W+ a[Rir1 +y0(Sit1,w) — 0(Sy, w)|V(St, w)

Why are bootstrapping methods, defined this way, called semi-gradient methods?

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 23

Function Approximation in Reinforcement Learning

Gradient MC

W W+ a[Gy — U(St, w)|[V(St, w)

Semi-gradient TD(0)
W W+ a[Rir1 +y0(Sit1,w) — 0(Sy, w)|V(St, w)

Why are bootstrapping methods, defined this way, called semi-gradient methods?
They take into account the effects of changing w w.r.t. the prediction, but not w.r.t. the
target!

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 23

Deep Q-Networks (DQN)

DQN provides a stable solution to deep RL:
» Use experience replay
» Sample minibatches (as opposed to full Batches)
> Freeze target Q-networks

» Optional: Clip rewards or normalize network adaptively to sensible range

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 24

Deep Q-Networks: Experience Replay

To remove correlations, build data set from agent's own experience
» Take action A; according to e-greedy policy
» Store transition (S;, Ay, Riy1, Sey1) in replay memory D
» Sample random mini-batch of transitions (5, 4, S, S’) from D
» Optimize MSE between Q-network and Q-learning targets, e.g.

L(W) = IE‘(S,A,R,S’)ND [(R + IYHLE}X Q(S/a alv W) - Q(Sv A7 W))2]

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 25

Deep Q-Networks: Target Networks

To avoid oscillations, fix parameters used in Q-learning target

» Compute Q-learning targets w.r.t. old, fixed parameters w™
R+ 7 max QS A, w™)
» Optimize MSE between Q-network and target network
L(w) =E(s,a,r,s)~p[(R+ 7 max QY d ,w™) — Q(S, 4, w))?]

» Periodically update fixed parameters w= < w

> hard update: update target network every N steps
> slow update: slowly update weights of target network every step by

w «—(1—-7)w +7w

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 26

Deep Q-Networks (DQN)

Initialize replay memory D to capacity N and Q-network weights w with w~ = w
for episode i =1,.., M do

fort=1,..,T do

Select action A; e-greedily

Store transition (S, A¢, Si+1, Ri) in D

Sample minibatch of transitions (5;, A;, 5;, R;) from D with batchsize B
Compute target y; for each sample j=1,...,B:

v — R; if S is terminal
T | Ry + v maxy Q(S), a',wT) else
Update the parameters of Q according to:

B
Twlw) = 23 (V) = QS 45 w)) VuQ(S;, 45,)
j=1

Update target network with hard or slow update

end
end

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg

27

Deep Q-Networks: Reinforcement Learning in Atari

MPC and RL - Lecture 1

[

. Boedecker and M. Diehl, University of Freiburg 28

Deep Q-Networks: Reinforcement Learning in Atari

» End-to-end learning of values Q(s, a) from pixels s

» Input state s is a stack of raw pixels from the last 4 frames
» Output is Q(s, a) for 18 joystick/button positions

» Reward is change in score for that step

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 29

How much does DQN help?

DQN

Q-Learning Q-Learning Q-Learning Q-learning

+ Replay + Replay

+ Target Q + Target Q

Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 831 2894
Space Invaders 302 373 826 1089

MPC and RL - Lecture 1

J. Boedecker and M. Diehl, University of Freiburg

30

Summary by Learning Goals

> Model-free learning: Temporal Difference (TD) methods estimate value functions from
experience, using bootstrapping to learn incrementally without a model of the
environment.

» Policy improvement and control: TD control methods (e.g., Q-learning) enable learning
optimal policies, often combined with exploration strategies like e-greedy and off-policy
updates.

» Function approximation and deep RL: Large or continuous state spaces require
function approximators (linear, neural networks), with techniques like DQN using
experience replay and target networks for stability.

MPC and RL - Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 31

	Temporal Difference Methods
	Model-free Learning
	TD Prediction (learning V and Q)
	TD Control (learning)

	RL with Function Approximation
	Incorporating Function Approximation in RL
	Semi-gradient Methods
	Deep Q-Networks (DQN)

	Summary

