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Orientation

What we have seen:

RLMPC, why does it work & different flavors

What we will do now:

The theory is not about MPC, it is about MDPs (MPC is a special case)

It has broader implications for AI and model-based decision making

Provide (tentative) practical ideas for in Sim2Real
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Outline

1 Decisions from data

2 AI models for Decision
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Model-Free Pathway - “Pure” Reinforcement Learning

Policy

a = πθ(s)

StateActions

Define policy πθ as a
parametrized function

Optimize policy as:

min
θ

J (πθ)
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from data

Policy

a = πθ(s)

StateActions

Real Data

θ ← θ − α∇θJ (πθ)

Define policy πθ as a
parametrized function

Optimize policy as:

min
θ

J (πθ)

Gradient descent can be
used to optimize policy

Remarks

πθ(s) often from DNN

End-to-end training requires a lot of data and effort

Difficult to provide explainability and guarantees on the policy we obtain

Poor track record of industrial adoption (exception chatbots)

→policy is often trained on high-fidelity simulations: embed knowledge, reduce costs,
manage safety, promote explainability, control the training

S. Gros (NTNU) AI for Decisions Fall 2025 4 / 18



Model-based Pathway - Predictive AI Models (data-driven, ML, etc)

Real world: sk+1 ∼ ρ(· | sk , ak)

Data with enough “richness”
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Model parameters θ
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Deterministic models are a special case of ρθ

Many methods, from Least Squares and MLE to Bayesian and Adversarial Learning

Still, in most cases ρθ “simplifies” ρ because

◮ need for huge amounts of data to decide θ if model is very rich
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◮ validity is limited to some parts of the state-action space
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fitting data

Virtual data from “simulating”
ŝk+1 ∼ ρθ(· | sk , ak) forward (Monte Carlo)

In most cases, ρθ is a fairly simple
representation of reality ρ, easy to sample from
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Back to MPC - A “Classical” View on Decision Making

Policy πθ(s) given implicitly by

min
x,u

E

[

T (xN) +

N−1∑

k=0

L (xk , uk)

]

s.t. xk+1 ∼ ρθ (xk , uk)

x0 = s

use πθ(s) = u
⋆
0 on the system

MPC policy

πθ(s)

from model

sk+1 ∼ ρθ(. | sk , ak)

a

s
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k=0

L (xk , uk)

]

s.t. xk+1 ∼ ρθ (xk , uk)

x0 = s

use πθ(s) = u
⋆
0 on the system
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Performance from model accuracy
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“Standard methods” for choosing θ in

general do not yield the best πθ.

RL over MPC can fix that, L becomes part

of the model

MPC policy

πθ(s)

from model

sk+1 ∼ ρθ(. | sk , ak)

AI model

ŝ+ ∼ ρθ (· | s, a)

fitting data ρ

a

s

Data
knowledge

θ

This is not the only way of taking decisions from models
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Decision policy from AI models (Sim2Real)

AI model

ŝ+ ∼ ρθ (· | s, a)

fitting data ρ

Data
knowledge

Classical Process:

Fit AI model ρθ to real data
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Decision policy from AI models (Sim2Real)

AI model

ŝ+ ∼ ρθ (· | s, a)

fitting data ρ

Policy

a = πν(s)

optimal for AI model

Objective

L (s, a)

possibly unbounded

Data
knowledge

Virtual dataActions

Cost

Classical Process:

Fit AI model ρθ to real data

Develop optimal policy for L and ρθ from AI model, e.g. using In-Sim RL

◮ Define parametrized policy πν

◮ Optimize policy parameters ν for performance w.r.t. AI model: ρθ ,L → ν
⋆
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Decision policy from AI models (Sim2Real)

AI model

ŝ+ ∼ ρθ (· | s, a)

fitting data ρ

Policy

a = πν(s)

optimal for AI model

Objective

L (s, a)

possibly unbounded

Data
knowledge

Virtual dataActions

Policy

Cost

Classical Process:

Fit AI model ρθ to real data

Develop optimal policy for L and ρθ from AI model, e.g. using In-Sim RL

◮ Define parametrized policy πν

◮ Optimize policy parameters ν for performance w.r.t. AI model: ρθ ,L → ν
⋆

Transfer policy πν⋆ into the real world

Note: policy parameters ν
⋆ optimal for AI model become function of θ

Let’s then label πθ = πν⋆ for simplicity
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AI model

ŝ+ ∼ ρθ (· | s, a)

fitting data ρ

Policy

a = πθ(s)

optimal for AI model

Objective

L (s, a)

possibly unbounded

Data
knowledge

Virtual dataActions

Policy

Cost

Remarks

Relationship πθ to π⋆??

◮ They match if ρθ = ρ, i.e. if model is exact
◮ But ρθ is (almost always) an approximation

Are “standard methods” for choosing θ resulting in a good policy πθ??

Empirically the answer is “no”. Then how to choose θ to get a good policy?
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Model MDP definition
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Cost L̂ (s, a)

Transition s+ ∼ ρ̂ [ · |s, a]
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⋆ (s) = min

a

Q̂
⋆ (s, a)

Q̂
⋆ (s, a) = L̂ (s, a) + γEs+∼ρ̂ [ V

⋆ (ŝ+)| s, a]

Optimal policy

π̂
⋆ (s) = argmin

a

Q̂
⋆ (s, a)

Theory says that - under some technical conditions - there is a L̂ such that Q̂⋆ = Q⋆

Proof: telescopic sum, some non-trivial assumptions to prevent ∞−∞ cancellations
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More on MDP Equivalence

World MDP
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For L̂ = L there is a (non-unique) “optimal” model ρ̂ such that Q̂⋆ = Q⋆

Conditions for model ρ̂ “optimality” 6= min of classical loss functions (except. LQR)

World MDP and Model MDP do not need to use the same discount γ

In-Sim policy training uses a Model MDP

Practitioners mostly work on model ρ̂, but “unsure” on how to tune it

In the ML communities, people talk about “value alignment”, we are trying to make this
“MDP equivalence” understood

S. Gros (NTNU) AI for Decisions Fall 2025 9 / 18



More on MDP Equivalence

World MDP

States s and actions a

Cost L (s, a)

Transition s+ ∼ ρ [ · |s, a]

Model MDP

States s and actions a

Cost L̂ (s, a)

Transition s+ ∼ ρ̂ [ · |s, a]

Theory says that
Under some technical conditions there is a L̂ such that Q̂⋆ = Q⋆

For L̂ = L there is a (non-unique) “optimal” model ρ̂ such that Q̂⋆ = Q⋆

Conditions for model ρ̂ “optimality” 6= min of classical loss functions (except. LQR)

World MDP and Model MDP do not need to use the same discount γ

Remarks

Non-unique optimal model ρ̂ leaves room for aligning it to the
real world (classical fitting)

S. Gros (NTNU) AI for Decisions Fall 2025 9 / 18



More on MDP Equivalence

World MDP

States s and actions a

Cost L (s, a)

Transition s+ ∼ ρ [ · |s, a]

Model MDP

States s and actions a

Cost L̂ (s, a)

Transition s+ ∼ ρ̂ [ · |s, a]

Theory says that
Under some technical conditions there is a L̂ such that Q̂⋆ = Q⋆

For L̂ = L there is a (non-unique) “optimal” model ρ̂ such that Q̂⋆ = Q⋆

Conditions for model ρ̂ “optimality” 6= min of classical loss functions (except. LQR)

World MDP and Model MDP do not need to use the same discount γ

Remarks

Non-unique optimal model ρ̂ leaves room for aligning it to the
real world (classical fitting)
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Non-unique optimal model ρ̂ leaves room for aligning it to the
real world (classical fitting)

If V ⋆ is continuous and support of ρ is bounded(?) and
path-connected, then we can have support ρ̂ ⊂ support of ρ
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Cost L̂ (s, a)

Transition s+ ∼ ρ̂ [ · |s, a]

Theory says that
Under some technical conditions there is a L̂ such that Q̂⋆ = Q⋆

For L̂ = L there is a (non-unique) “optimal” model ρ̂ such that Q̂⋆ = Q⋆

Conditions for model ρ̂ “optimality” 6= min of classical loss functions (except. LQR)

World MDP and Model MDP do not need to use the same discount γ

Remarks

Non-unique optimal model ρ̂ leaves room for aligning it to the
real world (classical fitting)

If V ⋆ is continuous and support of ρ is bounded(?) and
path-connected, then we can have support ρ̂ ⊂ support of ρ

More simply said: we can build optimal models ρ̂ that make
“plausible” predictions about the real world.
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AI models for Decisions?

AI model e.g.

ŝ+ ∼ ρθ (· | s, a)

fitting data ρ

Policy

πθ(s)

optimal for AI model

Objective

L (s, a)

possibly unbounded

Data
knowledge

PredictionsActions

Policy

Cost

Learning model ρθ should aim at identifying

θ
⋆ = argmin

θ

J (πθ) (1)
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AI model e.g.

ŝ+ ∼ ρθ (· | s, a)

fitting data ρ

Policy

πθ(s)

optimal for AI model

Objective

L (s, a)

possibly unbounded

Data
knowledge

PredictionsActions

Policy

Cost

Learning model ρθ should aim at identifying

θ
⋆ = argmin

θ

J (πθ) (1)

Closed-loop performance J is intricate (θ → simulations→ policy→ real system)

∇θJ (πθ) is to be estimated from data, i.e. data hungry, noisy, possible biases

(1) is in general different than model fitting, i.e. no loss function does (1)
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Optimal AI models for Decision - A Paradigm Shift

AI model

ŝ+ ∼ ρθ (· | s, a)

fitting data ρ

Policy

πθ(s)

optimal for AI model

Objective

L (s, a)

possibly unbounded

Data
knowledge

PredictionsActions

Policy

Cost
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Optimal AI models for Decision - A Paradigm Shift

AI model

ŝ+ ∼ ρθ (· | s, a)

Policy

πθ(s)

optimal for AI model

Objective

Lθ (s, a)

possibly unbounded

Data
knowledge

PredictionsActions

Policy

Cost

The model is not ρθ, it is the entire “decision-making box”

The model includes objective Lθ used to build the policy⋆

Best model ρθ should not necessarily represent the data in a “classical sense”

⋆ policy performance on real system still assessed via L
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Optimal AI models for Decision - A Paradigm Shift

AI model

ŝ+ ∼ ρθ (· | s, a)

Policy

πθ(s)

optimal for AI model

Objective

Lθ (s, a)

possibly unbounded

Data
knowledge

PredictionsActions

Policy

Cost

Theorem: under some (technical) assumptions, there is a Lθ such that πθ = π⋆, even
if ρθ does not represent real world ρ correctly
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How to use this more generally? RL over Policy Training

AI model

ŝ+ ∼ ρθ (· | s, a)

Policy

πθ(s)

optimal for AI model

In-Sim Objective

Lθ (s, a)

Data
knowledge

PredictionsActions

PolicyCost
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How to use this more generally? RL over Policy Training

AI model

ŝ+ ∼ ρθ (· | s, a)

RL

∆θ = α∇θJ (πθ)

from data

Policy

πθ(s)

optimal for AI model

In-Sim Objective

Lθ (s, a)

In-Real Objective

L (s, a)

Data
knowledge

PredictionsActions

PolicyCost

Data
knowledge

∆θ

∆θ
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How to use this more generally? RL over Policy Training

AI model

ŝ+ ∼ ρθ (· | s, a)

RL

∆θ = α∇θJ (πθ)

from data

Policy

πθ(s)

optimal for AI model

In-Sim Objective

Lθ (s, a)

In-Real Objective

L (s, a)

Data
knowledge

PredictionsActions

PolicyCost

Data
knowledge

∆θ

∆θ

Policy gradient

∇θJ(πθ) = E [∇θπθ∇aQ
πθ ]

Qπθ is the critic, well-established RL tool

∇θπθ requires differentiating the closed-loop simulation...
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How to use this more generally? RL over Policy Training

AI model

ŝ+ ∼ ρθ (· | s, a)

RL

∆θ = α∇θJ (πθ)

from data

Policy

πθ(s)

optimal for AI model

In-Sim Objective

Lθ (s, a)

In-Real Objective

L (s, a)

Data
knowledge

PredictionsActions

PolicyCost

Data
knowledge

∆θ

∆θ

Difficulty: computing ∇θπθ requires total differentiation through the simulation-based
policy optimization process:

θ → simulations→ optimal policy for ρθ
Differentiating through policy optimization can be computationally heavy
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Policy Differentiation
Performance for a stochastic policy πν , model MDP defined by Lθ, ρ̂θ, γ

Ĵθ (πν) = Eρ̂θ

[
N∑

k=0

γ
k
Lθ (sk , ak)

∣
∣
∣
∣
∣
ak ∼ πν [·|sk ]

]
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Ĵθ (πν) = Eρ̂θ

[
N∑

k=0
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∣
∣
∣
∣
∣
ak ∼ πν [·|sk ]

]

Policy given by

ν
⋆ = argmin

ν

Ĵθ (πν) or equivalently
∂

∂ν
Ĵθ (πν) = 0

Policy sensitivity: if we change θ (cost Lθ and simulation ρ̂θ) how does πν change?

∂2

∂ν2
Ĵθ (πν)

dπν

dθ
︸︷︷︸

=∇θπθ
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∂ν∂θ
Ĵθ (πν) = 0
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Policy Differentiation
Performance for a stochastic policy πν , model MDP defined by Lθ, ρ̂θ, γ

Ĵθ (πν) = Eρ̂θ

[
N∑

k=0

γ
k
Lθ (sk , ak)

∣
∣
∣
∣
∣
ak ∼ πν [·|sk ]

]

Policy given by

ν
⋆ = argmin

ν

Ĵθ (πν) or equivalently
∂

∂ν
Ĵθ (πν) = 0

Policy sensitivity: if we change θ (cost Lθ and simulation ρ̂θ) how does πν change?

∂2

∂ν2
Ĵθ (πν)

dπν

dθ
︸︷︷︸

=∇θπθ

+
∂2

∂ν∂θ
Ĵθ (πν) = 0

Simulation: (with s ≡ s0,...,N and a ≡ a0,...,N)

Ĵθ (πν) =

∫ N∑

k=0

γ
k
Lθ (sk , ak)ϕ (s, a)dsda

ϕ (s, a) = ρ0 [s0]
N−1∏

k=0

ρ̂θ [sk+1|sk , ak ]
N∏

k=0

πν [ak |sk ] (density of the simulation)
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Policy Differentiation

s0

sN

Blue trajectories are realization of ϕ:

s
i
, a

i ∼ ϕ (·, ·)

Sample-based evaluation (n samples)

Ĵθ (πν) ≈
1

n

n∑

k=i

N∑

k=0

γ
k
Lθ

(

s
i
k , a

i
k

)

Simulation: (with s ≡ s0,...,N and a ≡ a0,...,N)

Ĵθ (πν) =

∫ N∑

k=0

γ
k
Lθ (sk , ak)ϕ (s, a)dsda

ϕ (s, a) = ρ0 [s0]
N−1∏

k=0

ρ̂θ [sk+1|sk , ak ]
N∏

k=0

πν [ak |sk ] (density of the simulation)
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Direct Simulation Differentiation

Simulation

Ĵθ (πν) =

∫ N∑

k=0

γ
k
Lθ (sk , ak)ϕ (s, a) dsda

ϕ (s, a) = ρ0 [s0]

N−1∏

k=0

ρ̂θ [sk+1|sk , ak ]
N∏

k=0

πν [ak |sk ]

s0

sN
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Direct Simulation Differentiation

Simulation

Ĵθ (πν) =

∫ N∑

k=0

γ
k
Lθ (sk , ak)ϕ (s, a) dsda

ϕ (s, a) = ρ0 [s0]

N−1∏

k=0

ρ̂θ [sk+1|sk , ak ]
N∏

k=0

πν [ak |sk ]

s0

sN

Direct Differentiation:

∂Ĵθ (πν) = Eρ̂θ

[
N∑

k=0

γ
k

(

∂Lθ (sk , ak) + Lθ (sk , ak) ∂logϕ (s, a)

) ∣
∣
∣
∣
∣
ak ∼ πν [·|sk ]

]

can be evaluated from data
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Direct Simulation Differentiation

Simulation

Ĵθ (πν) =

∫ N∑

k=0

γ
k
Lθ (sk , ak)ϕ (s, a) dsda

ϕ (s, a) = ρ0 [s0]

N−1∏

k=0

ρ̂θ [sk+1|sk , ak ]
N∏

k=0

πν [ak |sk ]

s0

sN

Direct Differentiation:

∂Ĵθ (πν) ≈
1

n

n∑

i=1

N∑

k=0

γ
k

(

∂Lθ

(

s
i
k , a

i
k

)

+ Lθ

(

s
i
k , a

i
k

)

∂logϕ
(

s
i
k , a

i
k

))
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Direct Simulation Differentiation

Simulation

Ĵθ (πν) =

∫ N∑

k=0

γ
k
Lθ (sk , ak)ϕ (s, a) dsda

ϕ (s, a) = ρ0 [s0]

N−1∏

k=0

ρ̂θ [sk+1|sk , ak ]
N∏

k=0

πν [ak |sk ]

s0

sN

Direct Differentiation:

∂Ĵθ (πν) ≈
1

n

n∑

i=1

N∑

k=0

γ
k

(

∂Lθ

(

s
i
k , a

i
k

)

+ Lθ

(

s
i
k , a

i
k

)

∂logϕ
(

s
i
k , a

i
k

))

Remarks

X Second-order sensitivities are similar

X Simple and computationally very efficient

X Can differentiate through discrete state and action sets

✘ Sample-based estimations are very noisy
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Critic-Based Differentiation

In-Sim Actor-critic does

∇ν Ĵθ (πν) = E
s ∼ ρθ
a ∼ πν

[∇ν log πν (a|s)Aπν (s, a)] = 0

defines relationship πν⋆ with ν
⋆ function of θ

s0

sN
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Critic-Based Differentiation

In-Sim Actor-critic does
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defines relationship πν⋆ with ν
⋆ function of θ
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]

where ∇θ log πν⋆ (a|s) requires dν
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Sensitivity

∂2
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Ĵθ (πν⋆)

dν
⋆

dθ
+
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Ĵθ (πν⋆) = 0
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Idea: compute dν
⋆

dθ
from differentiating the in-sim actor-critic w.r.t. ∂

∂ν
and ∂

∂θ
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Critic-Based Differentiation

In-Sim Actor-critic does

∇ν Ĵθ (πν) = E
s ∼ ρθ
a ∼ πν

[∇ν log πν (a|s)Aπν (s, a)] = 0

defines relationship πν⋆ with ν
⋆ function of θ

In-Real Actor-critic evaluates

∇θJ (πν⋆) = EReal World

[

∇θ log πν⋆ (a|s)Aν
⋆

(s, a)
]

where ∇θ log πν⋆ (a|s) requires dν
⋆

dθ

Sensitivity

∂2

∂ν2
Ĵθ (πν⋆)

dν
⋆

dθ
+

∂2

∂ν∂θ
Ĵθ (πν⋆) = 0

s0

sN

Idea: compute dν
⋆

dθ
from differentiating the in-sim actor-critic w.r.t. ∂

∂ν
and ∂

∂θ

Proposed first algorithm to do that.

Computationally heavy, but we have “missed” some simplifications, testing further
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Example - In-Real RL over In-Sim RL
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Example - In-Real RL over In-Sim RL
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Norwegian Center on AI for Decisions

Email

Start-up phase

Recruiting soon!

We can apply for funding
to bring strong
international postdocs

Thank you!
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