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What is an optimization problem?

Minimize (or maximize) an objective function F (w) depending on decision variables w subject
to equality and/or inequality constrains

An optimization problem

min
w

F (w) (1a)

s.t. G(w) = 0 (1b)

H(w) ≥ 0 (1c)

Terminology

▶ w - decision variable

▶ F : objective/cost function

▶ G,H: equality and inequality constraint
functions

▶ Optimization is a powerful tool used in all quantitative sciences

▶ Only in few special cases a closed form solution exist

▶ Use an iterative algorithm to find solution

▶ The optimization problem may be parametric, and all functions depend on a fixed
parameter p
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Basic definitions: the feasible set

Definition

The feasible set of the optimization problem (1) is defined as
Ω = {w ∈ Rn | G(w) = 0, H(w) ≥ 0}. A point w ∈ Ω is is called a feasible point.

The feasible set is the intersection of the two grey areas (halfspace and circle)
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Basic definitions: local and global minimizer

Definition

▶ A point w∗ ∈ Ω is called a local minimizer of
the NLP (1) if there exists an open ball Bϵ(w

∗)
with ϵ > 0, such that for all w ∈ Bϵ(w

∗) ∩ Ω it
holds that F (w) ≥ F (w∗).

▶ A point w∗ ∈ Ω is called a global minimizer of
the NLP (1) if for all w ∈ Ω it holds that
F (w) ≥ F (w∗).

The value F (w∗) at a local/global minimizer w∗ is
called local/global minimum.

-3 -2 -1 0 1 2 3 4 5
w

-10

0

10

20

30

40

50

60

70

F
(w

)

F (w)
Local minimum
Global minimum
Neighborhood of w$

F (w) =
1

2
w4 − 2w3 − 3w2 + 12w + 10

MPC and RL – Lecture 2.2: Basics in Optimization A. Ghezzi and M. Diehl, University of Freiburg 4



Convex sets

A set Ω is said to be convex if for any w1, w2 and any θ ∈ [0, 1] it holds θw1 + (1− θ)w2 ∈ Ω
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Convex functions

▶ A function F is convex if for every
w1, w2 ∈ Rn and θ ∈ [0, 1] it holds that

F (θw1+(1−θ)w2) ≤ θF (w1)+(1−θ)F (w2)

▶ F is concave if and only if −F is convex

▶ F is convex if and only if the epigraph

epiF = {(w, t) ∈ Rnw+1 | F (w) ≤ t}

is a convex set

w

F
(w

)

(w1; F (w1))

(w2; F (w2))

3F (w1) + (1! 3)F (w2)

F (3w1 + (1! 3)w2)
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Convex optimization problems

A convex optimization problem

min
w

F (w)

s.t. G(w) = 0

H(w) ≥ 0

An optimization problem is convex if the
objective function F is convex and the
feasible set Ω is convex.

▶ Every locally optimal solution is global

▶ First order conditions are necessary and sufficient (we come back to this)

▶ ”...in fact, the great watershed in optimization isn’t between linearity and nonlinearity, but
convexity and nonconvexity.” R. T. Rockafellar, SIAM Review, 1993
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Some classifications of optimization problems

Optimization problems can be:

▶ unconstrained (Ω = Rn) or constrained (Ω ⊂ Rn)

▶ convex or nonconvex

▶ linear or nonlinear

▶ differentiable or nonsmooth

▶ continuous or (mixed-)integer

▶ finite or infinite dimensional

”... the main fact, which should be known to any person dealing with optimization models, is
that in general, optimization problems are unsolvable.”
Yurii Nesterov, Lectures on Convex Optimization, 2018.
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Class 1: Linear Programming (LP)

Linear program

min
w

g⊤w

s.t. Aw − b = 0

Cw − d ≥ 0

▶ Convex optimization problem

▶ 1947: simplex method by Dantzig, 1984: polynomial time interior-point method by
Karmarkar

▶ If not unbounded, the solution is always at edge or vertex of the feasible set

▶ Today very mature and reliable
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Class 2: Quadratic Programming (QP)

Quadratic program

min
w

1

2
w⊤Qw + g⊤w

s.t. Aw − b = 0

Cw − d ≥ 0

▶ Depending on Q, can be convex and nonconvex

▶ Solved online in linear model predictive control

▶ Many good solvers: Gurobi, OSQP, HPIPM, qpOASES, OOQP, ...

▶ Subsproblems in nonlinear optimization
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Class 3: Nonlinear Program (NLP)

Nonlinear programming problem

min
w

F (w)

s.t. G(w) = 0

H(w) ≥ 0

▶ Can be convex and nonconvex

▶ Solved with iterative Newton-type algorithms

▶ Solved in nonlinear model predictive control
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Class 4: Mathematical Programs with Complementarity Constraints

MPCC

min
w0,w1,w2

F (w)

s.t. G(w) = 0

H(w) ≥ 0

0 ≤ w1 ⊥ w2 ≥ 0

w = [w⊤
0 , w

⊤
1 , w

⊤
2 ]

⊤, w1 ⊥ w2 ⇔ w⊤
1 w2 = 0

▶ More difficult than standard nonlinear programming since standard constraint
qualifications fail to holds

▶ Feasible set is inherently nonsmooth and nonconvex

▶ Powerful modeling concept

▶ Requires specialized theory and algorithms
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Class 5: Mixed-Integer Nonlinear Programs (MINLP)

MINLP

min
w0∈Rp,w1∈Zq

F (w)

s.t. G(w) = 0

H(w) ≥ 0

w = [w⊤
0 , w

⊤
1 ]

⊤, n = p+ q

▶ Combinatorial problem, feasible set is finite

▶ Branch and bound, brunch and cut methods

▶ Requires solution of many relaxed continuous convex or nonconvex problems
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Class 6: Continuous-time Optimal Control Problems

Continuous-time Optimal Control
Problem

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = fc(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

▶ Decision variables x(·) and u(·) in
infinite dimensional function space

▶ Infinitely many constraints (t ∈ [0, T ])

▶ Smooth ordinary differential equation
(ODE) ẋ(t) = fc(x(t), u(t))

▶ More generally, dynamic models can be
based on
▶ Differential Algebraic Equations (DAE)
▶ Partial Differential Equations (PDE)
▶ Nonsmooth ODE
▶ Stochastic ODE/PDE

▶ OCP can be convex or nonconvex

▶ All or some components of u(t) may
take integer values (mixed-integer OCP)
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Direct optimal control methods formulate Nonlinear Programs (NLP)

Continuous-time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t)= fc(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Direct methods like direct collocation,
multiple shooting. First discretize, then
optimize.
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optimize.

Discrete-time OCP (an NLP)

min
x,u

∑N−1
k=0 ℓ(xk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk)

0 ≥ h(xk, uk), k = 0, . . . , N−1

0 ≥ r(xN )
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Nonlinear MPC solves Nonlinear Programs (NLP)

Discrete time NMPC Problem (an NLP)

min
x,u

∑N−1
k=0 ℓ(xk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk)

0 ≥ h(xk, uk), k = 0, . . . , N−1

0 ≥ r(xN )

Variables x = (x0, . . . , xN ) and
u = (u0, . . . , uN−1) can be summarized in
vector w = (x, u) ∈ Rn.
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Algebraic characterization of unconstrained local optima

Consider the unconstrained problem: minw∈Rn F (w)

First-Order Necessary Condition of Optimality (FONC)

w∗ local optimum ⇒ ∇F (w∗) = 0, w∗ stationary point

Second-Order Necessary Condition of Optimality (SONC)

w∗ local optimum ⇒ ∇2F (w∗) ⪰ 0

Second-Order Sufficient Conditions of Optimality (SOSC)

∇F (w∗) = 0 and ∇2F (w∗) ≻ 0 ⇒ x∗ strict local minimum

∇F (w∗) = 0 and ∇2F (w∗) ≺ 0 ⇒ x∗ strict local maximum

No conclusion can be drawn in the case ∇2F (w∗) is indefinite!
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Optimality conditions - unconstrained

▶ Necessary conditions: find a candidate
point (or to exclude points)

▶ Sufficient conditions: verify optimality
of a candidate point

▶ A minimizer must satisfy SONC, but
does not have to satisfy SOSC
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Newton’s method for unconstrained optimization

We want to solve minw∈IRnw f(w) with f : Rnw → R twice continuously differentiable.

Iterative Algorithm

An “iterative algorithm” generates a sequence x0, x1, x2, ... of so called “iterates” with
xk → x∗.

We look for stationary points therefore we regard the equation

∇f(w∗) = 0.

Idea: linearize the nonlinear equation at wk to compute wk+1 = wk + pk

∇f(wk) +
∂

∂w
(∇f(wk))︸ ︷︷ ︸
∇2f(wk)

pk = 0

−(∇2f(wk))
−1∇f(wk) = pk

pk is called the “Newton-step”, ∇2f(wk) the Hessian.
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An Alternative View on the Newton’s Method for Optimization

The Newton’s method can be obtained by a quadratic objective function, i.e. a second order
Taylor approximation

Let mk the quadratic model with objective f

mk(wk + p) = f(wk) +∇f(wk)
⊤p+

1

2
p⊤∇2f(wk)p

≈ f(wk + p)

We obtain pk by
pk = argmin

p
mk(wk + p)

which translates to solving the equation

∇m(wk + p) = ∇f(wk) +∇2f(wk)p = 0

pk = −(∇2f(wk))
−1∇f(wk)

Same formula but different interpretation!
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Newton’s method illustration for solving F (w) = 0

Linearization of F at linearization point w̄

equals

First order Taylor series at w̄

equals

FL(w; w̄) := F (w̄) +
∂F

∂w
(w̄) (w − w̄)

(for continuously differentiable F : Rn → Rn)
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Iteration 0

y = F (w)
y = F (wk) + rF (wk)(w ! wk)
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