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Motivation
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• The robust NMPC design problem is very complex

• We know how to design good approximate NMPC controllers
• Multi-stage NMPC

• Ellipsoidal-based NMPC

• Robust NMPC with approximate reachable sets

• Tube-based NMPC

• Approximate robust NMPC via NNs



Complexity of design vs. test
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Design: Robust NMPC requires solving minmax optimization problems
• Exponential growth with horizon length and uncertainty dimension.

Test: Running simulations once an (approximate) controller exists is simple
• It may not scale exponentially

Can we derive conclusions by testing performance N times?
• To obtain some guarantees, does N scale exponentially with problem size?



We will obtain an answer for this question
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How many simulations N do I have to run with a given controller 𝜅, so 
that I can say with a confidence of 99.9999 % that the constraints will 

not be violated with a probability larger than 98% the next time I apply 
the controller, provided that I only observe constraint violations in 4 of 

my simulations?

𝑁 = 1297
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Thank you for your 
attention!
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Some basics of 
probability theory



Really, just some basics
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• Binomial coefficient:

• Describes the number of distinct ways to choose k elements from a 
set of n elements ignoring the order



Binomial distribution
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• Models the number of successes in 𝑛 independent trials, each with 
probability 𝑝

• Example: Toss a coin 𝑛 = 10 times 𝑝 = 0.5

• Sampling with replacement

• Probabiltiy mass function:

• Mean and variance



Hypergeometric distribution
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• Models the number of successes when drawing 𝑛 items from a finite 
population size 𝑁 with 𝐾sucesses

• Example: From an urn with 𝑁 = 20 balls, with K = 7 red, draw n = 5 
balls one by one

• Sampling without replacement

• Probabiltiy mass function:



Markov’s inequality
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If X  is a non-negative random variable, then for any 𝑎 > 0

If you have a random variable that can only take nonnegative values, 
then the probability that it takes a very large value is at most its 
average divided by that large value.
Intuition: If the average is small, then the variable cannot be very large very often.



Chebyshev’s inequality
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For a random variable 𝑋 with mean 𝜇 and variance 𝜎, for all 𝜀 > 0:

A random variable is very unlikely to be far from its mean, provided we 
know its variance
Intuition: if variance is small, the variable stays close to its mean most of the time.
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Back to probabilistic 
validation



Performance function
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We consider a performance function a
•     represents a given choice of design parameters

•      represents an uncertainty that follows a known distribution 

Main question:

What is the probability that a certain performance level is achieved?



Examples of performance functions

15

For a closed-loop system affected by uncertainty     :
• Constraints are not violated for a simulation of 1000 steps

• Closed-loop cost is less than a given threshold for 1000 simulation steps

Easy to evaluate for a fixed

 

Can we draw conclusions from multiple evaluations?



Probability estimation
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Naive approach:

• Draw      i.i.d samples of                 and count successes (Bernoulli sample)

• Relative frequency:

How many samples are needed to obtain a reliable estimate?

• Two-level probability: accuracy     with confidence



Sample complexity: well known bounds
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Chebyshev bound

• Independent of the number of uncertainties and distribution

• Assumes bounded random variables (e.g. [0,1])

Chernoff bound



Chebyshev bound
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• The true but unknown probability is

• Relative frequency

The numerator is is a binomial dist. with N  trials and probability p

• Therefore                       and                                  (see slide of binomial dist.)  

We can now rewrite our desired probability

as:



Chebyshev bound (II)
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• Recall Chebyschev’s inequality:

• Change direction of inequalities in the probabilities

• From previous slide we have:

• Using Chebyschev’s inequality, we obtain:



Sample complexity: well known bounds
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Chebyshev bound

• Independent of the number of uncertainties and distribution

• Assumes bounded random variables (e.g. [0,1])

• But often leads to a large number of samples

• Fortunately, it can be improved! [Tempo, Bai, Dabbene, SCL 1997]

Chernoff bound



Well known bounds… and great improvements
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Fortunately, Chernoff bound can be improved! [Tempo, Bai, Dabbene, 1997]

• Focus on the worst-case performance / empirical maximum

If the number of samples is such that

then the following inequality holds:

Use this method to verify optimality of NN controllers using the dual
[Zhang et al., ACC 2019]



Sketch of the derivation
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• We are interested in the (1 − 𝜀) quantile

• Consider the empirical maximum:

• Failure event: what is the probability that none 
of the N samples lands in the 𝜀-tail?

• Which can be bounded by:

0

0



Sketch of the derivation (II)
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• Why does this bound hold?
0



Sketch of the derivation (III)
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• Given

• Choose the number of samples 𝑁 such that it holds that

By taking logarithm on both sides of the inequality we get:



Additional improvements
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The previous bound has a problem for increasing 𝑁 and general 
unbounded uncertainty because

• [Alamo et al., 2016, 2018] proposes the use of generalized maximum
• (remove the r largest values and then take the maximum) 



Quick derivation (no details shown)
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• The sum of the Bernoulli variables 𝑍𝑖 follows a binomial distrib.

• Solve for N:
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Probabilistic validation for 
approximate control 



Using prob. validation for approximate control
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We can use:

• General performance functions
• Closed-loop constraint violations for a finite-time simulation

• Closed-loop cost for a finite-time simulation

• Including detailed models for simulation or estimation errors

• Discard the r  largest values facilitate validation

• Obtain probabilistic validation statements

• (Adapt controller if the validation is not satisfactory)



A towing kite
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Probabilistically safe, embedded robust output-feedback NMPC

• Objective is to maximize thrust

• Two states can be measured, EKF to estimate

• Uncertain aerodynamic coefficients and wind parameters

• Minimum height constraint

Erhard and Strauch, 2012



Controller design and training
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• Robust NMPC with 8 scenarios for the uncertain parameters

• Add a backoff to the constraint:
• Estimation errors

• Approximation errors

• Scenario errors

• Generate data (closed-loop simulations)

• Train a deep neural network 



Probabilistic validation
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Define the performance function (with backoff    )

The controller is probabilistically safe if with probability           :

We need the following number of samples:

More details in:

B. Karg, T. Alamo, und S. Lucia, „Probabilistic performance validation of deep learning-based robust NMPC controllers“, Int J Robust Nonlinear Control, Bd. 31, Nr. 18, S. 
8855–8876, 2021, doi: 10.1002/rnc.5696.

https://doi.org/10.1002/rnc.5696


Results
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Embedded real-time implementation on an ARM-Cortex M3 

• 96 kB memory footprint, 32 ms running time for DNN and 28 ms for EKF



Test with other distributions
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• If samples for validation are generated from a different distribution as 
the final validation, it still works in this case
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Other popular 
use of the same 
theory

The scenario approach



Motivation for scenario approach
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• Probabilistic validation gives a posteriori guarantees for one 
performance metric

• But the same theoretical basis can be used for other problems

• Scenario approach gives probabilistic guarantees for sampled convex 
problems

Largely developed by M. Campi and G. Calafiore

[Calafiore and Campi. The scenario approach to robust control design 2006, TAC]



Application of the scenario approach to MPC
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• How to solve a stochastic MPC with chance constraints?



Many applications in MPC
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• Extensions to multiple chance constraints (Schildbach et al., 2014)

• Extensions to include feedback in the predictions



Generalization in the scenario approach
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Theorem: If the SP is convex and there exist a unique solution to the 
SP, then the following bound on the probability of violation holds:

We want that the right-hand side is ≤ 𝛿

Then the inequality holds if 



Main characteristics of the scenario approach
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• Applicable to any uncertain convex program

• The number of scenarios increases with the number of optimization 
variables, but not with the dimension of the uncertainty

• The result is independent of the probability distribution. You just 
need independent samples from it (which can be experimental data)

• Provides a controller design algorithm and not just an a posteriori 
validation



Some numbers
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• 𝛿 = 10−3, 𝜖 = 10−2, 𝑑 = 10 → 𝑁 ≥ 3182

• 𝛿 = 10−10, 𝜖 = 10−2, 𝑑 = 10 → 𝑁 ≥ 6406

• 𝛿 = 10−10, 𝜖 = 10−2, 𝑑 = 100 → 𝑁 ≥ 24405

• 𝛿 = 10−10, 𝜖 = 10−2, 𝑑 = 1000 → 𝑁 ≥ 204406 

• 𝛿 = 10−10, 𝜖 = 5 ⋅ 10−2, 𝑑 = 1000 → 𝑁 ≥ 40882 
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Summary



Summary: Probabilistic validation
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• Your performance indicator is a 
Bernoulli variable

• You can draw samples from the 
real probability distribution

• Number of samples grows fast 
for very small 𝜀

• A controller is available

• Sample complexity does not 
depend on the dimension of 
the uncertainty

• Can be used with detailed 
simulators

• Obtain probabilistic guarantees 
for very general cases

Main Assumptions / Limitations Main strengths



Distributionally robustness
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• Can we say something if we do not know the probability distribution 
exactly?

• In some situations, this results simply in an adapted risk 𝜀

[Heinlein, Alamo and Lucia, CDC 2025. Available online: arXiv:2409.01177]



Final discussion
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• Are probabilistic guarantees in control valuable?

• Is all this theory really relevant to achieve robust control of complex 
systems?



Complexity of design vs. test
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Design: Robust NMPC requires solving minmax optimization problems
• Exponential growth with horizon length and uncertainty dimension.

Test: Run simulations once a (approximate) controller exists is simple
• It may not scale exponentially

Can we derive conclusions by testing performance N times?
• To obtain some guarantees, does N scale exponentially with problem size?
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Extra slides
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Why do 
these 
bounds 
hold?

Sketches of proofs and 
derivations

Largely based on
[T. Alamo, J. M. Manzano, and E. F. 
Camacho, „Robust Design Through 
Probabilistic Maximization“, in 
Uncertainty in Complex Networked 
Systems: In Honor of Roberto Tempo, 
T. Başar, Springer 2018]



A quick dive into order statistics
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• Define the generalized max function
• Given vector 
• Rearrange it into non-increasing order                                           with

• Then for integer                 : 

• For us,     corresponds to sampled observations of the performance 
metric

• This ordering trick shifts the perspective away from the underlying 
uncertainty           towards the distribution resulting from the ordering



Defining the probability of failure
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• Probability of asymptotic failure
• How likely does the 𝑟 worst value out of 𝑁 samples fail to bound the 𝜖-th 

quantile of the performance metric

• Probability of non-asymptotic failure
• The 𝑟 worst value out of 𝑁 samples                       fails to bound the 𝑠 worst 

value out of 𝑀 other samples

• Simple case: 𝑀 = 𝑠 = 1: How likely will the next sample be worse?



Bounding the probability of non-asymptotic failure
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• Given 𝑁, 𝑀, 𝑟, 𝑠 with 1 ≤ 𝑟 ≤ 𝑁, 1 ≤ 𝑠 ≤ 𝑀,                   ,                      :

• Follows hypergeometric distribution

• Independent on uncertainty and
performance metric

• Proof based on drawing samples
from an ordered vector



Proof of the bound for non-asymptotic failure
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• Proof: Ordered vector with 𝑁 + 𝑀 samples:
• Denote its first 𝑞 = 𝑟 + 𝑠 − 1 components:

•                   is a configuration of 𝑁 drawn samples of 𝑁 + 𝑀 samples without 
replacement,        is the complement

• Failure occurs, when less than 𝑟 components of     are from

• Given 𝑖 with 0 ≤ 𝑖 ≤ 𝑟 − 1, the probability that          has exactly 𝑖 
components in     is given by:

• Then sum up until i = 𝑟 − 1



Bounding the probability of asymptotic failure
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• Given 𝑟 and 𝑁 with                     and 

• Follows beta distribution

• Mean probability of failure
given by



Proof for the bound of asymptotic failure
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• Probability of non-asymptotic failure with

• Asymptotic convergence of hypergeometric to binomial distribution



Bounds on the sample size
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• The finite sample guarantees are derived by bounds on the respective 
distributions

• Probability of failure for the next sample:

r=1



Density of the right hand side for several param.
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• Area under the curve corresponds to confidence 

For 𝑑 =  2 For 𝑁 = 40



Proof: support constraints
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• A constraint is a support constraint if its removal improces the 
solution of the program

• A convex program with 𝑑 degrees of freedom has at most 𝑑 support 
constraints



Idea behind the proof
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• Assume we have a 2D problem with uniform uncertainty

• Scenario problem

• We need at most two samples in the
region with area 𝜖 out of 𝑁 samples

• Binomial distribution: draw at least
2 out of N with success chance 𝜖



Helly‘s lemma

• Proof number of constraints
• Convex sets defined by each constraints and the saded region with super-

optimal points

• Proof by contradiction: if support constraints larger than 2 then intersection 
with shaded region non-empty, which contradicts the fact that the original 
\theta is optimal
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Generalization in the scenario approach
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• The cummulative distribution of 𝑉(𝜃∗) can be bounded as

• The right hand side is the cumulative distribution of a Beta distribution 
with 𝑑 and 𝑁 − 𝑑 + 1 degres of freedom. Its density is



Removing scenarios to improve guarantees
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• It is possible to sample and discard some scenarios
• Improve bound on cost

• In case of unbounded disturbance

• Bound more conservative (𝛿 > 1 possible)



Order statistics in stochastic optimization
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• Order statistics shifts the perspective from the underlying 
distributions to the family of binomial distributions

• Results are independent on the number of uncertainties

• For convex programs: Scenario approach gives a prioiri guarantees by 
including samples of the uncertain constraint

• Beyond convex programs: a posteriori guarantees
• Determine the number of support constraints after the solution

• Validate a guess by testing it multiple times



Applications and extensions

65

• Conformal quantile regression/ conformal predictors
• Use neural networks to fit error model
• Quantify their error with probabilistic validation
• Use this error as backoff

• Derive bounds on error norm to use in robust control

• Compare finite families of controllers against each other

• BUT: always only one performance metric

B. Karg, T. Alamo, und S. Lucia, „Probabilistic performance validation of deep learning-based robust NMPC controllers“, Int J Robust Nonlinear Control, Bd. 31, Nr. 18, S. 8855–8876, 2021, doi: 
10.1002/rnc.5696.
Y. Romano, E. Patterson, und E. Candes, „Conformalized Quantile Regression“, in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2019. Zugegriffen: 18. Juli 2024. [Online]. 
Verfügbar unter: https://proceedings.neurips.cc/paper/2019/hash/5103c3584b063c431bd1268e9b5e76fb-Abstract.html
K. Margellos, P. Goulart, und J. Lygeros, „On the Road Between Robust Optimization and the Scenario Approach for Chance Constrained Optimization Problems“, IEEE Trans. Automat. Contr., Bd. 59, 
Nr. 8, S. 2258–2263, Aug. 2014, doi: 10.1109/TAC.2014.2303232.

https://doi.org/10.1002/rnc.5696
https://proceedings.neurips.cc/paper/2019/hash/5103c3584b063c431bd1268e9b5e76fb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5103c3584b063c431bd1268e9b5e76fb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5103c3584b063c431bd1268e9b5e76fb-Abstract.html
https://doi.org/10.1109/TAC.2014.2303232


The scenario approach: the simplest setting
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• Consider convex cost functions

• Consider only a finite number of samples in a worst-case setting

• Probabilistic validation can be understood as a convex optimization 
problem with the performance metric as single decision variable



Idea behind the improvement

67

•                                                                                            with 

• Let’s say  

• How likely is it, that in N samples, we have not observed a larger 
value than                  ?



Analogy for the setting
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• You have a game with win rate 1 − 𝜖

• Play N times without loosing

• Chance of success

• Here, a win is equivalent to observing a sample ≤ 

• As                                                                      confidence at least

• Use simplification

• Take logarithmus
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