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Agent and Environment

Environment

Agent

St+1

St At

Rt+1

Rt

Time steps t: 0, 1, 2, . . .
States: S0, S1, S2, . . .
Actions: A0, A1, A2, . . .
Rewards: R1, R2, R3, . . .
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Markov Decision Processes

A finite Markov Decision Process (MDP) is a 4-tuple ⟨S,A, P, r⟩, where
▶ S is a finite number of states,

▶ A is a finite number of actions,

▶ P is the transition probability function P : S × S ×A 7→ [0, 1],

▶ and r : S ×A 7→ R, where R is a finite set of scalar rewards.

Markov Property

The transition function has the Markov property iff:

Pr{St+1 | St, At} = Pr{St+1 | St, At, . . . , S0, A0}.

The future is independent of the past given the present.
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Markov Decision Processes

A finite Markov Decision Process (MDP) is a 4-tuple ⟨S,A, P,R⟩, where
▶ S is a finite number of states,

▶ A is a finite number of actions,

▶ P is the transition probability function P : S × S ×A → [0, 1],

▶ and r : S ×A → R, where R is a finite set of scalar rewards.

A deterministic system is a special case of an MDP:

P (st+1 | st, at) =

{
1 st+1 = f(st, at)

0 otherwise
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Rewards in the spotlight

▶ We denote Rt+1 := r(St, At).

▶ A reward Rt in time step t is a scalar feedback signal.

▶ Rt indicates how well an agent is performing at the single time step t.

Agent goal: maximize the expected discounted cumulative reward
Gt = Rt+1 + γ1Rt+2 + γ2Rt+3 + · · ·+ γT−(t+1)RT .

Which property should γ have?

▶ γ ∈ (0, 1)

Why do we need discounting?

▶ T can be infinite. By introducing discounting, we avoid infinite cumulative reward for
infinite horizon MDPs.
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Rewards in the spotlight (cont’d)

Reward Hypothesis

All of what we mean by goals and purposes can be well thought of as the maximization of the
expected value of the cumulative sum of a received scalar signal (called reward).

Examples:

▶ Chess: +1 for winning, -1 for losing

▶ Walking: +1 for every time step not falling over

▶ Investment Portfolio: difference in value between two time steps
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MDP: Example

Description

Imagine a house cleaning robot. It can have three charge levels: high, low and none. At every
point in time, the robot can decide to recharge or to explore unless it has no battery. When
exploring, the charge level can reduce with probability ρ. Exploring is preferable to recharging,
however it has to avoid running out of battery.

Formalize the above problem as an MDP.
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MDP: Example

Solution

For the given problem, we set:

▶ S = {high, low, none}
▶ A = {explore, recharge}
▶ R = {+1,−1,−100} for exploring, recharging, and transitions leading to none,

respectively.

▶ P has entries with value 1 for transitions (high,−1, high, recharge),
(low,−1, high, recharge) and (none, 0, none, ·). It further has entries with value ρ for
transitions (high,+1, low, explore) and (low,−100, none, explore) and entries with value
1− ρ for transitions (high,+1, high, explore) and (low,+1, low, explore).

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 11



MDP: Example

Solution

The transition graph therefore is:

high low none

explore
1− ρ, +1 ρ, +1

explore
1− ρ, +1 ρ, −100

recharge, −1

recharge, −1
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Components of RL Systems – Models

▶ The model defines the transitions between states in an environment
▶ Given a current state and action, the model P yields the next state.
▶ P (s+ | s, a) = Pr{St+1 = s+ | St = s,At = a}
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Components of RL Systems – Policies

▶ The policy defines the behavior of the agent:
▶ is a mapping from a state to an action
▶ can be stochastic: π(a | s) = P[A = a | S = s]
▶ or deterministic: π(s) = a

▶ Due to the Markov property, knowledge of the current state s is sufficient to make an
informed decision.
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Components of RL Systems – Value Functions

▶ Let St ∼ P (· | St−1, At−1) and At ∼ π(· | St).

▶ Value Function V π(s) is the expected return when starting in s and following π:

V π(s) = Eπ[Gt | St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s

]

▶ Action-Value Function Qπ is the expected return when starting in s, taking action a and
following π thereafter:

Qπ(s, a) = Eπ[Gt | St = s,At = a] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s,At = a

]

▶ Simple connection:
V π(s) = Eπ[Q

π(s, a)]
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Exploration and Exploitation

▶ Fundamental problem in Reinforcement Learning

▶ The agent has to exploit what it knows in order to obtain high reward (Exploitation). . .

▶ . . . but it has to explore to possibly do better in the future (Exploration).

Example: You want to go out for dinner. Do you. . .

▶ go to your favourite restaurant

▶ or try a new one?
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Discussion

Where would you apply Reinforcement Learning?
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Bellman Equation

▶ The Bellman Equation expresses a relationship between the value of a state and the values
of its successor states

▶ The value function V π is the unique solution to its Bellman Equation

V π(s) = Eπ[Gt | St = s]

= Eπ[Rt + γGt+1 | St = s]

=
∑
a

π(a | s)
∑
s+

P (s+ | s, a)
[
r(s, a) + γEπ[Gt+1 | St+1 = s+]

]
=

∑
a

π(a | s)
∑
s+

P (s+ | s, a)
[
r(s, a) + γV π(s+)

]

Bellman Equation for V π

V π(s) =
∑
a

π(a | s)
∑
s+

P (s+ | s, a)
[
r(s, a) + γV π(s+)

]
.
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Bellman Equation: Example

Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Gridworld Example: Prediction

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A’

B’+10

+5

Actions

(a) (b)
What is the value function for the uniform random policy?Description

Actions move the agent deterministically. Actions that would move the agent off the grid cost
−1 with no state change. All other actions are free. However, every action performed by the
agent in A moves it to A′ with a reward of +10, each action in B moves it to B′ with a reward
of +5. Assume a uniform policy. V π with a discounting factor of γ = 0.9 can be seen on the
right. Show exemplary for state s0,0 with V π(s0,0) = 3.3 that the Bellman equation is satisfied.
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Bellman Equation: Example

Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Gridworld Example: Prediction

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A’

B’+10

+5

Actions

(a) (b)
What is the value function for the uniform random policy?Solution

V π(s0,0) = 0.25 · (−1 + γ · 3.3) + 0.25 · (+0 + γ · 8.8) +
0.25 · (+0 + γ · 1.5) + 0.25 · (−1 + γ · 3.3)

= 3.3025 ≈ 3.3

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 20



Optimality of Policies

We consider a policy optimal if the value (i.e. its expected return under the policy) in every
state is at least as high as for any other policy:

Optimality of a policy π∗

A policy π∗ is called optimal iff for all s ∈ S :

V π∗
(s) ≥ V π(s) for all π. (1)

The corresponding optimal value function is denoted by V ∗.

▶ Finding π∗ requires a search among all, possibly infinitely many, policies. This seems to be
rather impractical.

▶ Is there an easier way to check if a policy π and the corresponding value function V π is
actually optimal?
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Bellman Optimality Equation

Intuitively, the Bellman Optimality Equation expresses the fact that the value of a state under
an optimal policy must equal the expected return for the best action from that state:

V ∗(s) = max
a

Qπ∗
(s, a)

= max
a

Eπ∗ [Rt+1 + γGt+1 | St = s,At = a]

= max
a

Eπ∗ [Rt+1 + γV ∗(St+1) | St = s,At = a]

= max
a

∑
s+

P (s+ | s, a)[r(s, a) + γV ∗(s+)]

Bellman Optimality Equation for V ∗

The Bellman Equation for the optimal value function V ∗ is defined as:

V ∗(s) = max
a

∑
s+

P (s+ | s, a)[r(s, a) + γV ∗(s+)].
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Bellman Optimality Equation: Example

Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Gridworld Example: Prediction

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A’

B’+10

+5

Actions

(a) (b)
What is the value function for the uniform random policy?Non-optimality of the uniform random policy

V π(s0,0) = 3.3025 ̸= max{−1 + γ · 3.3, 0 + γ · 8.8,
0 + γ · 1.5,−1 + γ · 3.3}

= 7.92

⇒ random policy π is not optimal.
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Bellman Optimality Equation

For a deterministic system with transition function f and deterministic policies, the Bellman
Optimality Equation simplifies to:

Bellman equation for the optimal value-function V ∗ for a deterministic system
and policies

V ∗(s) = max
a

r(s, a) + γV ∗(f(s, a)).

Equivalently, there exists a Bellman optimality equation for Q-functions:

Bellman equation for the optimal action-value function Q∗

Q∗(s, a) =
∑
s+

P (s+ | s, a)[r(s, a) + γmax
a+

Q∗(s+, a+)].

How can we turn these equations into practical algorithms to find optimal policies π∗?
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Policy Iteration: Overview

Idea: Alternate evaluating the value function V π and improving the policy π to convergence.

π0
E−−−→ V π0

I−−−→ π1
E−−−→ V π1

I−−−→ π2
E−−−→ · · · I−−−→ π∗ E−−−→ V ∗
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Policy Evaluation

Compute the state-value function V π for an arbitrary policy π.
∀s ∈ S :

V π(s)
.
=

∑
a

π(a | s)
∑
s+

P (s+ | s, a)
[
r(s, a) + γV π(s+)

]
If the environments dynamics are completely known, this is a system of | S | simultaneous
linear equations in | S | unknowns. With the Bellman equation, we can iteratively update an
initial approximation V 0:

V k+1(s)
.
= Eπ

[
Rt+1 + γV k(St+1) | St = s

]
=

∑
a

π(a | s)
∑
s+

P (s+ | s, a)
[
r(s, a) + γV k(s+)

]
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Policy Evaluation

Algorithm 1 Iterative Policy Evaluation – for estimating V ≈ V π

1: Input: policy π to be evaluated, threshold θ > 0 determining accuracy of estimation
2: Initialize: V (s), for all s ∈ S+, arbitrarily except that V (terminal) = 0
3: while ∆ > θ do
4: ∆← 0
5: for each s ∈ S do
6: v ← V (s)
7: V (s)←

∑
a π(a | s)

∑
s+ P (s+ | s, a)[r(s, a) + γV (s+)]

8: ∆← max(∆, | v − V (s) |)
9: end for

10: end while
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Policy Improvement

Once we have the value function for a policy, we consider which action a to select in a state s
when we follow our old policy π afterwards. To decide this, we look at the Bellman equation of
the state-action value function:

Qπ(s, a)
.
= E [Rt+1 + γV π(St+1) | St = s,At = a]

=
∑
s+

P (s+ | s, a)
[
r(s, a) + γV π(s+)

]
Policy improvement theorem

Let π and π′ be any pair of deterministic policies. If for all s ∈ S,

Qπ(s, π(s)) ≥ V π(s),

then the policy π′ must be as good as, or better than, π. It follows that, ∀s ∈ S:

V π′
(s) ≥ V π(s)
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Policy Improvement

To implement this, we compute Qπ(s, a) for all states and all actions, and consider the greedy
policy:

π′(s)
.
= argmax

a
Qπ(s, a)

= argmax
a

E [Rt+1 + γV π(St+1) | St = s,At = a]

= argmax
a

∑
s+

P (s+ | s, a)
[
r(s, a) + γV π(s+)

]
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Policy Iteration – Complete algorithm

Algorithm 2 Policy iteration using iterative policy evaluation – for estimating π ≈ π∗

1: Initialize: V (s) ∈ R and π(s) ∈ A(s) arbitrarily for all s ∈ S
2: Policy Evaluation: follow the pseudo-code above, obtain V ≈ V π

3: Execute Policy Improvement:
4: while True do
5: policy-stable ← True

6: for each s ∈ S do
7: old-action ← π(s)
8: π(s)← argmaxa

∑
s+ P (s+ | s, a)[r(s, a) + γV (s+)]

9: if old-action ̸= π(s) then
10: policy-stable ← False

11: end if
12: end for
13: if policy-stable then
14: return V ≈ V ∗, π ≈ π∗

15: else
16: Go to Policy Evaluation
17: end if
18: end while
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Value Iteration

Performing policy evaluation to convergence in every iteration is costly and often not necessary.
A special case is to evaluate just once and combine it with the policy improvement step:

V k+1(s)
.
= max

a
E
[
Rt+1 + γV k(St+1) | St = s,At = a

]
= max

a

∑
s+

P (s+ | s, a)
[
r(s, a) + γV k(s+)

]

MPC and RL – Lecture 1 J. Boedecker and M. Diehl, University of Freiburg 31



Value Iteration

Algorithm 3 Value Iteration – for estimating π ≈ π∗

1: Input: Threshold θ > 0 determining accuracy of estimation
2: Initialize: V (s), for all s ∈ S+, arbitrarily except that V (terminal) = 0
3: while ∆ > θ do
4: ∆← 0
5: for each s ∈ S do
6: v ← V (s)
7: V (s)← maxa

∑
s+ P (s+ | s, a)[r(s, a) + γV (s+)]

8: ∆← max(∆, | v − V (s) |)
9: end for

10: end while
11: return deterministic policy π ≈ π∗ such that π(s) = argmaxa

∑
s+ P (s+ | s, a)[r(s, a) +

γV (s+)]
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Generalized Policy Iteration

improvement
.

.

.

.

▶ Policy Evaluation: estimate V π

▶ Policy Improvement: greedy
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Summary

▶ MDPs allow us to formalize RL (and more generally, stochastic optimal control) problems,
4-tuple ⟨S,A, P, r⟩, assuming the Markov Property holds

▶ Bellman Equations express a relationship between the value of a state and the values of its
successor states, provide structure to search for an optimal policy intelligently

▶ Policy Iteration and Value iteration use the structure of the Bellman Equations and turn
them into iterative algorithms for finding optimal policies given an MDP (with and
without explicit representation of the policy)
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