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Optimal Control based on Dynamic System Models

» optimal control = optimization of dynamic systems

» each optimal control problem (OCP) is characterized by three ingredients:
> dynamic system model
» constraints
> objective function, i.e., cost or reward
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Optimal Control based on Dynamic System Models

» optimal control = optimization of dynamic systems

» each optimal control problem (OCP) is characterized by three ingredients:
> dynamic system model (focus of this talk)
> constraints
> objective function, i.e., cost or reward
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Dynamic System Models

» system model describes evolution of system as function of

> system state s from state space S C R"* (or C Z"* for discrete states)
> control action a from action space A C R™ (or C Z"< for discrete actions)
> random disturbance e from some disturbance space D

P> examples:
> stochastic discrete time system, for k =0,1,2,...

‘ Sk+1 = f(Sk,ak, €k) ‘ with "evolution function” f:Sx A xD — S

> deterministic continuous time ordinary differential equation (ODE), for ¢ € [0, c0)

L (t) = fe(s(t), a(t)) ‘ with "right hand side function” f. : S x A — R"*

(stochastic continuous time systems need intricate notation and are therefore omitted here)
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Notation for Ordinary Differential Equation (ODE) Models

» denote %(t) by 5(t)

» drop time argument, abbreviate $(t) = f.(s(t), a(t)) by

$ = fo(s,a)

» In this course, we use the RL notation: s for state and a for control action

» But in control engineering, one uses:  x for state and wu for control action, i.e.,

= fo(x,u)

(this notation might accidentally "slip through” on some slides)
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ODE Example: Harmonic Oscillator

Mass m with spring constant k and friction coefficient 5:

i1(t) = w2(t)
. k B
To2(t) = ——(x2(t) —u(t — —x1(t
2(t) —(@2(t) —u(t)  — —aa(t)
e state z(t) € R?
e position of mass x1(t) +— measured
e velocity of mass x2(t)
e control action: spring position wu(t) € R +— manipulated

Can summarize as & = f.(x, u) with

T2
T,u) =
fe(@,u) —£ (25 —u) — %xl

MPC and RL - Lecture 2.1: Systems and Simulation J. Boedecker and M. Diehl, University of Freiburg




ODE Example: Harmonic Oscillator

Mass m with spring constant k and friction coefficient 5:

s1(0) = s2(t)
k
() =~ -am) - s
state s(t) € R?
position of mass s1(t) +— measured

)

velocity of mass t
) €R  +— manipulated

control action: spring position a

e o o o
»

1(
2(
(t

Can summarize as $ = f.(s,a) with

52
s,a) =
fe(s,a) —£ (59 —a)— %sl
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Some ODE Examples - what are their state vectors?

Pendulum

Hot plate with pot

Continuously Stirred Tank Reactors (CSTR)
Robot arms

Moving robots

Race cars

vVvyvVvyvyVvYyYyvyy

Airplanes in free flight
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Overview

From Continuous to Discrete Time
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From Continuous to Discrete Time via Direct Multiple Shooting

Transform continuous ’ 5(t) = fo(s(t),a(t)) ‘ into discrete time ‘ Skl =

f(sk,ar) ‘ as follows:

1. define s := s(t;) on equidistant time grid ¢, = k At

with sampling time At xkd .
2. use zero order hold control a(t) = ay on ¢ € [tg, tkt1] iSO e
3. use numerical simulation to compute ODE solution
z(t) = x(t; s, ax,) satisfying %k
x(ty) = sk ' hdtaaseun NN
(1) fo(a(t),ap) for t€ [tnteri] l b
4. define f(sk,ar) = o(tk+1; Sk, ak) AL
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From Continuous to Discrete Time via Direct Multiple Shooting

Transform continuous ‘ $(t) = fe(s(t),al(t)) ‘ into discrete time ‘ Sp+1 = f(sk,ax) ‘ as follows:

: x(ex)
Exact ODE solution ‘.._..?\SW e

z(0) = s,
(t) = fe(z(t), a),
for ¢ € [0,At] . J Jl_..w N
f(s,a) = x(At) r {,:k él.m ¢
———
At

How to simulate ODE numerically?
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Numerical Simulation/Integration, Three Examples

> simplest (but not recommended) implementation is a single step of an Euler integrator:

]f(s,a) = s+ At fc(s,a)\

» more accurate are N steps of an Euler integrator:
Xog = S
fori=0to N —1do
Ti4+1 = T4 =+ (At/N)fC(.'IJZ,CL)
f(s,a) :=2an

» more efficient are higher order Runge Kutta (RK) methods, e.g. a single RK4 step:
vy = fe(s,a)
v = fo(s + (At/2) v1,a)
vz := fe(s+ (At/2) va,a)
vg = fo(s + At vz, a)
f(s,a) == s+ (At/6) (v1 + 2v2 + 203 + v4)
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Euler vs 4th Order Runge Kutta Method (RK4) for Test Problem

Aim: solve $ = s+ a for At = 1,8 = 1,a = 0. Exact solution is f(s,a) = e = 2.718.

» Four Euler steps give

2.75 1 ,
To:=1 —o— Fuler
=20+ 1/dwo [=(1+1/4)20] 2601|222 Bt onton
wg = (14 1/4)2 2.25 1
z3:=(1+1/4)z2
x4 :=(1+1/4)z3 2.00 1
fruer(s,a) ;=24 [= (14+1/4)* = 2.441], error > 10% 1.75 1 ,
» One RK4 step gives 50 //'
vy :=1 B L
vai=1+1/201 [=6/4] 2 g
v3:=14+(1/2ve [=7/4] 1004 @
vg:=14wv3 [=11/4] 000 025 050 075 100

fRK4(s7a) = 1+(1/6) (U1+2U2+2’03+U4) [I 2.708]

RK4 is 27x more accurate than Euler for same number M = 4 of function evaluations
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Classes of Numerical Simulation Methods

General Linear Methods

/\ and others ...

Multistep Single-step

Linear Multistep Runge-Kutta
AN AN
. N . N
. N . N

SO N SN L

| 1 | ) |

i explicit | implicit ' explicit : implicit
|

I - - - - - = do o - - - - - - = J
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Fourth order RK method most efficient for typically desired accuracies

» each integration method is characterized by

> integration order P and
» number of internal stages S

P can increase accuracy by more integration steps N
» total number of function evaluationsis M = N - S
> integration error proportional to M~

» for small M, low order methods are most accurate,
e.g., Euler with P =1

» for large M, high order methods are more accurate

» humans typically want errors smaller than 10%, but
rarely smaller than 10~°

> accidentally, this favours the RK4 method (P = 4)

(eos-scue
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oow 100000
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Classes of Numerical Simulation Methods

General Linear Methods

/\ and others ...

Multistep Single-step
Linear Multistep Runge-Kutta
SO o SO o
| | I ! | I
i explicit | implicit ' explicit : implicit
| |
- - - - - - = Jo o - - - - - - = J
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Discretization equations for general Runge Kutta (RK) methods

Exact ODE solution N steps of general RK method with S stages

z(0) = s, To =28, Tkl =Tk + hZfZl b, vk,
L(t) = o(t) Tk, = Tk + hzjil QijVk,j
v(t) = fe(z(t),a), Vk,i = fe(Tk,i,a),
for te€[0,At] for i=1,...,5, k=0,...,N—-1
f(s,a) :=x(At) f(s,a) :=an

» a;; and b; are Butcher tableau entries of (potentially implicit) Runge Kutta method

> step length h := At/N; intermediate states xj, Ty i, Vk,; € R™ with integration step index
ke {0,1,...,N} and RK stage index i,5 € {1,...,S}

» N nonlinear equation systems with each 25n, equations in 251, unknowns (. ;, Uk, ;)

> solved by Newton's method (or imposed as equality constraints in optimization)
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Butcher Tableau, Six Examples

o) Ny = Euler Heun RK4
102
10° 0
100 0 0 1/2|1/2
- 1 1] 1 1/2] 0 1/2
1/2 1/2 1/0 o0 1
|1/6 2/6 2/6 1/6

100 102 10° 10° 10° 10°
function evaluations

Implicit Midpoint Gauss-Legendre
Euler rule (GL2) of order 4 (GL4)
€| au - ds
1] 1 1/2]1/2  1/2-3/6 1/4 1/4-3/6 €| d1 s
1 1 1/2++/3/6 | 1/4+/3/6 1/4 : :
1/2 1/2 Cs dsl ass
b - b
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Intermediate Milestone: Deterministic State Space Models

From now on, throughout the course, we exclusively focus on discrete time models
Sk+1 = f(sk, ak)
with integer time index £ = 0,1,2,.... We often simplify notation to
st = f(s,a)

Aim of optimal feedback control (including both MPC and RL) is to design a map, or policy,

m: S—A, s—a:=mw(s) such that closed-loop system ‘ st = f(s,m(s)) ‘ has
desirable properties, such as respecting constraints and minimizing a cost.

In practice, however, we might not be able to directly measure the state s ...
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Overview

Input Output Models
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The (realistic) Input Output Perspective

» In practice, we cannot measure the state. And the state representation is not even unique.

» A system model should allow us to predict, for any horizon length N and sequence of
control actions (aq,...,an), the sequence of measured outputs (yo,...,yn).

> Typically, we need to also specify some initial conditions (e.g. the initial state s)

control action input aj ] measured output ¥y
Dynamic System -

(initial conditions)
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Two Ways to Represent Deterministic Systems with Outputs

» State Space Models with outputs:

sk+1 = f(sK, ak)
Yk = g(Sk, ax) for k=0,1,2,...

Initial conditions = initial state sq.

» Input Output Models (of order n):
Yk = R(Ukts -« s Yhomy ks - + - » Qo) for k=n,n+1,n+2,...

Initial conditions: yo,...,Yn—1 and ag,...,Qp_1.
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Recurrence Equation in Input Output Models of order n

Visualization of recurrence yr = A(Yk—1, - - - s Ykn, Gy Qs - - - 5 U )

Contror Alrion SERUECE :

6.0 By O =
O’k--m( g/ ak-ww{i 4l iy I*—-L—(J ﬂ/

1

QUTPUT  SE BUeNCE = ;

([ i

| 1 Yk -t H’\/_/“‘“ ] Y‘:‘il_; | Y1 @ Yecrq

:
‘

k_,—"‘w——\/

”Sﬁﬁ-&@ Sk i
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State Space Form of Input Output Models

» can always transform input-output to state-space models:

v

state: sk = (Y1, Qkt, - - -

> state transition s — sT = f(s,a) described by

Yk—1 Yk
ak—1 ag
Yk—1
= ' = | a-1 | = =
Sk Yk—nil — Sk41 f(sk,ak).
Af—n+1
Yk—n Yk—n+1
L Qk—n | Ok—n+1 |
> output equation: yi = g(Sk,ar) = A(Yk-,- - -, Ykn, Ak, - -

s Yk—ns Gk ) (defined for k& > n)

h(Yk-1s- - s Ykons Qs
ag
Yk—1
ap—1
Yk—n+1
Af—n+1
.,ak4J.

...,akgn)

» conversely, we can sometimes transform state-space to input-output models, e.g. in
case of observable and controllable linear time invariant (LTI1) models
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Linear Time Invariant (LTI) Input Output Models

» Difference equation for Auto Regressive models with eXogenous inputs (ARX):

Y = C1Yk—1+ ...+ Y + boar +...+bpagy, ‘

for k=n,n+1,..., with initial conditions: yg,...,¥n—1 and ag, ..., Gn_1.
> also called Infinite Impulse Response (IIR) model (if some ¢; coefficients are nonzero)

» If all ¢; = 0 we speak of Finite Impulse Response (FIR) models:
Yk = boak + ... + bpagn
> There exist also auto regressive (AR) models without inputs:
Yk = C1Yk—1 T ... + Cp¥Ykmn

Example: Fibonacci numbers 1,1,2,3,5,8,13,21, ... (with¢; =co =1and yo =y = 1)
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Some ODE Examples - what can be measured 7

Pendulum

Hot plate with pot

Continuously Stirred Tank Reactors (CSTR)
Robot arms

Moving robots

Race cars

vVvyvVvyvyVvYyYyvyy

Airplanes in free flight
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Overview

Stochastic Models
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General Stochastic Models

» in reality, we always have some random noise ¢, e.g., disturbances or measurement errors

» also, we usually have unknown, but constant system parameters p

stochastic noise ¢y

|

input a . output yg
pk4> Dynamic System

| !

initial conditions parameters p

(parameters can be seen as states that obey the dynamics px41 = pi and will often be omitted)
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Stochastic Systems in State Space and Input Output Form

General Form (with random €): Special Cases:

. > i :
Stochastic State Space Model State Noise and Output Errors:

Sk+1 = f(sk,ar) + €§N

Sk+1 = f(skvakaek) Y = g(Sk ak) + EOE
= , A

Yk = 9(Sk, ak, €x)

Stochastic Input Output Model » Equation Errors:

EE
Y = h(ykfh oy Y, QFgy - - - 7ak%) + €L
Yk = R(Yk—1, -+, Yhon Qs - -+, Ak €k - - - » k)

(note: different than output error)
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MPC needs System Identification and State Estimation

Prior to implementing an MPC controller, one needs to address two tasks:
> System ldentification (offline):

use a long sequence of recorded input and output data, (ag,...,an) and (yo,...,yn), to
identify parameters p using e.g. least squares optimization or subspace identification

> State Estimation (online):

estimate the state sy by using the previous control actions (..., ax_2,ar—1) and the past
measurements (..., yx—2,Yx—1) using e.g. Extended Kalman Filter (EKF) or moving
horizon estimation (MHE) (MHE uses a fixed window of past data for fitting)

Learning-based MPC typically refers to an online model adaptation, i.e., to estimating
parameters online (for which MHE is particularly suitable) ("learning a model” = "system identification”)

Note: need state estimation only for partially observable markov decision processes (POMDP)
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Fully and Partially Observable Markov Decision Processes (MDP)

State Space View: Probabilistic View:
Partially Observable MDP Partially Observable MDP
skt1 = f(Sk, ak, €x) Ptate(Sk+1]5k, ax)
Yk :g(skaakaek) Pmeas( Yk |5k7ak)
with independent identically distributed e, with probability density functions P.(-)
Fully Observable MDP Fully Observable MDP
Sk+1 = f(sk, Ok, €x) Putate(Sk+1/5k, ax)
Y= Sk Pmeas( Yk |3k’ak) = 5(yk - Sk)
with y;, € R™s with Dirac's Delta function 6(:) in R"=

MPC and RL - Lecture 2.1: Systems and Simulation J. Boedecker and M. Diehl, University of Freiburg 30



Input output (I/O) models avoid need for state estimation

We can avoid estimation task by assuming input-output (I/O) models of fixed order n
This assumption leads to a fully observable markov decision process (MDP)
State si at time k is then given by sg = (Yk—1, @1, - -+ , Ykorr, Qo)

Reinforcement Learning (RL) algorithms often use |/O-models (“end-to-end learning”)

vvyYVYyyvyy

I/O-models also used in some linear MPC implementations based on LTI models, e.g.

Y = Z?:o bi ag—i + (ykfl - Z?:o b; akﬂ'q) + €

» |/O-models also used for nonlinear black-box MPC or model-based RL which use neural
networks for the mapping yx = h(Yr—1, - - - Ykn, Qkes - - - Al
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Summary

> W

(0]

distinguish different model types

continuous vs discrete state and control

continuous vs discrete time

linear vs nonlinear

state space vs input output

deterministic vs stochastic

fully or partially observable

(not to be confused with "observability” in systems theory)

vyVVvVYyVYVYY

» We transform differential equations to discrete time via numerical simulation

> We denote deterministic discrete time models and Markov Decision Processes (MDP) by

and P(sT]s,a)

with state s € R™s and control action a € R™e
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