Orientation

What we have seen:

@ RLMPC, why does it work & different flavors
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Orientation

What we have seen:
@ RLMPC, why does it work & different flavors

What we will do now:
@ The theory is not about MPC, it is about MDPs (MPC is a special case)
@ It has broader implications for Al and model-based decision making

@ Provide (tentative) practical ideas for in Sim2Real
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Model-Free Pathway - “Pure” Reinforcement Learning

@ Define policy g as a

parametrized function

@ Optimize policy as:

— mein J (o)
Actions ) State

Policy

a = mo(s)
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Model-Free Pathway - “Pure” Reinforcement Learning
RL estimates

VeJ (7’!‘9)

Real Data

from data

@ Define policy g as a

parametrized function

@ Optimize policy as:

mein J (o)
Actions ) State

Policy

a = mo(s)
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Model-Free Pathway - “Pure” Reinforcement Learning

RL estimates @ Define policy g as a

Real Data arametrized function
Vo (o) P
@ Optimize policy as:
from data
min J(7e)
0
Actions State )
@ Gradient descent can be
0 < 0 —aVel(me) Policy used to optimize policy
a = mo(s)
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Model-Free Pathway - “Pure” Reinforcement Learning

RL estimates ‘\“

@ Define policy g as a

| 1

Real Data (¥ 1 arametrized function
VeJ (ﬂ'e) ‘ = L‘J i - P
. @ Optimize policy as:
from data
min J(7e)
0
Actions State )
@ Gradient descent can be
0 < 0 —aVel(me) Policy used to optimize policy
a = mo(s)

Remarks
mo(s) often from DNN
End-to-end training requires a lot of data and effort

Difficult to provide explainability and guarantees on the policy we obtain

Poor track record of industrial adoption (exception chatbots)
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Model-Free Pathway - “Pure” Reinforcement Learning

RL estimates @ Define policy g as a

Vo (o) Real Data parametrized function
@ Optimize policy as:
from data
min J(7e)
0
Actions State )
@ Gradient descent can be
0« 6 —aVel(mo) Policy used to optimize policy
a = mo(s)

Remarks
mo(s) often from DNN
End-to-end training requires a lot of data and effort

°
@ Difficult to provide explainability and guarantees on the policy we obtain
@ Poor track record of industrial adoption (exception chatbots)

—policy is often trained on high-fidelity simulations: embed knowledge, reduce costs,
manage safety, promote explainability, control the training
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Model-based Pathway - Predictive Al Models (data-driven, ML, etc)

Real world: si1 ~ p(- sk, ax)

@ Data with enough “richness”
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Model-based Pathway - Predictive Al Models (data-driven, ML, etc)
One-step model Real world: si1 ~ p(- sk, ax)
Al model e.g. @ Data with enough “richness”

Sk+1 ~ po(- | sk, ak)

fitting data

Here we no longer need the model pg to be “optimization-friendly”
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Model-based Pathway - Predictive Al Models (data-driven, ML, etc)

iz ] Real world: sii1 ~ p(-| sk, ax)
Al model e.g. @ Data with enough “richness”
Sk+1 ~ po(- | sk, ak)
fitting data
Here we no longer need the model pg to be “optimization-friendly”

Model parameters 6
@ Selected such that model pg “ressembles” reality p, using data (+ physics)
@ Deterministic models are a special case of pg
@ Many methods, from Least Squares and MLE to Bayesian and Adversarial Learning
°

Still, in most cases pg “simplifies” p because

> need for huge amounts of data to decide @ if model is very rich
> computationally demanding simulations if pg is expensive to sample from

@ Then

> biases in case of insufficiently rich model structure
> validity is limited to some parts of the state-action space
> only few first moments are correct (typ. mean + variance)
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Model-based Pathway - Predictive Al Models (data-driven, ML, etc)

One-st: del : s "
SSSiCPIMOCE Virtual data from “simulating

Al model e.g. 8k41 ~ po(:|sk,ax) forward (Monte Carlo)
Sk+1 ~ pol- | sk, ak)
fitting data

Here we no longer need the model pg to be “optimization-friendly”

Model parameters 6
@ Selected such that model pg “ressembles” reality p, using data (+ physics)
@ Deterministic models are a special case of pg
@ Many methods, from Least Squares and MLE to Bayesian and Adversarial Learning
°

Still, in most cases pg “simplifies” p because

> need for huge amounts of data to decide @ if model is very rich
> computationally demanding simulations if pg is expensive to sample from

@ Then

> biases in case of insufficiently rich model structure
> validity is limited to some parts of the state-action space
> only few first moments are correct (typ. mean + variance)
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Model-based Pathway - Predictive Al Models (data-driven, ML, etc)

One-st: del - s "
SSSiCPIMOCE Virtual data from “simulating

Al model e.g. 8k41 ~ po(:|sk,ax) forward (Monte Carlo)
§k ~ po\* | Sk, dk . . .

1~ po(- |k, a) In most cases, pg is a fairly simple
fitting data representation of reality p, easy to sample from

Here we no longer need the model pg to be “optimization-friendly”

Model parameters 6
@ Selected such that model pg “ressembles” reality p, using data (+ physics)
@ Deterministic models are a special case of pg
@ Many methods, from Least Squares and MLE to Bayesian and Adversarial Learning
°

Still, in most cases pg “simplifies” p because

> need for huge amounts of data to decide @ if model is very rich
> computationally demanding simulations if pg is expensive to sample from

@ Then

> biases in case of insufficiently rich model structure
> validity is limited to some parts of the state-action space
> only few first moments are correct (typ. mean + variance)
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Back to MPC - A “Classical” View on Decision Making

Policy me(s) given implicitly by

N—1
min E T(xN)—I—ZL(xk,uk)
" k=0

Ss.t. X1 ~ pe (Xky uk)

Xp =S

use wo(s) = ug on the system

MPC policy

mo(s)
from model

Sk+1 ~ po(- | sk, ax)

£
s
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Back to MPC - A “Classical” View on Decision Making

Policy me(s) given implicitly by

N—1
min E T(xN)—I—ZL(xk,uk)
" k=0

Ss.t. X1 ~ pe (Xky uk)

Xp =S

use wo(s) = ug on the system

0
¥
MPC policy
Al model
mo(s) a
from model S+~ po(:]s2)

fitting data p

Sk+1 ~ po(- | sk, ax)

)
S
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Back to MPC - A “Classical” View on Decision Making

Policy me(s) given implicitly by
. iy Defines a paradigm...
min E T(xN)—I—ZL(xk,uk)
o k=0 @ Performance from model accuracy

st Xkp1 ~ po (Xk, uk) . B .
i.e. pg ‘close enough” to p
Xp =S

@ ‘“Ignore” that we replan all the time
use wo(s) = ug on the system - i

0
¥
MPC policy
Al model
71'9(5)
2 8 ~ po (-]5,a)
from model +pevls

fitting data p

Sk+1 ~ po(- | sk, ax)

)
S
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Back to MPC - A “Classical” View on Decision Making

. . *
Policy me(s) given implicitly by Relationship 7o to 777
@ They match if pg is exact and deterministic

N—1
min B [T (xn) + Z L (xx,ux) @ But it usually cannot be...
X, =

Ss.t. X1 ~ pe (Xky uk)

Xp =S

use wo(s) = ug on the system

0
¥
MPC policy
Al model
mo(s) a Data R
from model knowledge| >+~ F° (-Is,2)

fitting data p

Sk+1 ~ po(- | sk, ax) ‘

)
S
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Back to MPC - A “Classical” View on Decision Making

Policy mo(s) given implicitly by Relationship 7o to 7?7

@ They match if pg is exact and deterministic

N—1
min B [T (xn) + Z L (xx,ux) @ But it usually cannot be...
X, =

“Standard methods” for choosing 0 in
st Xkp1 ~ po (Xk, uk)

general do not yield the best 7g.

W =6 RL over MPC can fix that, L becomes part
N of the model

use wo(s) = ug on the system

0

v
MPC policy

Al model

mo(s) Data

knowledge S+~ po(|sa)

from model
fitting data p

Sk+1 ~ po(- | sk, ax)

Iy

S
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Back to MPC - A “Classical” View on Decision Making

Policy me(s) given implicitly by Relationship 7o to 7?7

@ They match if pg is exact and deterministic

N—1
min B [T (xn) + Z L (xx,ux) @ But it usually cannot be...
X, =

“Standard methods” for choosing 0 in
st Xkp1 ~ po (Xk, uk)

general do not yield the best 7g.

W =6 RL over MPC can fix that, L becomes part
N of the model

use wo(s) = ug on the system

0

v
MPC policy

Al model

7o (s) Data

knowledge S+~ po(|sa)

from model
fitting data p

Sk+1 ~ po(- | sk, ax)

Iy

S

This is not the only way of taking decisions from models
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Decision policy from Al models (Sim2Real)

Al model

8+ ~pea(-s,a)

Data

knowledge
fitting data p

Classical Process:

@ Fit Al model pg to real data
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Decision policy from Al models (Sim2Real)

Objective
L(s,a)
possibly unbounded

Cost

Classical Process:

Al model

Data

8 ~po(-|s,a) knowledge

fitting data p

Actions ( ) Virtual data

Policy

a=my(s)

optimal for Al model

@ Fit Al model pg to real data

@ Develop optimal policy for L and pg from Al model, e.g. using In-Sim RL

> Define parametrized policy 7,

> Optimize policy parameters v for performance w.r.t. Al model: pg,L — v*
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Decision policy from Al models (Sim2Real)

Objective
L(s,a)
possibly unbounded

Cost

Classical Process:

Al model

Data

8 ~po(-|s,a) knowledge

fitting data p

Actions ( ) Virtual data

Policy

a=my(s)

optimal for Al model

@ Fit Al model pg to real data

Policy

@ Develop optimal policy for L and pg from Al model, e.g. using In-Sim RL

> Define parametrized policy 7,

> Optimize policy parameters v for performance w.r.t. Al model: pg,L — v*

@ Transfer policy o~ into the real world
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Decision policy from Al models (Sim2Real)
Al model

Data

8 ~po(-|s,a) knowledge

fitting data p

Actions ( ) Virtual data

Objective Policy Policy
Cost
L(s,a) = a=m,(s)
possibly unbounded optimal for Al model

Classical Process:
@ Fit Al model pg to real data
@ Develop optimal policy for L and pg from Al model, e.g. using In-Sim RL

> Define parametrized policy 7,
> Optimize policy parameters v for performance w.r.t. Al model: pg,L — v*

@ Transfer policy o~ into the real world
Note: policy parameters v* optimal for Al model become function of 6
Let’s then label o = 7.+ for simplicity
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Decision policy from Al models (Sim2Real)
Al model

Data

8 ~po(-|s,a) knowledge

fitting data p

Actions ( ) Virtual data

Objective Policy Policy
Lea) 2N A ()

possibly unbounded optimal for Al model

Remarks

@ Relationship g to w* 77?7

> They match if pg = p, i.e. if model is exact
> But pg is (almost always) an approximation
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Decision policy from Al models (Sim2Real)

Objective
L(s,a)

possibly unbounded

Remarks

@ Relationship g to w* 77?7

Cost

Al model

Data

8 ~po(-|s,a) knowledge

fitting data p

Actions ( ) Virtual data

Policy

a=mo(s)

optimal for Al model

> They match if pg = p, i.e. if model is exact
> But pg is (almost always) an approximation

Policy

Are “standard methods” for choosing 0 resulting in a good policy 74?7
Empirically the answer is “no”. Then how to choose 0 to get a good policy?
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MPC or Sim2Real - It's the same question...
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MPC or Sim2Real - It's the same question...

The theory is about model-based decisions, and equivalences between MDPs
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MPC or Sim2Real - It's the same question...

The theory is about model-based decisions, and equivalences between MDPs

World MDP

World MDP definition
@ States s and actions a
@ Cost L (s,a)

@ Transition sy ~ p[-|s,a]
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MPC or Sim2Real - It's the same question...

The theory is about model-based decisions, and equivalences between MDPs

World MDP
World MDP definition
@ States s and actions a
@ Cost L (s,a)
@ Transition sy ~ p[-|s,a]
Optimal value functions
V*(s) = min Q" (s,a)

Q" (s,a) = L(s,a) + YEs.~p [V* (54) |5, a]
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MPC or Sim2Real - It's the same question...

The theory is about model-based decisions, and equivalences between MDPs

World MDP
World MDP definition
@ States s and actions a
@ Cost L (s,a)
@ Transition sy ~ p[-|s,a]
Optimal value functions
V*(s) = min Q" (s,a)
Q" (s,a) = L(s,a) + VEs,~np [V* (s4) Is, 2]
Optimal policy

7 (s) = argmin Q" (s,a)
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MPC or Sim2Real - It's the same question...

The theory is about model-based decisions, and equivalences between MDPs

World MDP Model MDP (simulation environment)
World MDP definition Model MDP definition

@ States s and actions a @ States s and actions a

@ Cost L(s,a) @ Cost L (s,a)

@ Transition s ~ p|[-|[s,a] @ Transition s ~ p[-|s,a]
Optimal value functions Optimal value functions

V*(s) = main Q* (s,a) v* (s) = main Q* (s,a)
Q" (s,a) = L(s,a) + 1Es.np [V* (s4)[s,8]  Q*(s,a) = [ (s,a) + 1Es, ~p [ V* (31)] 5, 2]
Optimal policy Optimal policy

" (s) = argmin Q" (5,2) 7" (s) = arg min Q" (5,2)
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MPC or Sim2Real - It's the same question...

The theory is about model-based decisions, and equivalences between MDPs

World MDP Model MDP (simulation environment)
World MDP definition Model MDP definition

@ States s and actions a @ States s and actions a

@ Cost L(s,a) @ Cost L (s,a)

@ Transition sy ~ p[-|s,a] @ Transition sy ~ p[-|s,a]
Optimal value functions Optimal value functions

V*(s) = min Q* (s,a) V*(s) = min Q" (s,a)
Q" (s,a) = L(s,a) + 1Es.np [V* (s4)[s,8]  Q*(s,a) = [ (s,a) + 1Es, ~p [ V* (31)] 5, 2]
Optimal policy Optimal policy

7 (s) = arg min Q" (s.a) 7" (s) = argmin Q" (s,2)

Theory says that - under some technical conditions - there is a [ such that @* = Q"
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MPC or Sim2Real - It's the same question...

The theory is about model-based decisions, and equivalences between MDPs

World MDP Model MDP (simulation environment)
World MDP definition Model MDP definition

@ States s and actions a @ States s and actions a

@ Cost L(s,a) @ Cost L (s,a)

@ Transition sy ~ p[-|s,a] @ Transition sy ~ p[-|s,a]
Optimal value functions Optimal value functions

V*(s) = main Q* (s,a) V*(s) = min Q" (s,a)
Q" (s,a) = L(s,a) + 1Es.np [V* (s4)[s,8]  Q*(s,a) = [ (s,a) + 1Es, ~p [ V* (31)] 5, 2]
Optimal policy Optimal policy

" (s) = argamin Q" (s,a) #* (s) = argmin Q* (s,a)

Theory says that - under some technical conditions - there is a [ such that @* = Q"
Proof: telescopic sum, some non-trivial assumptions to prevent co — co cancellations
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More on MDP Equivalence

World MDP Model MDP
@ States s and actions a @ States s and actions a
@ Cost L(s,a) @ Cost L (s,a)
@ Transition sy ~ p[-|s,a] @ Transition sy ~ p[-|s,a]
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More on MDP Equivalence

World MDP
@ States s and actions a
@ Cost L(s,a)

@ Transition sy ~ p[-|s,a]

Theory says that

Model MDP

@ States s and actions a

@ Cost L (s,a)

@ Transition sy ~ p[-|s,a]

@ Under some technical conditions there is a L such that Q* = Q*
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More on MDP Equivalence

World MDP Model MDP
@ States s and actions a @ States s and actions a
@ Cost L(s,a) @ Cost L (s,a)
@ Transition sy ~ p[-|s,a] @ Transition sy ~ p[-|s,a]

Theory says that
@ Under some technical conditions there is a L such that Q* = Q*

@ For [ = L there is a (non-unique) “optimal” model p such that Q* = Q*
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More on MDP Equivalence

World MDP Model MDP
@ States s and actions a @ States s and actions a
@ Cost L(s,a) @ Cost L (s,a)
@ Transition sy ~ p[-|s,a] @ Transition sy ~ p[-|s,a]

Theory says that
@ Under some technical conditions there is a L such that Q* = Q*

@ For [ = L there is a (non-unique) “optimal” model p such that Q* = Q*

@ Conditions for model p “optimality” # min of classical loss functions (except. LQR)
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More on MDP Equivalence

World MDP Model MDP
@ States s and actions a @ States s and actions a
@ Cost L(s,a) @ Cost L (s,a)
@ Transition sy ~ p[-|s,a] @ Transition sy ~ p[-|s,a]

Theory says that
@ Under some technical conditions there is a L such that Q* = Q*

@ For [ = L there is a (non-unique) “optimal” model p such that Q* = Q*
@ Conditions for model p “optimality” # min of classical loss functions (except. LQR)

@ World MDP and Model MDP do not need to use the same discount -~y
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More on MDP Equivalence

World MDP Model MDP
@ States s and actions a @ States s and actions a
@ Cost L(s,a) @ Cost L (s,a)
@ Transition sy ~ p[-|s,a] @ Transition sy ~ p[-|s,a]

Theory says that
@ Under some technical conditions there is a L such that Q* = Q*

@ For [ = L there is a (non-unique) “optimal” model p such that Q* = Q*
@ Conditions for model p “optimality” # min of classical loss functions (except. LQR)

@ World MDP and Model MDP do not need to use the same discount -~y

In-Sim policy training uses a Model MDP
@ Practitioners mostly work on model g, but “unsure” on how to tune it

@ In the ML communities, people talk about “value alignment”, we are trying to make this
“MDP equivalence” understood
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More on MDP Equivalence

World MDP Model MDP
@ States s and actions a @ States s and actions a
@ Cost L(s,a) @ Cost L (s,a)
@ Transition sy ~ p[-|s,a] @ Transition sy ~ p[-|s,a]

Theory says that
@ Under some technical conditions there is a L such that Q* = Q*

@ For [ = L there is a (non-unique) “optimal” model p such that Q* = Q*
@ Conditions for model p “optimality” # min of classical loss functions (except. LQR)

@ World MDP and Model MDP do not need to use the same discount -~y

Remarks

@ Non-unique optimal model j leaves room for aligning it to the
real world (classical fitting)
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More on MDP Equivalence

World MDP Model MDP
@ States s and actions a @ States s and actions a
@ Cost L(s,a) @ Cost L (s,a)
@ Transition sy ~ p[-|s,a] @ Transition sy ~ p[-|s,a]

Theory says that
@ Under some technical conditions there is a L such that Q* = Q*

@ For [ = L there is a (non-unique) “optimal” model p such that Q* = Q*
@ Conditions for model p “optimality” # min of classical loss functions (except. LQR)

@ World MDP and Model MDP do not need to use the same discount -~y

Remarks

@ Non-unique optimal model j leaves room for aligning it to the
real world (classical fitting)

@ If V* is continuous and support of p is bounded(?) and
path-connected, then we can have support 5 C support of p
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More on MDP Equivalence

World MDP Model MDP
@ States s and actions a @ States s and actions a
@ Cost L(s,a) @ Cost L (s,a)
@ Transition sy ~ p[-|s,a] @ Transition sy ~ p[-|s,a]

Theory says that
@ Under some technical conditions there is a L such that Q* = Q*

@ For [ = L there is a (non-unique) “optimal” model p such that Q* = Q*
@ Conditions for model p “optimality” # min of classical loss functions (except. LQR)

@ World MDP and Model MDP do not need to use the same discount -~y

Remarks
@ Non-unique optimal model j leaves room for aligning it to the
real world (classical fitting)

@ If V* is continuous and support of p is bounded(?) and K
path-connected, then we can have support 5 C support of p

p(.|s,a)
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More on MDP Equivalence

World MDP Model MDP
@ States s and actions a @ States s and actions a
@ Cost L(s,a) @ Cost L (s,a)
@ Transition sy ~ p[-|s,a] @ Transition sy ~ p[-|s,a]

Theory says that
@ Under some technical conditions there is a L such that Q* = Q*

@ For [ = L there is a (non-unique) “optimal” model p such that Q* = Q*
@ Conditions for model p “optimality” # min of classical loss functions (except. LQR)

@ World MDP and Model MDP do not need to use the same discount -~y

Remarks

pl.]s,a)
@ Non-unique optimal model j leaves room for aligning it to the
real world (classical fitting)

@ If V* is continuous and support of p is bounded(?) and K
path-connected, then we can have support 5 C support of p

p(.|s,a)
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More on MDP Equivalence

World MDP Model MDP
@ States s and actions a
@ Cost L(s,a)
@ Transition s ~ p[-|[s,a]

Theory says that
@ Under some technical conditions there is a L such that Q* =

@ For [ = L there is a (non-unique) “optimal” model p such that Q*

@ States s and actions a
@ Cost L (s,a)

@ Transition sy ~ p[-|s,a]

= Q*

@ Conditions for model p “optimality” # min of classical loss functions (except. LQR)

@ World MDP and Model MDP do not need to use the same discount -~y

Remarks

@ Non-unique optimal model j leaves room for aligning it to the
real world (classical fitting)

@ If V* is continuous and support of p is bounded(?) and
path-connected, then we can have support 5 C support of p

@ More simply said: we can build optimal models p that make
“plausible” predictions about the real world.

S. Gros (NTNU) Al for Decisions
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Al models for Decisions?

Al model e.g.
o Data
8+~ po(]s,2) knowledge
fitting data p
Actions ( ) Predictions
Objective Policy Policy
Cost
L(s,a) = mo(s)
possibly unbounded optimal for Al model
Learning model pg should aim at identifying
0" = arggmin J(me) (1)
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Al models for Decisions?

Al model e.g.
o Data
8+~ po(]s,2) knowledge
fitting data p
Actions ( ) Predictions
Objective Policy Policy
Cost
L(s,a) = mo(s)
possibly unbounded optimal for Al model
Learning model pg should aim at identifying
0" = arggmin J(me) (1)

@ Closed-loop performance J is intricate (@ — simulations — policy — real system)
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Al models for Decisions?

Al model e.g.

S ~po(]sa) [

fitting data p

Actions ( ) Predictions

Objective Policy
Cost
L(s,a) = mo(s)
possibly unbounded optimal for Al model

Learning model pg should aim at identifying

0" = argmin J(mg)
0

Data
nowledge

Policy

(1)

@ Closed-loop performance J is intricate (@ — simulations — policy — real system)

@ VoJ (7o) is to be estimated from data, i.e. data

S. Gros (NTNU) Al for Decisions
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Al models for Decisions?

Al model e.g.

84 ~ po(-]s,a) knowledge

fitting data p

Actions ( ) Predictions

Objective Policy Policy
Cost
L(s,a) = mo(s)
possibly unbounded optimal for Al model
Learning model pg should aim at identifying
0" = argmin J(mg) (1)
0

@ Closed-loop performance J is intricate (@ — simulations — policy — real system)
@ VoJ(mg) is to be estimated from data, i.e. data hungry, noisy, possible biases

@ (1) is in general different than model fitting, i.e. no loss function does (1)
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Optimal Al models for Decision - A Paradigm Shift

Al model
Data

8+ ~pe(-s,a)

knowledge

fitting data p

Actions Predictions
Policy
Objective Policy
L(s,a) Cost mo(s)
possibly unbounded optimal for Al model
S. Gros (NTNU) Al for Decisions Fall 2025
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Optimal Al models for Decision - A Paradigm Shift

Al model

8+ ~pe(-s,a)

fitting data p

Actions Predictions
Objective Policy
L(s,a) Cost mo(s)
possibly unbounded optimal for Al model

@ The model is not pg, it is the entire “decision-making box”

S. Gros (NTNU) Al for Decisions

Policy

Fall 2025 12/18



Optimal Al models for Decision - A Paradigm Shift

Al model

8+ ~pe(-s,a)

fitting data p

Actions Predictions
Objective Policy
LB (S7 a) COSt e (S)
possibly unbounded optimal for Al model

@ The model is not pg, it is the entire “decision-making box”

@ The model includes objective Lg used to build the policy*

* policy performance on real system still assessed via L

S. Gros (NTNU) Al for Decisions
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Optimal Al models for Decision - A Paradigm Shift

Al model

8+ ~pe(-|s a)

Actions

Predictig

Objective Policy
Lg (S7 a) Cost ™o (S)

possibly unbounded

optimal for Al model

@ The model is not pg, it is the entire “decision-making box”
@ The model includes objective Lg used to build the policy*

@ Best model pg should not necessarily represent the data in a ‘“classical sense”

* policy performance on real system still assessed via L

S. Gros (NTNU) Al for Decisions
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Optimal Al models for Decision - A Paradigm Shift

Al model

8+ ~pe(-s,a)

Actions Predictions
Policy
Objective Policy
LB (S7 a) COSt e (S)
possibly unbounded optimal for Al model

Theorem: under some (technical) assumptions, there is a Lg such that wg = 7., even
if pe does not represent real world p correctly
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How to use this more generally? RL over Policy Training

In-Sim Objective
Lo (s,a)

Cost

Al model

5+ NPG(‘|573)

Data ‘

Actions ( \v Predictior|s

Policy

mo(s)

optimal for Al model

knowledge

S. Gros (NTNU)

Al for Decisions
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How to use this more generally? RL over Policy Training

In-Real Objective RL Data
L) AB = aVed(me) knowledge
from data
A6
A0 Al model Data
8+ ~ po(-|s,a) knowledge
Actions( \Predictions

In-Sim Obiecti Policy
n-Sim ective
) Cost mo(s) ||
Lo (s,a)
optimal for Al model
S. Gros (NTNU) Al for Decisions
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How to use this more generally? RL over Policy Training
RL

In-Real Objective Data
L) AB = aVegJ (me) knowledge
from data
AO
A0 Al model Data
8+ ~ po(-|s,a) knowledge

Actions ( \' Predictior|s

Policy

o(s) | Policy

In-Sim Objective | oot
Lo (s,a)

optimal for Al model

Policy gradient
VeJ(me) =E[VemoVaQ™°]

@ Q7 is the critic, well-established RL tool

@ Vgme requires differentiating the closed-loop simulation...
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How to use this more generally? RL over Policy Training

RL )
In-Real Objective Data
L) AB = aVegJ (me) knowledge
from data)
AO
A0 Al model Data
8+ ~ po(-|s,a) knowledge

Actions ( \' Predictior|s

) . Policy .
In-Sim Objective | oot o(s) Policy
2] —

Lo (s,a)

optimal for Al model

Difficulty: computing Vg requires total differentiation through the simulation-based
policy optimization process:
0 — simulations — optimal policy for pe
Differentiating through policy optimization can be computationally heavy
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Policy Differentiation
Performance for a stochastic policy 7., model MDP defined by Lg, po, 7y

Jo () = Ep, [ nykLe (sk,ax)

k=0

ax ~ Ty ['|Sk]]
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Policy Differentiation
Performance for a stochastic policy 7., model MDP defined by Lg, po, 7y

Jo () = Ep, [ nykLe (K, ax)

k=0

ax ~ Ty ['|Sk]]

Policy given by

v* = argmin Jp (7)) or equivalently (,;i’/je (m)=0
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Policy Differentiation
Performance for a stochastic policy 7., model MDP defined by Lg, po, 7y

Jo () = Ep, [ nykLe (K, ax)

k=0

ax ~ Ty ['|Sk]]

Policy given by
v* = argmin Jp (7)) or equivalently ﬂjg (m)=0
v ov

Policy sensitivity: if we change 6 (cost Le and simulation p¢) how does 7, change?

&P - d7r1, ?
g2 Je () a9, oo () =0
:Vgrrg
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Policy Differentiation
Performance for a stochastic policy 7., model MDP defined by Lg, po, 7y

Jo () = Ep, [ nykLs (sk,ax)

k=0

ax ~ Ty ['|Sk]]

Policy given by
v* = argmin Jp (7)) or equivalently ijg (m)=0
v ov

Policy sensitivity: if we change 6 (cost Le and simulation p¢) how does 7, change?

&P - dm, ?
g2 Je () a9, oo () =0
:Vgrrg

Simulation: (with s =sp,.. v and a=ag.. n)
N

Jo (m) = /Z’ykl_g (s, ak) ¢ (s,a) dsda
k=0

- N
@ (s,a) = po [so] H Do [Sk+1|sk, ak] Hm, [ax|sk] (density of the simulation)
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Policy Differentiation

@ Blue trajectories are realization of ¢:
sha' ~ ()

@ Sample-based evaluation (n samples)

Jo (m) ~ ZZ’V Lo (Sk,ak)

k=i k=0

Simulation: (with s =so,..,

N and a = 307,,,,/\/)

. N
Jo (mv) Z/Z’ykl_g (sk,ak) ¢ (s,a)dsda

k=0

@ (s,a) = po [so] H Po [Ski1/8k, ak] H o [ak|sk] (density of the simulation)

S. Gros (NTNU)
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Direct Simulation Differentiation

Simulation

N
Jo (mn) = /Z'ykLg (sk,ak) ¢ (s,a) dsda
k=0

N-1 N
@ (s,a) = po [so] H Po [sk+1[sk; ax] H Tu [ak[si]
k=0 k=0
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Direct Simulation Differentiation

Simulation

N
Jo (mn) = /Z'ykLg (sk,ak) ¢ (s,a) dsda
k=0

N—1 N

@ (s,a) = po [so] H Do [Sk+1]8k, ak] Hﬂu [ax|sk]

k=0 k=0

Direct Differentiation:

N
0Je () = g, [ Z A <6)L9 (sk, ak) + Lo (s, ax) dlog ¢ (s, a))

k=0

ax ~ Ty ['|Sk]]

can be evaluated from data

S. Gros (NTNU) Al for Decisions Fall 2025 15/18



Direct Simulation Differentiation

Simulation

Jo (m0) :/Z'ykLg (sk,ak) ¢ (s,a) dsda

N—1

¢ (s,a) = po [so] | | Ao [swr1lsk,a] Hm, [ax|s«]

k=0 k=0

Direct Differentiation:

n N

0Je (m) = = Z Z’yk (OLG (s};,aﬂ;) + Lo (s};,af{) Olog (s};,aﬂ;) )

i=1 k=0

S|~
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Direct Simulation Differentiation

Simulation

Jo (m0) :/Z'ykLg (sk,ak) ¢ (s,a) dsda

N—-1
kp(S a = po [So] H pPo [Sk+1|Sk, ak] Hﬂ'u [ak|sk]
k=0 k=0

Direct Differentiation:

n N

0Je (m) = = Z Z’yk (0L9 (SL, af() + Lo (sf(, af() Olog (s};,aﬂ;) )

i=1 k=0

S|~

Remarks
v Second-order sensitivities are similar
v Simple and computationally very efficient
V' Can differentiate through discrete state and action sets
X Sample-based estimations are very noisy
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Critic-Based Differentiation

In-Sim Actor-critic does

V.Jo (7)) =E [Vulog ., (al]s) A™ (s,a)] =0

s~ pe
an~ Ty

defines relationship 7.+ with v* function of 6

S. Gros (NTNU) Al for Decisions

Fall 2025

16 /18



Critic-Based Differentiation

In-Sim Actor-critic does

VoJo (m,)=E [Vulog ., (al]s) A™ (s,a)] =0

s~ pe
an~ Ty

defines relationship m,« with v* function of 0

In-Real Actor-critic evaluates

VoJ (mu+) = Ereal World [Ve log m.+ (als) A (s, a)]
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Critic-Based Differentiation

In-Sim Actor-critic does

VoJo (m,)=E [Vulog ., (al]s) A™ (s,a)] =0

s~ pe
an~ Ty

defines relationship m,« with v* function of 0
In-Real Actor-critic evaluates
VoJ (mu+) = Ereal World [VG log m.+ (als) A (s, a)]

where Vg log 7.+ (als) requires ddLe

Sensitivity
9 dv* 9
% 2J9(7l'u ) +a 60./9(71',,*)—0
S. Gros (NTNU) Al for Decisions
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Critic-Based Differentiation

In-Sim Actor-critic does

VoJo (m,)=E [Vulog ., (al]s) A™ (s,a)] =0

s~ pe
an~ Ty

defines relationship .+« with v* function of

In-Real Actor-critic evaluates

VoJ (mu+) = Ereal World [VG log m.+ (als) A (s, a)]

dv*
where Vg log 7.« (als) requires <g-

Sensitivity
0? dv* & .
—Jo(mv+) =+ 7=—F=7Jo (m+) =0
oAt () 35+ 5ag %0 (7v)
Idea: compute %= from differentiating the in-sim actor-critic w.r.t. % and a%
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Critic-Based Differentiation

In-Sim Actor-critic does

VoJo (m,)=E [Vulog ., (al]s) A™ (s,a)] =0

s~ pe
an~ Ty

defines relationship .+« with v* function of

In-Real Actor-critic evaluates

VoJ (mu+) = Ereal World [VG log o« (a|S)Au* (s, a)]

where Vg log 7.+ (als) requires ddLe

Sensitivity
0? dV* 0?
gzl () g + Fag e (v) =0
Idea: compute %= from differentiating the in-sim actor-critic w.r.t. % and a%

Proposed first algorithm to do that.
Computationally heavy, but we have “missed” some simplifications, testing further
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Example - In-Real RL over In-Sim RL

Al for Decisions




Example - In-Real RL over In-Sim RL

/ Simulation (Inner loop) \ a Hardware (Outer loop) N

Real-World Environment
(S, A,~, f,R)
o, A7, 1 1)

Policy 74

RL Update

Vb J (. )

V6@ Vodou\ o, 9]

4 B,\

s=[r3 2 5097
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Example - In-Real RL over In-Sim RL

/ Simulation (Inner loop)

RL Update
V sJin(m4,6)

Simulator

A~ £ RO
3T T, 426

(S
(S

\

Policy 74

a Hardware (Outer loop) N

Vs

Real-World Environment
(8, A~ f, R)
o, A7, 1 1)

RL Update

PR v A
08 Vo ou\ Ty &

/

s=[r3 2 5097

L

S. Gros (N Al for Decisions

Cummulative Return

——— Optimal real world ppo policy
—— Initial in-sim optimal ppo policy
—— In-sim ppo policy after bi level training

0

50000 100000 150000 200000 250000 300000 350000
Training steps
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Norwegian Center on Al for Decisions g—-{,
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@ Start-up phase
@ Recruiting soon!

@ We can apply for funding
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FORSVARET government
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Thank you!
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