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It is fun to work with nice smart people

A lot of this work is thanks to:

Benjamin Karg Moritz Heinlein Teodoro Alamo



Motivation

* The robust NMPC design problem is very complex

* We know how to design good approximate NMPC controllers
e Multi-stage NMPC
* Ellipsoidal-based NMPC
* Robust NMPC with approximate reachable sets
* Tube-based NMPC
* Approximate robust NMPC via NNs



Complexity of design vs. test

Design: Robust NMPC requires solving minmax optimization problems
* Exponential growth with horizon length and uncertainty dimension.

Test: Running simulations once an (approximate) controller exists is simple
* It may not scale exponentially

Can we derive conclusions by testing performance N times?
* To obtain some guarantees, does N scale exponentially with problem size?



We will obtain an answer for this question

How many simulations N do | have to run with a given controller k, so

that | can say with a confidence of 99.9999 % that the constraints will

not be violated with a probability larger than 98% the next time | apply

the controller, provided that | only observe constraint violations in 4 of
my simulations?




Thank you for your
attention!



Some basics of
probability theory



Really, just some basics

 Binomial coefficient:

* Describes the number of distinct ways to choose k elements from a
set of n elements ignoring the order

O (-0



Binomial distribution

* Models the number of successes in n independent trials, each with
probability p

* Example: Toss a coinn = 10 times p = 0.5
 Sampling with replacement
* Probabiltiy mass function:

Binomial Distribution (n=10, p=0.5)
0.25}

)pkil —p)" % k=0,1,...,n
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Pr(X = k) = (

* Mean and variance
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E[X] =np, Var(X)=np(l-p)
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Hypergeometric distribution

* Models the number of successes when drawing n items from a finite
population size N with Ksucesses

 Example: From an urn with N = 20 balls, with K = 7 red, drawn = 5
balls one by one

° Sampllng WIthOUt replacement I—!ypergeometric Distribution (N=20, K=7, n=5)

0.40

* Probabiltiy mass function: 035
() (ot)
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(2) g
0.05 lﬁ

0 1 2 3 4 5
k (number of successes)



Markov’s inequality

If X is a non-negative random variable, then forany a > 0

EX]

1

Pr(X >a) <

If you have a random variable that can only take nonnegative values,
then the probability that it takes a very large value is at most its
average divided by that large value.

Intuition: If the average is small, then the variable cannot be very large very often.



Chebyshev’s inequality

For a random variable X with mean u and variance o, for all € > 0:

2
Pr(|X —p|>¢) < 2

g2

A random variable is very unlikely to be far from its mean, provided we
know its variance

Intuition: if variance is small, the variable stays close to its mean most of the time.



Back to probabilistic
validation



Performance function

We consider a performance function a fw;0) : W =R

* @ represents a given choice of design parameters
* W represents an uncertainty that follows a known distribution Pw

Main question:
What is the probability that a certain performance level is achieved?

Pryy{f(w;0) <~}



Examples of performance functions

For a closed-loop system affected by uncertainty : w
* Constraints are not violated for a simulation of 1000 steps
* Closed-loop cost is less than a given threshold for 1000 simulation steps

Easy to evaluate for a fixed — w(®



Probability estimation

Naive approach:
e Draw Ni.i.d samples of f(w”;8and count successes (semoulisample)

* Relative frequency:

A Countizl,...,N(f(w(i); 0) <~)
Py = N

How many samples are needed to obtain a reliable estimate?
* Two-level probability: accuracy with confidence 1—9

Pryys {|[Prw{f(w;0) <7} — Py| < e} >1-6



Sample complexity: well known bounds

Chebyshev bound Chernoff bound
1
N > In (2/0)
— 4€2) N = 2¢2

* Independent of the number of uncertainties and distribution
* Assumes bounded random variables (e.g. [0,1])



Chebyshev bound

* The true but unknown probability is Pri{f(w;0) <~} =0p

* Relative frequency

A count;—q.
PN — 9 9

The numerator is is a binomial dist. with N trials and probability p

e Therefore E {PN} =pand Var {PN} = p(lj\;p) (see slide of binomial dist.)

We can now rewrite our desired probability

Pryyn {|Prw{f(w;0) <7} — Pn| < e} >1-94
dasS:
Pryyw {|E {PN} Pyl <ey>1-0



Chebyshev bound (I1)

2
e Recall Chebyschev’s inequality: Pr(|X —pu|>¢) < ;.

* Change direction of inequalities in the probabilities
Pryys {|Prw{f(w;0) <7} — Py| < e} 216
}
Pryy~x{[Prw{f(w;0) <~} — Pn| > €} < §

p(1 —p) ’
N

* From previous slide we have:  Var {PN} —

* Using Chebyschev’s inequality, we obtain:
. Var pN 1 — 1
Pryyn {|Prw{f(w;0) <~} — Py| > €} < GL ] _r-p)
|
1

N >
— 4e2)




Sample complexity: well known bounds

Chebyshev bound Chernoff bound
1
N> In (2/9)
— 4e2) N 2 22

* Independent of the number of uncertainties and distribution
* Assumes bounded random variables (e.g. [0,1])
e But often leads to a large number of samples
e=0=0.005 — N =119,830
* Fortunately, it can be improved! [Tempo, Bai, Dabbene, SCL 1997]



Well known bounds... and great improvements

Fortunately, Chernoff bound can be improved! [Tempo, Bai, Dabbene, 1997]
* Focus on the worst-case performance / empirical maximum

va (w — w[l:N];ﬂ) = max f(w{i);é?)

1.1
If the number of samples is such that N > —In -

then the following inequality holds: €
X IV (wr: < e
Pr{Pr{f(w;0) > J¥(w;0)} <e} > 13

e=0=0.000 — N >1,058

Use this method to verify optimality of NN controllers using the dual
[Zhang et al., ACC 2019]



° ° (1 —¢€)-Quantile ge: Pr(Z>qe) =€
Sketch of the derivation oo

0331 :__ g;i\prob £
0.30f ;

L0250 i
@ 0,20}
S 0.5}
0.10f

 We are interested in the (1 — €) quantile ¢ =

Value of Z 0

* Consider the empirical maximum:

Empirical maximum /¥ vs. (1 — €)-quantile g.

* Failure event: what is the probability that none -

0.05¢

of the N samples lands in the &-tail? oonf_

Value of Z

Pr(JY <g)=(1-¢)"
* Which can be bounded by:

Pr(.ff"r <q:)=(1- e)yV < eV,
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Sketch of the derivation (ll)

* Why does this bound hold?

Comparison: 1 — e vs. e™¢
1.0r 1-¢

0.81

0.6}

Value

0.4}

0.2}

0.0

0.0 0.2 0.4 0.6 0.8 1.0

P‘r(J’f"‘r <g:)=(1- e)N < eV,

0
Comparison for N =20: (1 — &)V vs. e~V
10 B (1_&-)20
e—20£
0.8}
L, 0.6F
3
@©
= 0.4}
0.2}
O.O i | 1 1 1 1 |
0.0 0.2 0.4 0.6 0.8 1.0
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Sketch of the derivation (lIl)
* Given Pr(J{ <q.)=(1-¢)V < eV

* Choose the number of samples N such that it holds that

Pr(Jy <g)=(1-¢)V <3¢

By taking logarithm on both sides of the inequality we get:

: 1.1
(1—e)VN <e*N < § = N > = IHE'
£



Additional improvements

The previous bound has a problem for increasing N and general
unbounded uncertainty because

: Nio. ) —
j\;gnoo Ji' (w; 0) = o0

e [Alamo et al., 2016, 2018] proposes the use of generalized maximum
* (remove the r largest values and then take the maximum)




Quick derivation (no details shown)

* The sum of the Bernoulli variables Z; follows a binomial distrib.
K =) 1{Z; > g} ~Bin(N,e)

i=1

Pr(JY¥ <q.)=Pr(K <r—1) < exp(— (Ve — (r— 1))2) <4

2Ne

e Solve for N:

NZ1 ”I"—l—l—hrl}—l—\/2(7"—1)1n1 .
€ 0 0



- Probabilistic validation for
approximate control



Using prob. validation for approximate control

We can use:

* General performance functions

* Closed-loop constraint violations for a finite-time simulation
* Closed-loop cost for a finite-time simulation
* Including detailed models for simulation or estimation errors

e Discard the r largest values facilitate validation
* Obtain probabilistic validation statements
e (Adapt controller if the validation is not satisfactory)



A towing kite

Probabilistically safe, embedded robust output-feedback NMPC

9' _ Ua (COS W tan Qkite

kite — 7 kite ~— ’
L E

é i

L= — S1n Y, .
kite . kite»
Lysin @y,
. Ua ~ H
Wiite = 78 T e COS Oipe»

Ly

* Objective is to maximize thrust
 Two states can be measured, EKF to estimate

Erhard and Strauch, 2012

* Uncertain aerodynamic coefficients and wind parameters
* Minimum height constraint



Controller design and training

* Robust NMPC with 8 scenarios for the uncertain parameters

 Add a backoff to the constraint:

e Estimation errors
* Approximation errors
e Scenario errors

* Generate data (closed-loop simulations)

* Train a deep neural network

1024

MSE

1073

104

kite model

3-
Ms ~ = ™ =

wind model
Ec l:-i :l.“ -qx- ’:::3

=== shallow (equal number of neurons)

—-—=shallow (equal number of weights)

S

Type

State

State

State

Control input

Known parameter
Known parameter
Known parameter
Known parameter

Uncertain parameter

State
Known parameter
Known parameter
Known parameter

Uncertain parameter
Uncertain parameter

Values / Constraints

normal(0, 0.25)

Units
rad
rad
rad

N

rad
kgm™




Probabilistic validation

Define the performance function (with backoff ) 7

¢(w; Nsim, Kdnn,n) = _ 08X (hmin — h(z(j,w))),
The controller is probabilistically safe if with probability 1 —0

PI‘V\;(¢(UJ; NSiIIl) /fdnn,n) > O) < €,
We need the following number of samples:
e=0020=1x10%r=4 — N =1388

More details in:

B. Karg, T. Alamo, und S. Lucia, ,,Probabilistic performance validation of deep learning-based robust NMPC controllers”, Int J Robust Nonlinear Control, Bd. 31, Nr. 18, S.
8855-8876, 2021, doi:


https://doi.org/10.1002/rnc.5696

Results

Embedded real-time implementation on an ARM-Cortex M3

* 96 kB memory footprint, 32 ms running time for DNN and 28 ms for EKF

50 —

N,
exact s | — 1007 -~ N\, 7
451 —-=— approximate /'/ Y o S -
RN p-p = | = 0_\'\ 7 AN =
/ AY 1 height constraint — / \ N Vi N, e
404\ 7 TR I —100{ N RN
i \ s A \ | <
i \ / YN 1%
359§ \ / I S - 3TN e
d \ i Iy i 54 iV S / N
& \'\ \ I /i / = i N AN AN
£ 307 A \ i I Y/ = 0 i AN P2 -
< \ \ /i / N/ <N v
95 1 N\ \ A / 5N \ "<
5 N \, Yy, // | | | et |
\ \ 7/ d
. \\ .\. / /./ Y 3.5
20 sy ~ v A —_—
\ ~. - / T
. T = 75}
151 e — EREE
g wind speed
10 v
—60 —40 —20 0 20 40 60 0 10 20 30 40 0 60
Prite [°] t [s]
controller Kdnn,O Kdnn,2 Kdnn,4 K dnn,6

feasible trajectories  660/1388  1380/1388  1385/1388  1387/1388
w(v,4) [m] 1.682 0.273 -0.316 -1.818
Tx (avg.) [kN] 227.516 225.997 224.185 222.179
probabilistically safe No No Yes Yes




Test with other distributions

* If samples for validation are generated from a different distribution as
the final validation, it still works in this case

1.21 7% S LLLLLILE bounds
: / \ : = uniform
1.0 . /; - : === normal
: h \ === beta(2,5)
0.81 ] \‘. pareto(5.0,4.5)
| - \
0.4 I N,
| N,
0.24 ! ‘
=== I \'\N.
0.0- e e o —— ...: e} ) PR G :
3.0 35 4.0 45 5.0 5.5 6.0 6.5 7.0
Ey[-]
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Other popular
use Of the Same » The scenario approach
theory



Motivation for scenario approach

* Probabilistic validation gives a posteriori guarantees for one
performance metric

e But the same theoretical basis can be used for other problems

» Scenario approach gives probabilistic guarantees for sampled convex
problems

[Calafiore and Campi. The scenario approach to robust control design 2006, TAC]



Application of the scenario approach to MPC

e How to solve a stochastic MPC with chance constraints?

N—-1
min 5 E xz|tvuz|t)]
'U,[O

—1]|t .

S.t. T = A(wt+i)5€z’\t + B(wiyq ) uge + d(wigq),
rog =2t Vi=0,...,N—1,
Prw[t:t+N—1]NWN [:E[";:i‘FNHt g X] S €



SPy :minc! 6

Many applications in MPC 0eo

subject to 0 € Ni=1,... . NO,»

* Extensions to multiple chance constraints (Schildbach et al., 2014)

iy mple N —1
min Ell(z;, uqt)],
U[o: N —1]|¢ ; [ ( 7’|t 7’|t)] u[ol'[;rll’ll kz:l Z(; g $z|tuuz‘t
st @ipap = A(wesa) i+ B(we)ui + d(wes), st ahy, = Alw)e) + Bl + d(w),
xo‘t:l’t VZZO,...,N—l, (k)_xt VE — 1 N 1
— 4y -+ V¥sample,

0|t
Prw[t:t+N—1]NWN [aj[’iii"‘NHt ¢ X} < €

up €U Vi=0,...,N - 1.

(|t) eX Vi=0,. N,szl,---,Nsample:

up €U Vi=0,...,N—1.

e Extensions to include feedback in the predictions



Generalization in the scenario approach

Theorem: If the SP is convex and there exist a unique solution to the
SP, then the following bound on the probability of violation holds:

d—1
N\ |
Prypw {V(6*) > e} < ) ( | )62(1 — )N
1=0 ¢
We want that the right-hand side is < 6
Then the inequality holds if

N>g(log<1) +d—1)
€ )



Main characteristics of the scenario approach

* Applicable to any uncertain convex program

* The number of scenarios increases with the number of optimization
variables, but not with the dimension of the uncertainty

* The result is independent of the probability distribution. You just
need independent samples from it (which can be experimental data)

* Provides a controller design algorithm and not just an a posteriori
validation



Some numbers

N>2(10g(1) +d1)
€ )

e §=10"3%e=10"%d =10 - N > 3182

¢ 5=10"1%¢=10"%,d =10 - N > 6406

¢« 5=10"1%¢=10"%,d =100 - N > 24405

¢« 5=10"1%¢=10"%,d = 1000 - N > 204406

¢« 5§=10"1%€=5-10"%,d = 1000 —» N > 40882



Summary



Summary: Probabilistic validation

* Your performance indicator is a
Bernoulli variable

* You can draw samples from the
real probability distribution

* Number of samples grows fast
for very small ¢

* A controller is available

 Sample complexity does not
depend on the dimension of
the uncertainty

e Can be used with detailed
simulators

* Obtain probabilistic guarantees
for very general cases



Distributionally robustness

* Can we say something if we do not know the probability distribution

exactly?
3 _' | L '_ 3 _l A
- f5(5) ; = (%) ]
9 [ MRVDf']B((S) A 9 | - MRVDfﬁ(a) ]
= | fr(6) S fP,(Q

_ / \ _
Y/ N
7 N 0 2NN,

—25 0.0 2.5 —2.5 0.0 2.5

) )

* In some situations, this results simply in an adapted risk &

[Heinlein, Alamo and Lucia, CDC 2025. Available online: arXiv:2409.01177]
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Final discussion

* Are probabilistic guarantees in control valuable?

* |s all this theory really relevant to achieve robust control of complex
systems?



Complexity of design vs. test

Design: Robust NMPC requires solving minmax optimization problems
* Exponential growth with horizon length and uncertainty dimension.

Test: Run simulations once a (approximate) controller exists is simple
* It may not scale exponentially

Can we derive conclusions by testing performance N times?
* To obtain some guarantees, does N scale exponentially with problem size?



Extra slides



Sketches of proofs and
derivations

Largely based on

[T. Alamo, J. M. Manzano, and E. F.
Camacho, ,Robust Design Through
Probabilistic Maximization, in
Uncertainty in Complex Networked
Systems: In Honor of Roberto Tempo,
T. Basar, Springer 2018]
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A quick dive into order statistics

* Define the generalized max function
T
* Given vector v=[v",v®, ™| eRrY
. . . . T .
* Rearrange it into non-increasing order v = o0, o] andth

’Ug_l) > ’Uf) > ... > vS_N_l) > ’US_N)
* Then forinteger 1<r < N:¢(v,r)= v@
* For us, wvcorresponds to sampled observations of the performance
metric Fw ;)
JN (w;0) = ¢ ({ ] ,7«)
fw™;0)

* This ordering trick shifts the perspective away from the underlying
uncertainty towards theydistribution resulting from the ordering



Defining the probability of failure

* Probability of asymptotic failure

* How likely does the r worst value out of N samples fail to bound the e-th
qguantile of the performance metric

Pryyv {Prw{ f(w; ) > J,." (w; 0)} > €}

* Probability of non-asymptotic failure

 The r worst value out of N samples w, € R%}Is to bound the s worst
value out of M other samples wp € R

Proyv+a {J (wq;0) < JM (wy; 0)}
* Simple case: M = s = 1: How likely will the next sample be worse?



Bounding the probability of non-asymptotic failure

= N, = M,

= Follows hypergeometric distribution

= Proof based on drawing samples
from an ordered vector

e Given N, M, r,swithl <r<N,1<s<M, ,
S
Pryyn+a {JN (wq;0) < JM (wy; 0)} < Z ZNJF?\;Z , withg=r+s—1
1=0 ( q )
e N =200
* Follows hypergeometric distribution 100 g "
_ o ° . o
* Independent on uncertainty and -1 L . °
performance metric © . o &
. © 102t ° o ® M=1s=1
* Proof based on drawing samples e ® ® M=105=1
i ® M=105=2
from an ordered vector 03k o M—1005—1
T : M =100,5 =2
v = [0, 0, o] e RV e T
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Proof of the bound for non-asymptotic failure

(1) (@) (N+M)]T c RN+M

e Proof: Ordered vector with N + M samples: v+ = [0/, ...of
* Denote its first ¢ = 7+ s — 1 components: == [o{,o{?. ... vf)] € R
« TcCcy™ s a configuration of N drawn samples of N + M samples without
replacement, is the chmplement
* Failure occurs, when less than r components of arefrom 1
Given i with 0 < i < r — 1, the probability that v (has exactly i

components in  3s given by: (N) ( M.)
q—1

N+M

()

Thensumupuntili=r—1
i) ()
PI'C§+M{¢('U(I),T') (v s)} < Z N+M) , withg=r+4+s—1




Bounding the probability of asymptotic failure

e Givenr and N with 1 <r < Nand €€ (0,1)

T)ea- g

(;

r—1

Prypn {Pr{ f(w;6) > TV (w;0)} > e} <> (

1=0

* Follows beta distribution 1.00 F

* Mean probability of failure

_ 0.755—
given by o L
N r 1 0.50:"

Eyyny |[Prw{f(w;8) > J,." (w;0)}] < N1 sk

0.00 |




Proof for the bound of asymptotic failure

N
(

Pryyn {Prw{f(w:;0) > J~ (w;0)} > €} < 2—: (

1=0

Jeita -

* Probability of non-asymptotic failure with s(M) = [eM]
« (1))

PrwN+M{J,,{V(wa;9) < Jéw(wbﬂg)} S Z (N—I— )
1=0 q

* Asymptotic convergence of hypergeometric to binomial distribution

Pryyn {Prp {f(w; 0) > JN (w;0)} > €} < A}lﬁ)noo Pryynva {JN (wg; 0) < J;\(/[M) (wp; 0)}

. — (J:]) (7“ S]\JJM 1—’i) — N i N—3
< lim Z ( JJF\,J(FMH) :Z<.)6(1—6)

T M—oo 4 _ : ()
1=0 T+S(M)+l—7, 12=0

, withg=r+s—1




Bounds on the sample size

* The finite sample guarantees are derived by bounds on the respective
distributions

PrWN{PrW{f(w;H) > J?{V(w’g)} > 6} S i ( >€i(1 . E)N—z‘

%N>1<r1+ln§+\/2(rl)ln§> r=1 ]\leln1

N
(!

e 0

* Probability of failure for the next sample:

Pryyn {Prow { f(w:0) > J (w; 0)}} < ~—

N +1




* Area under the curve corresponds to confidence

Density of the right hand side for several param.

1—9
For N = 40
]
-—— d=4
------ d=8
—= d=16 |
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Proof: support constraints

* A constraint is a support constraint if its removal improces the
solution of the program

* A convex program with d degrees of freedom has at most d support
constraints

6'2 62

™ ™
optimizatiog'direction ‘optimization direction
™ ™
™ ™ _
» 61 Ve | i . Y > 01




ldea behind the proof

* Assume we have a 2D problem with uniform uncertainty

min 1Tz
xcR2

subject to: Pwmu[o l}z{max(:cl — w1, 0) + max(xy — ws,0) > 0} <€

e Scenario problem

minlTx
xcR2

subject to: {max(z; — w?,0) + max(xs — w},0) >0} <0, j=1,..,N
* We need at most two samples in the
region with area € out of N samples

e Binomial distribution: draw at least
2 out of N with success chance €

1.0

0.8 -

0.6 1

~

0.4 -

0.2 1

0.0

—_— X1
—_— X
Region with two support constraints
Region with one support constraint

1-e=0.80

0.0

0.2

0.4

w1

0.6

0.8

1.0



Helly‘s lemma

* Proof number of constraints
* Convex sets defined by each constraints and the saded region with super-
optimal points
* Proof by contradiction: if support constraints larger than 2 then intersection
with shaded region non-empty, which contradicts the fact that the original
\theta is optimal

02 N
l optimization

direction




Generalization in the scenario approach

* The cummulative distribution of V' (6™) can be bounded as

d—1

: 1
1=0

* The right hand side is the cumulative distribution of a Beta distribution
with d and N — d + 1 degres of freedom. Its density is

N .v
)E(fl(l . E)P\e —d

fB(E)Zd(d



Removing scenarios to improve guarantees

* It is possible to sample and discard some scenarios

* Improve bound on cost
* In case of unbounded disturbance

dt+k—1
) k+d—1 |
Pryyw {V(6]) > ¢} < ( k ) > o) =5

* Bound more conservative (6 > 1 possible)



Order statistics in stochastic optimization

* Order statistics shifts the perspective from the underlying
distributions to the family of binomial distributions

* Results are independent on the number of uncertainties

* For convex programs: Scenario approach gives a prioiri guarantees by
including samples of the uncertain constraint

* Beyond convex programs: a posteriori guarantees
e Determine the number of support constraints after the solution
* Validate a guess by testing it multiple times



Applications and extensions

» Conformal quantile regression/ conformal predictors
* Use neural networks to fit error model
e Quantify their error with probabilistic validation
e Use this error as backoff

* Derive bounds on error norm to use in robust control Prv{llwllp >~} <7
* Compare finite families of controllers against each other

e BUT: always only one performance metric

B. Karg, T. Alamo, und S. Lucia, ,,Probabilistic performance validation of deep learning-based robust NMPC controllers”, Int J Robust Nonlinear Control, Bd. 31, Nr. 18, S. 8855—-8876, 2021, doi:

Y. Romano, E. Patterson, und E. Candes, ,Conformalized Quantile Regression”, in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2019. Zugegriffen: 18. Juli 2024. [Online].
Verfligbar unter:

K. Margellos, P. Goulart, und J. Lygeros, ,,On the Road Between Robust Optimization and the Scenario Approach for Chance Constrained Optimization Problems”, IEEE Trans. Automat. Contr., Bd. 59,
Nr. 8,S.2258-2263, Aug 2014, doi:


https://doi.org/10.1002/rnc.5696
https://proceedings.neurips.cc/paper/2019/hash/5103c3584b063c431bd1268e9b5e76fb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5103c3584b063c431bd1268e9b5e76fb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5103c3584b063c431bd1268e9b5e76fb-Abstract.html
https://doi.org/10.1109/TAC.2014.2303232

The scenario approach: the simplest setting

* Consider convex cost functions

* Consider only a finite number of samples in a worst-case setting

* Probabilistic validation can be understood as a convex optimization
problem with the performance metric as single decision variable



ldea behind the improvement

: 1. 1
* Pryyn {Prw{f(w;0) > JQ (w;0) < e} >1—6 WIWZEIHE

e Let’ssay Prw{f(w;0) > I (w;0)} > e

* How likely is it, that in N samples, we have not observed a larger
value than J (w; 9)



Analogy for the setting

* You have a game with winrate 1 — €
* Play N times without loosing
e Chance of success Pr = (1 — E)N

* Here, a win is equivalent to observing a sample < Ji' (w; 0)
* As Pryy{f(w;0) > va(’w;é’)}@ confidence at least
(1—-e) <6
 Use simplification (1 —¢)"V < exp(—eN) <6
e Take logarithmus exp(—€eN) <0
& —eN < In(9)
1. 1

SN > —1n =
_€n5



Value

Comparison: 1 —g vs. e~ ¢

Comparison for N =20: (1 — &)V vs. eV

0.8

0.6

Value

0.2}

— (1 _ 8)20
e—ZOE

0.0

0.0 0.2 0.4

0.6 0.8 1.0

69
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