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Conceptual RMPC Problem
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1. Objective

2. Constraints

3. Performance

4. Stability

Uncertainty entering in dynamics, constraints and cost



Two perspectives on the robust OCP

3

Uncertainty gets 
convoluted 
through system 
function over 
multiple time 
steps

Set-based 
robust OCP 
decouples the 
propagation

Helpful to 
reduce 
complexity

Process Automation Systems (PAS)



Agenda
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• Propagating reachable sets through nonlinear systems
• General description

• Simplifications/ Favorable Cases

• Monotonicity as favorable case

• Generalizing from there on

• When in doubt, try neural networks

Process Automation Systems (PAS)



What is a reachable set?
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• Consider systems

• Consider fixed time discretization for continuous systems

• Given an initial set and some inputs , the reachable set
at time     spans all the states, the system can reach

• Are important for verification and robust predictions



Tube-based model predictive control
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• Reachable sets span the tube

• Linear system, additive uncertainty

→Tube dynamics independent
from nominal trajectory

• More unfavorable cases
require online computation
of tubes or reachable sets



Computing exact reachable sets
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• Exact reachability can be undecidable [1]

• Consider nonlinear system

• Given     and     , 
verifying                         is hard  

• Fun fact: the set of all complex
for which      remains small 

is the Mandelbrot set

•

https://doi.org/10.1145/3302504.3311796


Approximations of reachable sets via scenarios
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• In the linear case, outer approximation via scenario tree

• Consider all vertices of uncertainty set       as branches

• Reachable set encompassed by convex hull of all scenarios

• Number of scenarios grows exponentially

• No guarantees in the nonlinear case for non-discrete 



Support function for general shapes
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• Introduced by Villanueva[1]

• General convex set, utilizes support function

• Always points to the most outward point             in direction     

• Set inclusion

https://doi.org/10.1007/s10898-014-0235-6


Generalized differential inequalities (GDIs)
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• Support function

• The set            describes the evolution of a convex over-
approximation of the reachable set via                                            , if: 

• Then

https://doi.org/10.1007/s10898-014-0235-6


Generalized difference inequalities - Discrete
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• The sequence of sets       describes a convex over-
approximation of the reachable sets via

• The border of             must be larger than the maximum next 
state starting from        in every direction

• Then

https://doi.org/10.1007/s10898-014-0235-6


Challenges of GDIs in predictive control
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• Find special cases for which complexity can be reduced

•

•

•

•

•

•

•



Fixed parameterizations of reachable sets

Process Automation Systems (PAS) 13

• Convex parameterizations
• Intervals/Rectangles

• Only 2𝑛𝑥 parameters

• Can only represent scaling and translation

• Polytopes
• Generalizing rectangles

• Arbitrary number of faces

• Zonotopes
• Polytopes with parallel faces

• Ellipsoids

• How can reachable sets then be calculated?



Differential and Difference Inequalties
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• To obtain the difference inequality for intervals, use[1]

• Discrete case: Difference inequality for every state 𝑖

• Continuous case: Differential inequality

• In the continuous case only growth of the border considered

https://doi.org/10.1007/s10898-014-0235-6


Interval reachable sets
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• Simple set

• Reachable set overapproximated by

With                       and 

• How to obtain                                        ,                                           ?



Monotonicity for difference inequalities 
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• Just consider discrete case

• The system is monotone in states               and uncertainty
if for 

and for 

• Monotonicity can be shown by signs of Jacobian
• All elements positive for discrete system

• Off-diagonal positive for continuous system

• Temperature control, epidemic models, double integrator
D. Angeli und E. D. Sontag, „Monotone control systems“, IEEE Trans. Automat. Contr., Bd. 48, 
Nr. 10, S. 1684–1698, Okt. 2003, doi: 10.1109/TAC.2003.817920.

https://doi.org/10.1109/TAC.2003.817920


Monotonicity for difference inequalities 
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• The system is monotone in states               and uncertainty
if for 

and for 

• Solution to difference inequality is trivial for



Monotonicity is important – General sets
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• We have the sets       and      with                  and     and with                

• Note that 

• Then

• Because of the max operator, a larger set 
can only lead to an increase in 

• The notion of monotonicity is intertwined with the description 
of reachable sets
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Robust 
MPC for 
monotone 
systems

For discrete systems

Can be easily extended for 
continuous systems

Follows [Heinlein, 
Subramanian, Molnar, and 
Lucia, „Robust MPC 
approaches for monotone 
systems“]



Reachable set propagation
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• Monotonicity solves two of the three challenges in GDI
• Interval sets can be calculated by evaluating the system function

• No bilevel problem

• No over-approximation error

• Directly applicable for open-loop robust MPC

…



Open-loop robust monotone MPC approach
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Two uncertainty
scenarios:       and

For box constraints no
conservatism due to
intervals

One input for all 
uncertainty realizations



Problem with open-loop predictions
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• Assume the system , with

• Regardless of chosen  input        , reachable sets will blow up

• MPC is no open-loop method → Feedback
•

Recourse
•

•
•

•



Dynamics preserving feedback policy

Process Automation Systems (PAS) 23

• Inspired by multi-stage MPC

• Reachable set after 1 time step

• Scenarios based on state after
uncertainty realization

• Division of the reachable set
-> Multiple subsets

• Positioning of partition a 
degree of freedom

• For each subset individual
input

• Each subset is spanned by
two points 𝑥1
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Multiple time steps
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• Scenario tree possible: Dividing the propagation of each subset

• Exponential growth of scenarios with prediction horizon

• Or continue with open-loop prediction after few steps

• Idea: 
• Bound the propagation

of all the subsets

• Divide the bounding
rectangle as before

• Piecewise constant
feedback policy



Dividing and bounding
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• In each time step start with the reachble set

• Divide into subregions

• Propagate subregions
• Maximum realization

• Minimum realization

• Bound the propagations
= Reachable set for the next

time step

No exponential growth with the prediction horizon
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How are partitions implemented?
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Partitions 
defined by 
linear 
inequality and 
equality 
constraints



Closed-loop robust monotone MPC approach
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• 𝜇𝑠 number of subregions each
time step

• Defines the bounding of the
propagation

• ℎ(𝑥𝑘
1:𝜇𝑠 ±) orders the division

of subregions

• Recursive feasibility and
constraint satisfaction
proven for box constraints

M. Heinlein, S. Subramanian, M. Molnar, and S. Lucia, “Robust MPC approaches for monotone systems*,” in 2022 IEEE 
61st Conf. Decis. and Control (CDC), Dec. 2022, pp. 2354–2360. doi: 10.1109/CDC51059.2022.9992502. 

10.1109/CDC51059.2022.9992502


Robust control invariant sets
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• Recursive feasibility needs robust control invariant set (RCIS)

• A set, in which the method will find an input to remain in the
set regardless of the uncertainty

Open-loop Closed-loop

𝑢𝑅𝐶𝐼𝑆
3
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Calculation of robust control invariant set
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• This can be formulated as an optimization problem

• 𝑉 𝑥𝑖
µ𝑠+, 𝑥𝑖

1− as measure of the RCIS size (e.g. volume)

• ℎ(𝑥 1:µ𝑠 ±) orders subregions

• RCIS property is enforced

• Can be added as a 
constraint in the MPC 
problem for more flexibility



Robust control invariant set as safety filter
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• For monotone systems RCI sets 
easy to calculate

• When in RCI set, use 
monotonicity to check if input 
safe

• Can be implemented as 
constraint 

• Can be combined with nominal 
or approximate MPC

• Use RCI input as fallback
J. Adamek, M. Heinlein, L. Lüken, and S. Lucia, 
“Deterministic Safety Guarantees for Learning-Based
Control of Monotone Nonlinear Systems Under
Uncertainty,” IEEE Control Systems Letters, vol. 8, pp. 
1030–1035, 2024, doi: 10.1109/LCSYS.2024.3407635.
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Case study
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• Temperature control in a building

• 4 rooms in rectangle

• Each room 3 states: interior wall, exterior wall, interior
temperature

• 2 inputs: heating and cooling

• Additional exchange between
adjacent rooms



Building model
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• Linear model

• External influences with uncertainty:
• External temperature ±1 °𝐶

• Solar radiation ±25%

• Internal gains in
each room
uncertain during
work hours ±30%



Comparison of approaches
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Comparison of
• Nominal MPC

• Closed-loop MPC for
monotone systems

• Simplified approach

16 subregions for
closed-loop 
approach

Full approach ~16 s 
per solution

Simpl. approach
~42 ms per solution
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Simplifying general difference inequality
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• What to do with non-monotone systems?

•

•

•

•

•
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Beyond 
monotone 
systems

State transformations and 
mixed monotonicity



Monotonicity through state transformation
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• Monotonicity can be shown by signs of Jacobian
• All elements positive for discrete system

• Off-diagonal positive for continuous system

• Consider the biochemical system

• Under a linear transformation,
the system is monotone

• Can be checked with graph consistency

C. Kallies, M. Schliemann, R. Findeisen, S. Lucia, and E. Bullinger, “Monotonicity of Kinetic Proofreading,” IFAC-PapersOnLine, 
vol. 49, pp. 306–311, Dec. 2016, doi: 10.1016/j.ifacol.2016.12.144.

https://doi.org/10.1016/j.ifacol.2016.12.144


Finding solutions to difference inequalities
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• Can we solve the inner optimization problem in advance?

• Assume continuity and

• Mixed monotonicity: There exists a decomposition function

• Decomposes systems into increasing and decreasing 
components

S. Coogan, “Mixed Monotonicity for Reachability and Safety in Dynamical Systems,” in 59th IEEE Conference on Decision and 
Control, Jeju, Korea (South): IEEE, Dec. 2020, pp. 5074–5085. doi: 10.1109/CDC42340.2020.9304391.

https://doi.org/10.1109/CDC42340.2020.9304391


Mixed monotone robust MPC
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• Similar to monotone MPC

• Instead of system function
decomposition function

• Consideration of feedback with partition 
policy

• Recursive feasibility can be shown

• Terminal set also possible by
adding constraint

M. Heinlein, S. Subramanian, and S. Lucia, “Robust Model 
Predictive Control Exploiting Monotonicity Properties,” IEEE 
Transactions on Automatic Control, vol. 70, no. 9, pp. 6260–6267,
Sep. 2025, doi: 10.1109/TAC.2025.3558137.

https://doi.org/10.1109/TAC.2025.3558137


Availability of decomposition functions
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• Mostly rephrases the problem of difference inequalities

• For linear systems

• Combining this with linear state transformations gives
“Low complexity tube-based MPC” [1]

• Works similarly for bounded Jacobians

• Interval arithmetics can also be used [2]

• Introduces over-approximation errors

[1] B. Kouvaritakis and M. Cannon, Model Predictive Control. in Advanced Textbooks in Control and Signal Processing. Cham: Springer International Publishing, 
2016, doi: 10.1007/978-3-319-24853-0.
[2] T. Alamo, D. Limon, E. F. Camacho, and J. M. Bravo, “Robust MPC of constrained nonlinear systems based on interval arithmetic,” IEEE Proc. Control Therory and 
Appl., vol. 152, no. 3, pp. 325–332, May 2005, doi: 10.1049/ip-cta:20040480.

10.1007/978-3-319-24853-0
https://doi.org/10.1049/ip-cta:20040480


How to handle constraints
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• For interval sets, box constraints are trivial

• For linear constraints, use  Farkas Lemma

• Precompute       to avoid nonlinearity

• For nonlinear constraint                              , decomposition needed



Process Automation Systems (PAS) 42

Case Study Nonlinear mixed monotone 
CSTR Cascade



Case Study
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• Nonlinear & non-monotone CSTR-Cascade

• Scalable in states & uncertainties (𝑘; Δ𝐻𝑅)

• Minimize 𝑐𝑅,𝑚𝑎𝑥 − 𝑐𝑅
𝑄𝑅

2
− ||𝑐𝑆||𝑄𝑠

2

• Reachable sets via
decomposition function &
mixed monotonicity

• Partition policy for feedback

𝑖

→
→



Comparison of closed loop and open loop
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• Values averaged over 50 closed-loop simulations

• Closed loop cost (CLC) compared to MPC with correct parameters

• For 5 reactors, partitioning three times in 𝑐𝑆,1
• Rigorous robustness guarantees
M. Heinlein, S. Subramanian, and S. Lucia, “Robust Model Predictive Control Exploiting Monotonicity Properties,” IEEE Transactions 
on Automatic Control, vol. 70, no. 9, pp. 6260–6267, Sep. 2025, doi: 10.1109/TAC.2025.3558137.

https://doi.org/10.1109/TAC.2025.3558137


Simulation for 5 reactors
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General difference inequality – non-monotone

Process Automation Systems (PAS) 46

•

•

•

•

•

•

•

•

•
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More than 
rectangles

Exploring more complex 
shapes to avoid the 
wrapping effect



The wrapping effect
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• Interval sets capture monotone dynamics well

• They cannot represent rotation (non-monotonicity)

• This leads to conservativeness due to over-approximation

• The error accumulates over multiple time steps

• Termed 
“wrapping effect”

• Best orientation
depends on
dynamics



Edgy reachable sets in the linear case
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• Rotated sets may capture the dynamics better

• Zonotopes
• with 

• Linear transformed intervals

• Generalized by polytopes

• If                  and linear systems-> “Low complexity tube-base MPC” 

• Polytopes propagated for linear systems with Farkas Lemma
-> “General complexity tube-based MPC”

B. Kouvaritakis and M. Cannon, Model Predictive Control. in Advanced Textbooks in Control and Signal Processing. Cham: Springer International
Publishing, 2016, doi: 10.1007/978-3-319-24853-0.



Solving zonotopic difference inequality
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• Difference inclusion

• For bounded Jacobian or with a lot of analytical effort 
Decomposition:

• Assume also decomposition for constraints



Feedback strategy for zonotopic sets
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• Optimizing over feedback policies complicates decomposition

• Use same partitioning strategy

• For zonotope both sides of partition again zonotope with same



Robust MPC with zonotopes
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• Similar to previous approaches

• for subregions,            for bound

• Introducing auxiliary variable
to ensure non-emptiness

• Can also be used in cost

• Terminal set RCI, if replaced by

But how to get these decompositions reliably?
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Learning 
reachable set 
propagations

Surrogate modeling of 
decomposition functions



Surrogate decomposition function
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• For notational convenience, assume general polytope

• We seek surrogate model for constraints and propagation

• ToDos
• Choice of       /       (zonotope to be used in RMPC)

• Data generation

• Training

• Implementation in RMPC



Case study
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B

Industrial polymerization reactor

Process Automation Systems (PAS)



An industrial batch polymerization reactor
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• Tight temperature constraints

• Maximization of product in batch
S. Lucia, J. A. E. Andersson, H. Brandt, M. Diehl, und S. Engell, „Handling uncertainty in economic nonlinear model
predictive control: A comparative case study“, J. Process Control, Bd. 24, Nr. 8, S. 1247–1259, Aug. 2014, doi: 
10.1016/j.jprocont.2014.05.008.

9 differential states

3 control inputs

9 uncertain parameters (±10%) 

1 nonlinear constraint

https://doi.org/10.1016/j.jprocont.2014.05.008


Choice of the orientation of the zonotope
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• Heuristic approach because of nonlinearity

• Sampling reachable
sets from multiple
initial states

• Halfplanes from 
2D projections

• Focus on 𝑇𝑅 and 𝑚𝐴

• Keep axis aligned
halfspaces for easy
implementation of box constraints:                    /



Prediction capability – Zonotope vs Interval sets
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Neural 
networks with 1 
layer and 120 
neurons

Open-loop 
predictions for 
constant input

Zonotopes 
tighter bounds

Small violations



Implementation on closed loop
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Top: 2 partitions 
in 𝑇𝑅
Bottom: no 
partitions

Recourse 
enables more 
aggressive 
feeding strategy

Smaller batch 
times



General difference inequality – Zonotopes
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That’s it, folks!

•

•

•

•

•

•

•

•

•

•



Conclusion – Main takeaways
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• Reachable sets are monotone, but not boring

• Propagation of reachable sets describable by generalized 
difference/differential inequalities

• Tractability by convex parameterizations
• Intervals: Cheap, but conservative for non-monotone systems

• Zonotopes/Polytopes: More flexible, but more complex

• Ellipsoids: Also great option, but not covered here

• Overapproximation of inner maximization problem
• Analytical (decomposition function, monotonicity)

• Data-based

• Recourse by partitioning leaves dynamics unaltered


