

Monotonicity in propagating reachable sets

Scalable robust model predictive control for high dimensional systems

Conceptual RMPC Problem

minimize \mathbf{u},\mathbf{x}

subject to:

$$\sum_{k=0}^{N-1} \ell(x_k, u_k, d_k) + V_f(x_N)$$

$$x_{k+1} = f(x_k, u_k, d_k), x_0 = x_{\text{init}}$$

 $0 \ge g(x_k, u_k, d_k),$

$$0 \ge g(x_k, u_k, d_k),$$

$$0 \ge g_f(x_N),$$

$$k \in [0, N-1]$$

2. Constraints

3. Performance

4. Stability

Uncertainty entering in dynamics, constraints and cost

Two perspectives on the robust OCP

Open-loop min-max robust OCP (as in single shooting)

$$\min_{u} \max_{w \in \mathbb{W}} \sum_{k=0}^{N-1} \ell(\tilde{x}_{k}(u, w), u_{k}) + V_{f}(\tilde{x}_{N}(u, w))$$
s.t.
$$\max_{w \in \mathbb{W}} h(\tilde{x}_{k}(u, w), u_{k}) \leq 0, \quad k = 0, \dots, N-1$$

$$\max_{w \in \mathbb{W}} r(\tilde{x}_{N}(u, w)) \leq 0$$

Set-based robust OCP

$$\min_{\mathbb{X}, \pi(\cdot)} \sum_{k=0}^{N-1} \mathcal{L}(\mathbb{X}_k, \pi_k(\cdot)) + \mathcal{L}_f(\mathbb{X}_N)
\text{s.t.} \quad \mathbb{X}_0 = \{\bar{x}_0\},
\mathbb{X}_{k+1} = \mathcal{F}(\mathbb{X}_k, \pi_k(\cdot)), \qquad k = 0, \dots, N-1,
0 \ge h(x_k, \pi_k(\cdot)), \quad \forall x_k \in \mathbb{X}_k, \ k = 0, \dots, N-1,
0 \ge r(x_N), \qquad \forall x_N \in \mathbb{X}_N.$$

- Uncertainty gets convoluted through system function over multiple time steps
- Set-based robust OCP decouples the propagation
- Helpful to reduce complexity

Agenda

- Propagating reachable sets through nonlinear systems
 - General description
 - Simplifications/ Favorable Cases
- Monotonicity as favorable case
- Generalizing from there on

When in doubt, try neural networks

What is a reachable set?

Consider systems

$$\dot{oldsymbol{x}} = f_{\mathrm{c}}(oldsymbol{x}(t), oldsymbol{u}(t), oldsymbol{w}(t)) \qquad \qquad oldsymbol{x}_{k+1} = f_{\mathrm{d}}(oldsymbol{x}_k, oldsymbol{u}_k, oldsymbol{w}_k)$$

- Consider fixed time discretization for continuous systems
- Given an initial set \mathcal{X}_0 and some inputs $u_{[0:k-1]}$, the reachable set \mathcal{X}_k at time t_k spans all the states, the system can reach

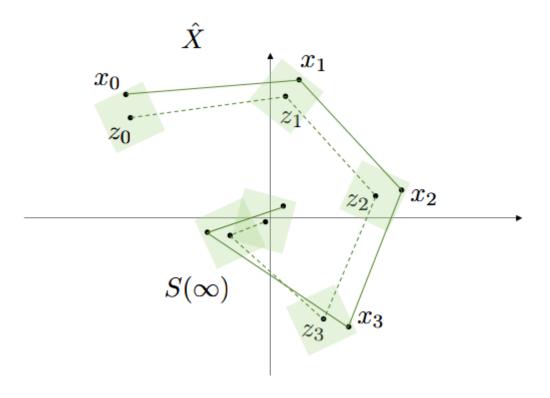
$$\mathcal{X}_k = \{ \boldsymbol{x}(t_k, \boldsymbol{u}_{[0:k-1]}, \boldsymbol{w}_{[0:k-1]}, x_0) | \forall \boldsymbol{x}_0 \in \mathcal{X}_0, \forall \boldsymbol{w}_{[0:k-1]} \in \mathbb{W}^k \}$$
 \mathcal{X}_0
 $\boldsymbol{u}_{[0:k-1]}, \boldsymbol{w}_{[0:k-1]}$
 \mathcal{X}_k

Are important for verification and robust predictions

Tube-based model predictive control

- Reachable sets span the tube
- Linear system, additive uncertainty
- → Tube dynamics independent from nominal trajectory

 More unfavorable cases require online computation of tubes or reachable sets



Computing exact reachable sets

- Exact reachability can be undecidable [1]
- Consider nonlinear system $x_{k+1} = x_k^2 + c$, $x_0 = 0$, $\forall c \in [-2, 0.25]$
- Given c and y, verifying $\exists k : y = x_k$ is hard
- Fun fact: the set of all complex c for which x_k remains small is the Mandelbrot set

^{• [1]} N. Fijalkow, J. Ouaknine, A. Pouly, J. Sousa-Pinto, and J. Worrell, "On the decidability of reachability in linear time-invariant systems," in *Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control*, in HSCC '19. New York, NY, USA: Association for Computing Machinery, Apr. 2019, pp. 77–86. doi: 10.1145/3302504.3311796.

Approximations of reachable sets via scenarios

- In the linear case, outer approximation via scenario tree
- Consider all vertices of uncertainty set Was branches

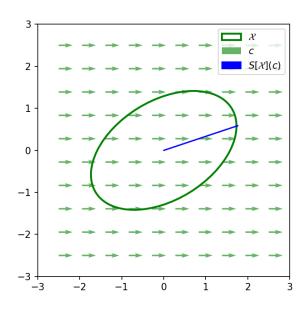


- Reachable set encompassed by convex hull of all scenarios
- Number of scenarios grows exponentially
- No guarantees in the nonlinear case for non-discrete W

Support function for general shapes

- Introduced by Villanueva^[1]
- General convex set, utilizes support function

$$\forall \boldsymbol{c} \in \mathbb{R}^n, S\left[\mathcal{X}\right] := \max_{\boldsymbol{x}} \{\boldsymbol{c}^{\intercal} \boldsymbol{x} | \boldsymbol{x} \in \mathcal{X}\}$$



- ullet Always points to the most outward point $oldsymbol{x} \in \mathcal{X}$ in direction $oldsymbol{c}$
- Set inclusion

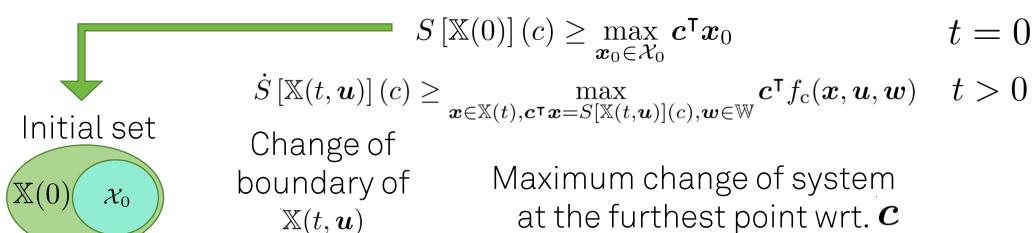
$$S\left[\mathbb{X}(0)\right](c) \ge \max_{\boldsymbol{x}_0 \in \mathcal{X}_0} \boldsymbol{c}^{\mathsf{T}} \boldsymbol{x}_0, \ \forall \boldsymbol{c} \in \mathbb{R}^{n_x}$$

$$\Rightarrow \mathcal{X}_0 \subseteq \mathbb{X}(0)$$

[1] M. E. Villanueva, B. Houska, and B. Chachuat, "Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs," *J Glob Optim*, vol. 62, no. 3, pp. 575–613, Jul. 2015, doi: 10.1007/s10898-014-0235-6.

Generalized differential inequalities (GDIs)

- Support function $\forall \boldsymbol{c} \in \mathbb{R}^n, S\left[\mathcal{X}\right] := \max_{\boldsymbol{x}} \{\boldsymbol{c}^\intercal \boldsymbol{x} | \boldsymbol{x} \in \mathcal{X}\}$
- The set $\mathbb{X}(t, \boldsymbol{u})$ describes the evolution of a convex overapproximation of the reachable set via $S\left[\mathbb{X}(t,\boldsymbol{u})\right](c), \ \forall \boldsymbol{c} \in \mathbb{R}^{n_x}$, if:



at the furthest point wrt. $oldsymbol{c}$

• Then $\mathcal{X}(t, \boldsymbol{u}) \subseteq \mathbb{X}(t, \boldsymbol{u})$

M. E. Villanueva, B. Houska, and B. Chachuat, "Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs," J Glob Optim, vol. 62, no. 3, pp. 575-613, Jul. 2015, doi: 10.1007/s10898-014-0235-6.

Generalized difference inequalities - Discrete

• The sequence of sets X_k describes a convex overapproximation of the reachable sets via

$$S\left[\mathbb{X}_{k+1}(oldsymbol{u}_k)
ight](c) \geq \max_{oldsymbol{x} \in \mathbb{X}_k, oldsymbol{w} \in \mathbb{W}} oldsymbol{c}^\intercal f_{\mathrm{d}}(oldsymbol{x}, oldsymbol{u}_k, oldsymbol{w}) \;,\; orall oldsymbol{c} \in \mathbb{R}^{n_x} \ S\left[\mathbb{X}_0
ight](c) \geq \max_{oldsymbol{x} \in \mathcal{X}_0} oldsymbol{c}^\intercal oldsymbol{x},\; orall oldsymbol{c} \in \mathbb{R}^{n_x}$$

- The border of \mathbb{X}_{k+1} must be larger than the maximum next state starting from \mathbb{X}_k in every direction
- Then $\mathcal{X}_k \subseteq \mathbb{X}_k$

[1] M. E. Villanueva, B. Houska, and B. Chachuat, "Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs," *J Glob Optim*, vol. 62, no. 3, pp. 575–613, Jul. 2015, doi: 10.1007/s10898-014-0235-6.

Challenges of GDIs in predictive control

$$S\left[\mathbb{X}_{k+1}(\boldsymbol{u}_{k})\right](c) \geq \left(\max_{\boldsymbol{x} \in \mathbb{X}_{k}, \boldsymbol{w} \in \mathbb{W}} \boldsymbol{c}^{\intercal} f_{\mathrm{d}}(\boldsymbol{x}, \boldsymbol{u}_{k}, \boldsymbol{w})\right) \quad \forall \boldsymbol{c} \in \mathbb{R}^{n}$$

- Max operator leads to bilevel optimization problem
- Difficult to solve in gradient based frameworks

- Open-loop propagation of uncertainty
- Optimizing over policies changes dynamics

- Inequality must hold in all directions $c \in \mathbb{R}^n$
- Infinite dimensional constraint
- Maximization in support function

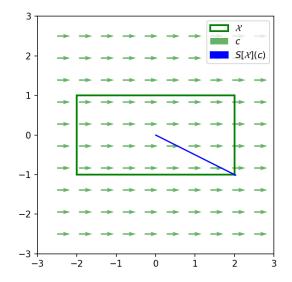
Find special cases for which complexity can be reduced

Fixed parameterizations of reachable sets

- Convex parameterizations
 - Intervals/Rectangles $\mathbb{X}^{\mathrm{Int}} = \{ m{x} | m{x}^{\mathrm{min}} \leq m{x} \leq m{x}^{\mathrm{max}} \}$
 - Only $2n_x$ parameters
 - Can only represent scaling and translation
 - Polytopes $\mathbb{X}^{\mathrm{Poly}} = \{ oldsymbol{x} \in \mathbb{R}^n | oldsymbol{V} oldsymbol{x} \leq lpha \}$
 - Generalizing rectangles
 - Arbitrary number of faces
 - Zonotopes $\mathbb{X}^{\mathrm{zono}} = \{ \boldsymbol{x} \in \mathbb{R}^{n_x} | \alpha^- \leq \boldsymbol{V} \boldsymbol{x} \leq \alpha^+ \}$
 - Polytopes with parallel faces
 - Ellipsoids $\mathbb{X}^{\mathrm{Ell}} = \{ oldsymbol{x}_{\mathrm{center},k} + oldsymbol{Q}^{rac{1}{2}} oldsymbol{v} | oldsymbol{v} \in \mathbb{R}^n : oldsymbol{v}^\intercal oldsymbol{v} \leq 1 \}$
- How can reachable sets then be calculated?

Differential and Difference Inequalties

- To obtain the difference inequality for intervals, use^[1] $S\left[\mathbb{X}^{\text{Int}}\right](c) = \frac{1}{2}c^{\intercal}(\boldsymbol{x}^{\text{min}} + \boldsymbol{x}^{\text{max}}) + \frac{1}{2}\text{abs}(\boldsymbol{c})^{\intercal}(\boldsymbol{x}^{\text{max}} \boldsymbol{x}^{\text{min}})$
- Discrete case: Difference inequality for every state i



$$oldsymbol{x}_{k+1,i}^{\min} \leq \min_{\xi \in ig[oldsymbol{x}_k^{\min},oldsymbol{x}_k^{\max}ig],oldsymbol{w} \in \mathbb{W}} oldsymbol{f}_{\mathrm{d},i}(\xi,oldsymbol{u}_k,oldsymbol{w}) \qquad \qquad oldsymbol{x}_{k+1,i}^{\max} \geq \max_{\xi \in ig[oldsymbol{x}_k^{\min},oldsymbol{x}_k^{\max}ig],oldsymbol{w} \in \mathbb{W}} oldsymbol{f}_{\mathrm{d},i}(\xi,oldsymbol{u}_k,oldsymbol{w})$$

Continuous case: Differential inequality

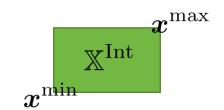
$$\dot{oldsymbol{x}}_i^{\min} \leq \min_{\xi \in [oldsymbol{x}^{\min}, oldsymbol{x}^{\max}], oldsymbol{\xi}_i = oldsymbol{x}_i^{\min}, oldsymbol{w}} oldsymbol{f}_{\mathrm{c}, i}(\xi, oldsymbol{u}, oldsymbol{w})$$
 $\dot{oldsymbol{x}}_i^{\min} \geq \max_{\xi \in [oldsymbol{x}^{\min}, oldsymbol{x}^{\max}], oldsymbol{\xi}_i = oldsymbol{x}_i^{\max}]} oldsymbol{f}_{\mathrm{c}, i}(\xi, oldsymbol{u}, oldsymbol{w})$

In the continuous case only growth of the border considered

[1] M. E. Villanueva, B. Houska, and B. Chachuat, "Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs," *J Glob Optim*, vol. 62, no. 3, pp. 575–613, Jul. 2015, doi: 10.1007/s10898-014-0235-6.

Interval reachable sets

- Simple set $X^{\text{Int}} = \{x | x^{\min} \leq x \leq x^{\max}\}$
- Reachable set overapproximated by



$$oldsymbol{x}^{\min}(t_k, oldsymbol{u}_{[0:k-1]}, \mathbb{X}_0^{\mathrm{Int}}, \mathbb{W}) \leq oldsymbol{x}(t_k, oldsymbol{u}_{[0:k-1]}, oldsymbol{w}_{[0:k-1]}, oldsymbol{x}_0)$$

$$\leq oldsymbol{x}^{\max}(t_k, oldsymbol{u}_{[0:k-1]}, \mathbb{X}_0^{\mathrm{Int}}, \mathbb{W}), \forall oldsymbol{w}_{[0:k-1]} \in \mathbb{W}^k, \forall oldsymbol{x}_0 \in \mathbb{X}_0^{\mathrm{Int}}$$

With $\mathcal{X}_k \subseteq \mathbb{X}_k^{\mathrm{Int}}$ and $\mathcal{X}_0 \subseteq \mathbb{X}_0^{\mathrm{Int}}$

• How to obtain $\boldsymbol{x}^{\min}(t_k, \boldsymbol{u}_{[0:k-1]}, \mathbb{X}_0^{\mathrm{Int}}, \mathbb{W})$, $\boldsymbol{x}^{\max}(t_k, \boldsymbol{u}_{[0:k-1]}, \mathbb{X}_0^{\mathrm{Int}}, \mathbb{W})$?

Monotonicity for difference inequalities

- Just consider discrete case $x_{k+1} = f_d(x_k, u_k, w_k)$
- The system is monotone in states $m{x} \in \mathbb{X}$ and uncertainty $m{w} \in \mathbb{W}$ if for $\hat{m{x}} > \tilde{m{x}}$

$$f_{
m d}(\hat{m{x}},m{u},m{w}) \geq f_{
m d}(ilde{m{x}},m{u},m{w}), \quad orall m{u} \in \mathbb{U}, \; orall m{w} \in \mathbb{W},$$

and for $\hat{oldsymbol{w}} \geq ilde{oldsymbol{w}}$

$$f_{\mathrm{d}}(\boldsymbol{x}, \boldsymbol{u}, \hat{\boldsymbol{w}}) \geq f_{\mathrm{d}}(\boldsymbol{x}, \boldsymbol{u}, \tilde{\boldsymbol{w}}), \quad \forall \boldsymbol{u} \in \mathbb{U}, \ orall \boldsymbol{x} \in \mathbb{X},$$

- Monotonicity can be shown by signs of Jacobian
 - All elements positive for discrete system
 - Off-diagonal positive for continuous system
- Temperature control, epidemic models, double integrator

D. Angeli und E. D. Sontag, "Monotone control systems", *IEEE Trans. Automat. Contr.*, Bd. 48, Nr. 10, S. 1684–1698, Okt. 2003, doi: <u>10.1109/TAC.2003.817920</u>.

Monotonicity for difference inequalities

ullet The system is monotone in states $oldsymbol{x} \in \mathbb{X}$ and uncertainty $oldsymbol{w} \in \mathbb{W}$ if for $\hat{oldsymbol{x}} > ilde{oldsymbol{x}}$

$$f_{\mathrm{d}}(\hat{\boldsymbol{x}}, \boldsymbol{u}, \boldsymbol{w}) \geq f_{\mathrm{d}}(\tilde{\boldsymbol{x}}, \boldsymbol{u}, \boldsymbol{w}), \quad \forall \boldsymbol{u} \in \mathbb{U}, \ \forall \boldsymbol{w} \in \mathbb{W},$$

and for $\hat{m{w}} \geq ilde{m{w}}$

$$f_{\mathrm{d}}(\boldsymbol{x}, \boldsymbol{u}, \hat{\boldsymbol{w}}) \geq f_{\mathrm{d}}(\boldsymbol{x}, \boldsymbol{u}, \tilde{\boldsymbol{w}}), \quad \forall \boldsymbol{u} \in \mathbb{U}, \ \forall \boldsymbol{x} \in \mathbb{X},$$

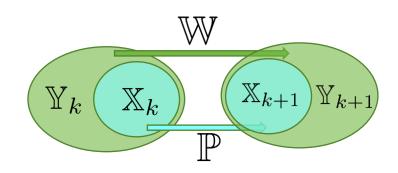
• Solution to difference inequality is trivial for $m{w} \in \mathbb{W} = [m{w}^{\min}, m{w}^{\max}]$

$$oldsymbol{x}_{k+1,i}^{\max} \geq \max_{\xi \in oldsymbol{\left[x_k^{\min}, x_k^{\max}\right], w \in \mathbb{W}}} oldsymbol{f}_{\mathrm{d},i}(\xi, oldsymbol{u}_k, oldsymbol{w}) = oldsymbol{f}_{\mathrm{d},i}(oldsymbol{x}_k^{\max}, oldsymbol{u}_k, oldsymbol{w}^{\max})$$

$$oldsymbol{x}_{k+1,i}^{\min} \leq \min_{\xi \in oldsymbol{\left[x_k^{\min}, x_k^{\max}
ight], oldsymbol{w} \in \mathbb{W}}} oldsymbol{f}_{\mathrm{d},i}(\xi, oldsymbol{u}_k, oldsymbol{w}) = oldsymbol{f}_{\mathrm{d},i}(oldsymbol{x}_k^{\min}, oldsymbol{u}_k, oldsymbol{w}^{\min})$$

Monotonicity is important – General sets

- We have the sets \mathbb{X}_k and \mathbb{Y}_k with $\mathbb{X}_k \subseteq \mathbb{Y}_k$ and \mathbb{P} and \mathbb{W} with $\mathbb{P} \subseteq \mathbb{W}$
- Note that $S_{\mathbb{P}}\left[\mathbb{X}_{k}\right]\left(\boldsymbol{c}\right)\leq S_{\mathbb{W}}\left[\mathbb{Y}_{k}\right]\left(\boldsymbol{c}\right),\ \forall \boldsymbol{c}\in\mathbb{R}^{n_{x}}$
- Then $S_{\mathbb{P}}\left[\mathbb{X}_{k+1}\right](\boldsymbol{c}) \leq S_{\mathbb{W}}\left[\mathbb{Y}_{k+1}\right](\boldsymbol{c}), \ \forall \boldsymbol{c} \in \mathbb{R}^{n_x}$
- Because of the max operator, a larger set can only lead to an increase in



$$S\left[\mathbb{X}_{k+1}(\boldsymbol{u}_k)\right](c) \geq \max_{\boldsymbol{x} \in \mathbb{X}_k, \boldsymbol{w} \in \mathbb{W}} \boldsymbol{c}^\intercal f_{\mathrm{d}}(\boldsymbol{x}, \boldsymbol{u}_k, \boldsymbol{w})$$

 The notion of monotonicity is intertwined with the description of reachable sets

Robust MPCfor monotone systems

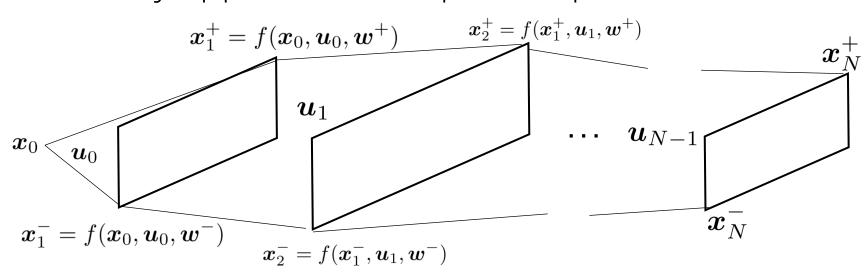
For discrete systems

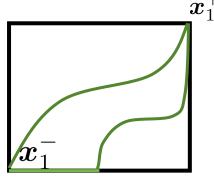
Can be easily extended for continuous systems

Follows [Heinlein, Subramanian, Molnar, and Lucia, "Robust MPC approaches for monotone systems"]

Reachable set propagation

- Monotonicity solves two of the three challenges in GDI
 - Interval sets can be calculated by evaluating the system function
 - No bilevel problem
 - No over-approximation error
- Directly applicable for open-loop robust MPC





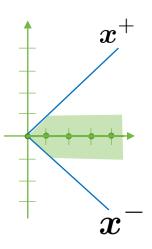
Open-loop robust monotone MPC approach

$$egin{aligned} \min & J(oldsymbol{x}_{[0:N]}^{\pm}, oldsymbol{u}_{[0:N-1]}) \ oldsymbol{x}_{[0:N]}^{\pm}, oldsymbol{u}_{[0:N-1]}) \end{aligned} \ & \mathrm{s.t}: oldsymbol{x}_{0}^{\pm} = oldsymbol{x}_{0}, \ oldsymbol{x}_{k+1}^{+} = f(oldsymbol{x}_{k}^{+}, oldsymbol{u}_{k}, oldsymbol{w}^{+}), \ oldsymbol{x}_{k+1}^{-} = f(oldsymbol{x}_{k}^{-}, oldsymbol{u}_{k}, oldsymbol{w}^{-}), \ oldsymbol{x}_{k+1}^{-} = f(oldsymbol{x}_{k}^{-}, oldsymbol{u}_{k}, oldsymbol{w}^{-}), \ oldsymbol{x}_{k}^{-}, oldsymbol{x}_{k}^{+} \end{bmatrix} \subseteq \mathbb{X}, \ oldsymbol{u}_{k} \in \mathbb{U}, \ oldsymbol{x}_{N}^{-}, oldsymbol{x}_{N}^{+} \end{bmatrix} \subseteq \mathbb{X}_{f}, \end{aligned}$$

- Two uncertainty scenarios: w^+ and w^-
- For box constraints no conservatism due to intervals
- One input for all uncertainty realizations

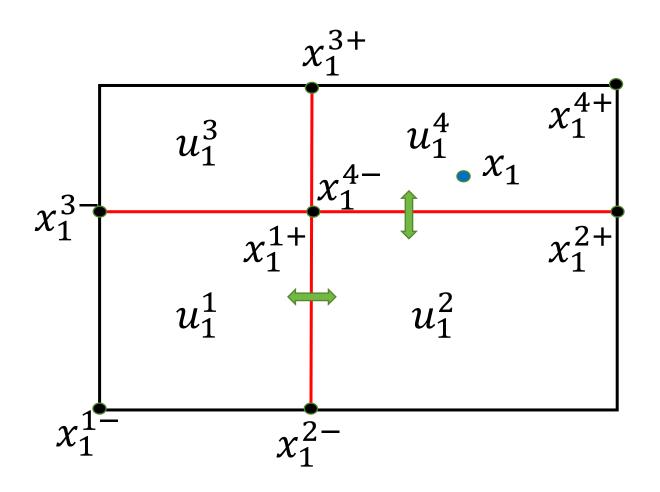
Problem with open-loop predictions

- $oldsymbol{\cdot}$ Assume the system $oldsymbol{x}_{k+1} = oldsymbol{x}_k + oldsymbol{u}_k + oldsymbol{w}_k$, with $oldsymbol{w}_k \in [-1,1]$
- ullet Regardless of chosen input $oldsymbol{u}_k$, reachable sets will blow up
- MPC is no open-loop method → Feedback
- Include the information from the next measurement in the prediction (Recourse)
- Possible feedback policy here $oldsymbol{u}_k = -oldsymbol{x}_k$
- Feedback policy changes dynamics
 - Monotonicity may be lost $oldsymbol{u} = -1.1 oldsymbol{x}$
 - May lead to tightening of input constraints



Dynamics preserving feedback policy

- Inspired by multi-stage MPC
- Reachable set after 1 time step
- Scenarios based on state after uncertainty realization
- Division of the reachable set
 -> Multiple subsets
- Positioning of partition a degree of freedom
- For each subset individual input
- Each subset is spanned by two points $[x_1^{s-}, x_1^{s+}]$



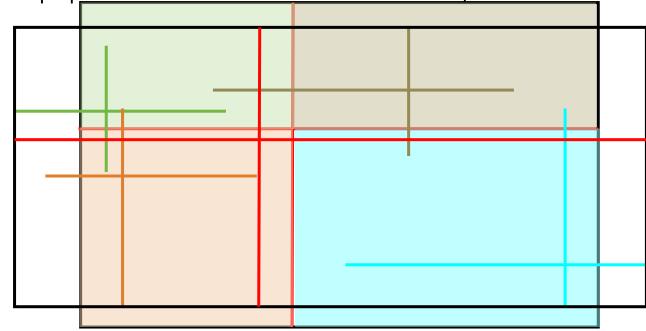
Multiple time steps

- Scenario tree possible: Dividing the propagation of each subset
- Exponential growth of scenarios with prediction horizon

• Or continue with open-loop <u>prediction</u> after few steps

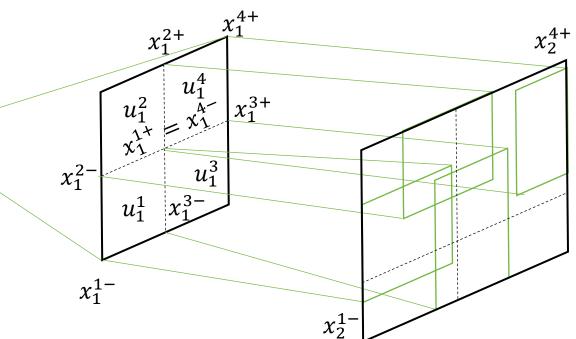
• Idea:

- Bound the propagation of all the subsets
- Divide the bounding rectangle as before
- Piecewise constant feedback policy



Dividing and bounding

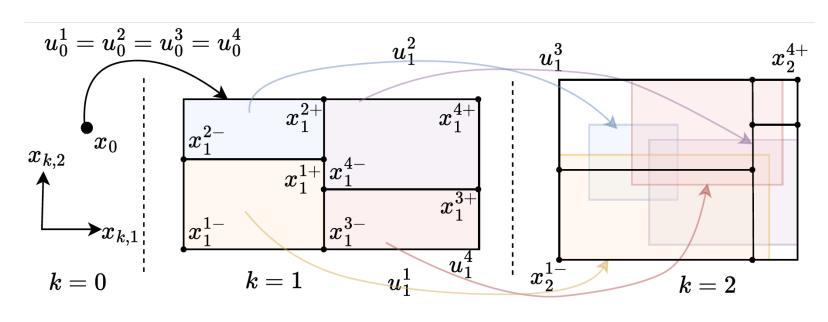
- In each time step start with the reachble set
- Divide into subregions
- Propagate subregions
 - Maximum realization
 - Minimum realization
- Bound the propagations
 - = Reachable set for the next time step



► No exponential growth with the prediction horizon

 u_0

How are partitions implemented?



$$\begin{array}{lll} x_{k,2}^{1-} = x_{k,2}^{3-} & x_{k,2}^{4+} = x_{k,2}^{2+} & x_{k,1}^{1-} = x_{k,1}^{2-} & x_{k,2}^{1+} = x_{k,2}^{2-}, \\ x_{k,1}^{1+} = x_{k,1}^{2+} & x_{k,1}^{1+} = x_{k,1}^{3-} & x_{k,1}^{3-} = x_{k,1}^{4-} & x_{k,2}^{3+} = x_{k,2}^{4-}, \\ x_{k,1}^{3+} = x_{k,1}^{4+} & x_{k}^{s\pm} \geq x_{k}^{1-} & x_{k}^{4+} \geq x_{k}^{s\pm}, & \forall s \in \mathbb{S} \end{array}$$

Partitions
defined by
linear
inequality and
equality
constraints

Closed-loop robust monotone MPC approach

- μ_s number of subregions each time step
- Defines the bounding of the propagation
- $h(x_k^{[1:\mu_s]\pm})$ orders the division of subregions
- Recursive feasibility and constraint satisfaction proven for box constraints

$$egin{aligned} \min_{m{x}_{[0:N]}^{s\pm},m{u}_{[0:N-1]}^{s}, orall s\in \mathbb{S}} &J(m{x}_{[0:N]}^{[1:\mu_s]\pm},m{u}_{[0:N-1]}^{[1:\mu_s]}) \ &\mathrm{s.t}:m{x}_0^{s\pm}=m{x}_0, \ &m{x}_{k+1}^{\mu_s+}\geq f(m{x}_k^{s+},m{u}_k^{s},m{w}^+), \ &m{x}_{k+1}^{1-}\leq f(m{x}_k^{s-},m{u}_k^{s},m{w}^-), \ &m{[m{x}_k^{1-},m{x}_k^{\mu_s+}]}\subseteq \mathbb{X}, \ &m{u}_k^{s}\in \mathbb{U}, \ &m{[m{x}_N^{1-},m{x}_N^{\mu_s+}]}\subseteq \mathbb{X}_f, \ &m{u}_0^1=m{u}_0^s, \ &m{h}(m{x}_k^{[1:\mu_s]\pm})\leq m{0}, \end{aligned}$$

M. Heinlein, S. Subramanian, M. Molnar, and S. Lucia, "Robust MPC approaches for monotone systems*," in 2022 IEEE 61st Conf. Decis. and Control (CDC), Dec. 2022, pp. 2354–2360. doi: 10.1109/CDC51059.2022.9992502.

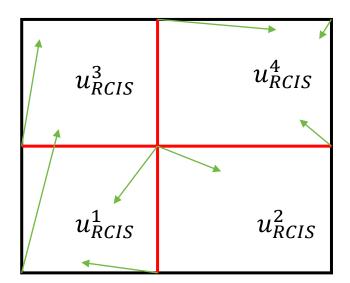
Robust control invariant sets

- Recursive feasibility needs robust control invariant set (RCIS)
- A set, in which the method will find an input to remain in the set regardless of the uncertainty

Open-loop

 u_{RCIS}^1

Closed-loop



Calculation of robust control invariant set

- This can be formulated as an optimization problem
- $V(x_i^{\mu_s}, x_i^{1-})$ as measure of the RCIS size (e.g. volume)
- $h(x^{[1:\mu_s]\pm})$ orders subregions
- RCIS property is enforced
- Can be added as a constraint in the MPC problem for more flexibility

$$\max_{\boldsymbol{x}^{s+}, \boldsymbol{x}^{s-}, \boldsymbol{u}^{s}, \ \forall s \in \mathbb{S}} V(\boldsymbol{x}_{i}^{\mu_{s}^{+}}, \boldsymbol{x}_{i}^{1-})$$
s.t: $\boldsymbol{x}^{s\pm} \in \mathbb{X}, \ \forall s \in \mathbb{S},$

$$\boldsymbol{u}^{s} \in \mathbb{U}, \ \forall s \in \mathbb{S},$$

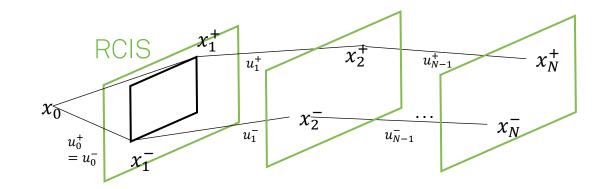
$$\boldsymbol{h}(\boldsymbol{x}_{k}^{[1:\mu_{s}]\pm}) \leq \boldsymbol{0},$$

$$\boldsymbol{x}^{\mu_{s}+} \geq f(\boldsymbol{x}^{s\pm}, \boldsymbol{u}^{s}, \boldsymbol{w}^{\pm}) \geq \boldsymbol{x}^{1-}, \ \forall s \in \mathbb{S}.$$

Robust control invariant set as safety filter

- For monotone systems RCI sets easy to calculate
- When in RCI set, use monotonicity to check if input safe
- Can be implemented as constraint
- Can be combined with nominal or approximate MPC
- Use RCI input as fallback

J. Adamek, M. Heinlein, L. Lüken, and S. Lucia, "Deterministic Safety Guarantees for Learning-Based Control of Monotone Nonlinear Systems Under Uncertainty," *IEEE Control Systems Letters*, vol. 8, pp. 1030–1035, 2024, doi: 10.1109/LCSYS.2024.3407635.



$$\min_{\substack{\boldsymbol{x}_{[0:N]}^+,\boldsymbol{x}_{[0:N]}^-,\boldsymbol{u}_{[0:N-1]}^+,\boldsymbol{u}_{[0:N-1]}^-} \quad \sum_{k=0}^{N-1} (\ell(\boldsymbol{x}_k^+,\boldsymbol{u}_k^+) + \ell(\boldsymbol{x}_k^-,\boldsymbol{u}_k^-)) + V_f(\boldsymbol{x}_N^+) + V_f(\boldsymbol{x}_N^-)$$
(1a)

$$s.t: \quad \boldsymbol{x}_0^{\pm} = \boldsymbol{x}_0, \tag{1b}$$

$$\mathbf{x}_{k+1}^{\pm} = f(\mathbf{x}_k^{\pm}, \mathbf{u}_k^{\pm}, \mathbf{w}^{\pm}), \ \forall k \in \{0, ..., N-1\}$$
 (1c)

$$\boldsymbol{x}_k^{\pm} \in \mathbb{X}_{\text{RCIS}}, \ k \in \{1, ..., N\}$$
 (1d)

$$\boldsymbol{u}_{k}^{\pm} \in \mathbb{U}, \ \forall k \in \{0, ..., N-1\},\tag{1e}$$

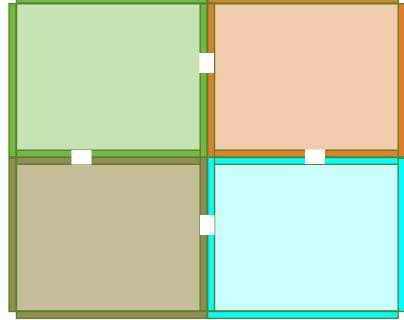
$$\boldsymbol{u}_0^+ = \boldsymbol{u}_0^-. \tag{1f}$$

Case study

- Temperature control in a building
- 4 rooms in rectangle

Each room 3 states: interior wall, exterior wall, interior temperature

- 2 inputs: heating and cooling
- Additional exchange between adjacent rooms



Building model

- Linear model
- External influences with uncertainty:
 - External temperature $\pm 1\,^{\circ}C$
 - Solar radiation ±25 %
 - Internal gains in each room uncertain during work hours ±30 %

s.t.:
$$\begin{bmatrix} T_{\mathbf{r},i}^+ \\ T_{\mathbf{w},\,\text{int},i}^+ \\ T_{\mathbf{w},\,\text{ext},i}^+ \end{bmatrix} = \mathbf{A} \begin{bmatrix} T_{\mathbf{r},i} \\ T_{\mathbf{w},\,\text{int},i} \\ T_{\mathbf{w},\,\text{ext},i} \end{bmatrix} + \mathbf{B} \begin{bmatrix} u_{h,i} \\ u_{c,i} \end{bmatrix} + \mathbf{E} \begin{bmatrix} T_{\text{ext}} + \Delta T_{\text{ext}} \\ s_r(1 + \Delta s_r) \\ g_{\text{int},i}(1 + \Delta g_{\text{int},i}) \end{bmatrix} + \sum_{j} \delta_{i,j} \begin{bmatrix} 0.1 \\ 0 \\ 0 \end{bmatrix} (T_{\mathbf{r},j} - T_{\mathbf{r},i}), \forall i \in \{1, ..., 4\},$$

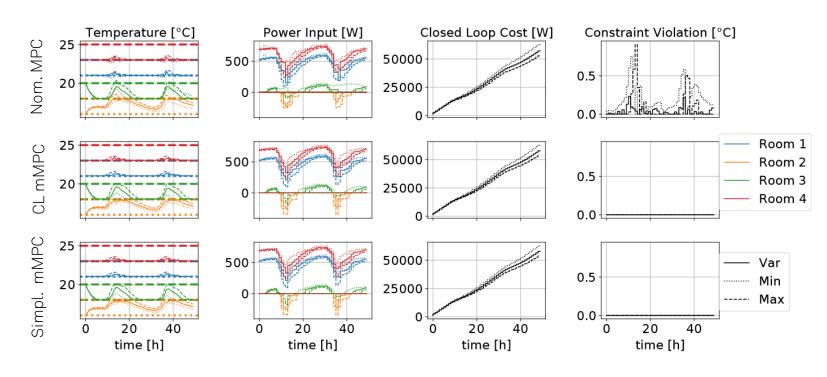
 $\min_{\mathbf{u}_h, \mathbf{u}_c} \sum_{k=0}^{12-1} (u_{h,k} + u_{c,k})$

$$21^{\circ}C \leq T_{r,1} \leq 23^{\circ}C,$$

 $18^{\circ}C \leq T_{r,2} \leq 20^{\circ}C,$
 $16^{\circ}C \leq T_{r,3} \leq 18^{\circ}C,$
 $23^{\circ}C \leq T_{r,4} \leq 25^{\circ}C,$
 $0 \leq u_{c} \leq 1000W,$

$$0 \le u_h \le 1000$$
W.

Comparison of approaches



- Comparison of
 - Nominal MPC
 - Closed-loop MPC for monotone systems
 - Simplified approach
- ► 16 subregions for closed-loop approach
- ► Full approach ~16 s per solution
- Simpl. approach~42 ms per solution

Simplifying general difference inequality

 Monotonicity gives tight solution to the inner maximization problem

- Partitioning based feedback strategy leaves dynamics unaltered
- Increase in complexity with the number of subregions

- Interval sets
- Computationally cheap

What to do with non-monotone systems?

Beyond monotone systems

State transformations and mixed monotonicity

Monotonicity through state transformation

- Monotonicity can be shown by signs of Jacobian
 - All elements positive for discrete system
 - Off-diagonal positive for continuous system
- Under a linear transformation, the system is monotone

$$\dot{\tilde{oldsymbol{x}}} = oldsymbol{G}\dot{oldsymbol{x}} = oldsymbol{G}f_{
m c}(oldsymbol{G}^{-1} ilde{oldsymbol{x}},oldsymbol{u},oldsymbol{w})$$

Can be checked with graph consistency

$$\frac{\partial(L+C)}{\partial t} = 0$$

$$\frac{\partial(R+C)}{\partial t} = 0$$

$$\frac{\partial C}{\partial t} = v_1$$

$$v_1 = k_1((L+C) - C)((R+C) - C) - k_2C$$

C. Kallies, M. Schliemann, R. Findeisen, S. Lucia, and E. Bullinger, "Monotonicity of Kinetic Proofreading," IFAC-PapersOnLine, vol. 49, pp. 306-311, Dec. 2016, doi: 10.1016/j.ifacol.2016.12.144.

Finding solutions to difference inequalities

Can we solve the inner optimization problem in advance?

$$oldsymbol{x}_{k+1,i}^{\min} \leq \min_{\xi \in \left[oldsymbol{x}_k^{\min}, oldsymbol{x}_k^{\max}
ight], oldsymbol{w} \in \mathbb{W}} oldsymbol{f}_{\mathrm{d},i}(\xi, oldsymbol{u}_k, oldsymbol{w})$$
 $oldsymbol{x}_{k+1,i}^{\min} \geq \max_{\xi \in \left[oldsymbol{x}_k^{\min}, oldsymbol{x}_k^{\max}
ight], oldsymbol{w} \in \mathbb{W}} oldsymbol{f}_{\mathrm{d},i}(\xi, oldsymbol{u}_k, oldsymbol{w})$

- ullet Assume continuity and $oldsymbol{w} \in \mathbb{W} = [oldsymbol{w}^{\min}, oldsymbol{w}^{\max}]$
- Mixed monotonicity: There exists a decomposition function

$$d_i(\boldsymbol{x}_k^{\max}, \boldsymbol{w}^{\max}, \boldsymbol{u}_k, \boldsymbol{x}_k^{\min}, \boldsymbol{w}^{\min}) \geq \max_{\xi \in \left[\boldsymbol{x}_k^{\min}, \boldsymbol{x}_k^{\max}\right], \rho \in \mathbb{W}} \boldsymbol{f}_{\mathrm{d},i}(\xi, \boldsymbol{u}_k, \rho) \qquad d_i(\boldsymbol{x}_k^{\min}, \boldsymbol{w}^{\min}, \boldsymbol{u}_k, \boldsymbol{x}_k^{\max}, \boldsymbol{w}^{\max}) \leq \min_{\xi \in \left[\boldsymbol{x}_k^{\min}, \boldsymbol{x}_k^{\max}\right], \rho \in \mathbb{W}} \boldsymbol{f}_{\mathrm{d},i}(\xi, \boldsymbol{u}_k, \rho)$$

Decomposes systems into increasing and decreasing components

S. Coogan, "Mixed Monotonicity for Reachability and Safety in Dynamical Systems," in *59th IEEE Conference on Decision and Control*, Jeju, Korea (South): IEEE, Dec. 2020, pp. 5074–5085. doi: 10.1109/CDC42340.2020.9304391.

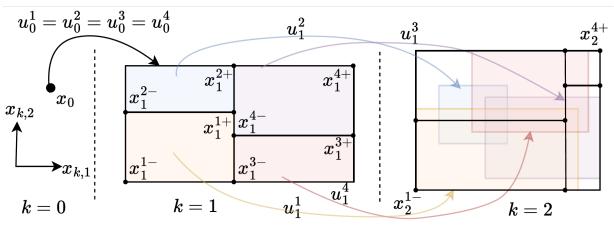
Mixed monotone robust MPC

- Similar to monotone MPC
- Instead of system function decomposition function
- Consideration of feedback with partition policy
- Recursive feasibility can be shown
- Terminal set also possible by adding constraint

M. Heinlein, S. Subramanian, and S. Lucia, "Robust Model Predictive Control Exploiting Monotonicity Properties," *IEEE Transactions on Automatic Control*, vol. 70, no. 9, pp. 6260–6267, Sep. 2025, doi: 10.1109/TAC.2025.3558137.

$$\min_{\bm{x}_{[0:N]}^{s\pm}, \bm{u}_{[0:N-1]}^{s}, \forall s \in \mathbb{S}} \quad J(\bm{x}_{[0:N]}^{[1:\mu_{s}]\pm}, \bm{u}_{[0:N-1]}^{[1:\mu_{s}]})$$

$$egin{aligned} ext{s.t}: oldsymbol{x}_0^{s\pm} &= oldsymbol{x}_0, \ oldsymbol{x}_{k+1}^{\mu_s+} &\geq oldsymbol{d}(oldsymbol{x}_k^{s+}, oldsymbol{w}^{ ext{max}}, oldsymbol{u}_k^{s}, oldsymbol{x}_k^{s-}, oldsymbol{w}^{ ext{min}}, oldsymbol{u}_k^{s}, oldsymbol{x}_k^{s+}, oldsymbol{w}^{ ext{min}}), \ oldsymbol{x}_{k+1}^{1-} &\leq oldsymbol{d}(oldsymbol{x}_k^{s-}, oldsymbol{w}^{ ext{min}}, oldsymbol{u}_k^{s}, oldsymbol{x}_k^{s+}, oldsymbol{w}^{ ext{max}}), \ oldsymbol{x}_k^{s} &\in \mathbb{U}, \ oldsymbol{u}_k^{s} &\in \mathbb{U}, \ oldsymbol{u}_k^{s} &\in \mathbb{U}, \ oldsymbol{u}_0^{s} &= oldsymbol{u}_0^{s}, \ oldsymbol{u}_0^{s} &= oldsymbol{u}_0^{s}, \ oldsymbol{h}(oldsymbol{x}_k^{[1:\mu_s]\pm}) \leq oldsymbol{0}, \end{aligned}$$



Availability of decomposition functions

- Mostly rephrases the problem of difference inequalities
- For linear systems $x_{k+1}=Ax_k+Bu_k+Ew_k$ $d(\hat{x},\hat{w},u,\check{x},\check{w})=A^+\hat{x}+A^-\check{x}+Bu+E^+\hat{w}+E^-\check{w} \qquad A^+=\max\{A,0\}$ Combining this with linear state transformations gives $A^-=\min\{A,0\}$
- Combining this with linear state transformations gives "Low complexity tube-based MPC" [1]
- Works similarly for bounded Jacobians
- Interval arithmetics can also be used [2]
- Introduces over-approximation errors

[1] B. Kouvaritakis and M. Cannon, Model Predictive Control. in Advanced Textbooks in Control and Signal Processing. Cham: Springer International Publishing, 2016, doi: 10.1007/978-3-319-24853-0.

^[2] T. Alamo, D. Limon, E. F. Camacho, and J. M. Bravo, "Robust MPC of constrained nonlinear systems based on interval arithmetic," *IEEE Proc. Control Therory and Appl.*, vol. 152, no. 3, pp. 325–332, May 2005, doi: 10.1049/ip-cta:20040480.

How to handle constraints

- For interval sets, box constraints are trivial
- For linear constraints, use Farkas Lemma

Lemma 1 (Farkas Lemma). Let $\mathbb{X}_i \doteq \{x : F_i x \leq b_i\}, i = 1, 2$, be non-empty subsets of \mathbb{R}^{n_x} . Then $\mathbb{X}_1 \subseteq \mathbb{X}_2$ if and only if there exists a nonnegative matrix $\mathbf{H} \geq \mathbf{0}$ satisfying

$$HF_1 = F_2,$$

 $Hb_1 \leq b_2.$

- Precompute $m{H}$ to avoid nonlinearity $m{h}_i^* = \arg\min_{m{h} \in \mathbb{R}^{n_{F_1}}} \mathbf{1}^T m{h}$ subject to $m{h}^T m{F}_1$ and $m{h} \geq \mathbf{0}$
- For nonlinear constraint $g(x_k, u_k, w_k) \leq 0$, decomposition needed

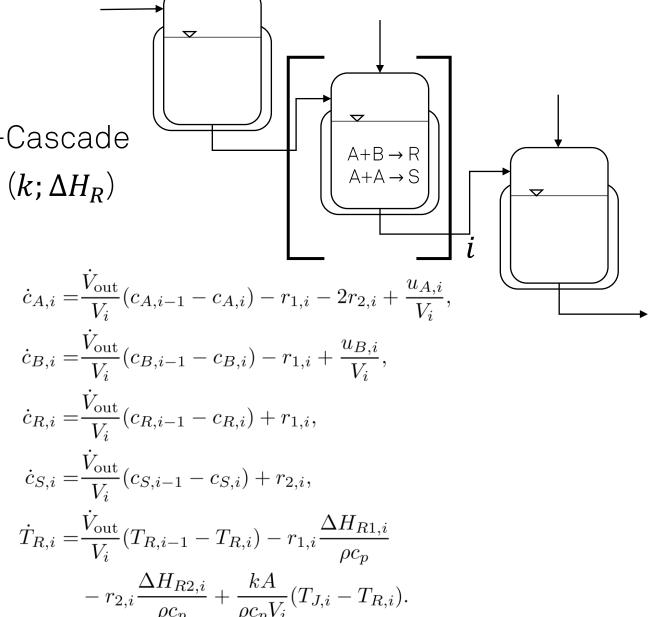
$$oldsymbol{e}_{\mathbb{W}}(oldsymbol{x}_k^+,oldsymbol{x}_k^-,oldsymbol{u}_k) \geq \max_{\xi \in \mathbb{X}_k^{ ext{Int}}, \ oldsymbol{w} \in \mathbb{W}} oldsymbol{g}(\xi,oldsymbol{u}_k,oldsymbol{w})$$

Case Study Nonlinear mixed monotone CSTR Cascade Process Automation Systems (PAS)

Case Study

- Nonlinear & non-monotone CSTR-Cascade
- Scalable in states & uncertainties $(k; \Delta H_R)$
- Minimize $\left|\left|c_{R,max}-c_{R}\right|\right|_{Q_{R}}^{2}-\left|\left|c_{S}\right|\right|_{Q_{S}}^{2}$
- Reachable sets via decomposition function & mixed monotonicity
- Partition policy for feedback

$$r_{1,i} = k_{1,i} \exp \left(-\frac{E_{A1,i}}{R_{\text{gas}}(T_{R,i} + 273.15)}c_{A,i}c_{B,i}\right)$$
$$r_{2,i} = k_{2,i} \exp \left(-\frac{E_{A2,i}}{R_{\text{gas}}(T_{R,i} + 273.15)}c_{A,i}^{2}\right)$$



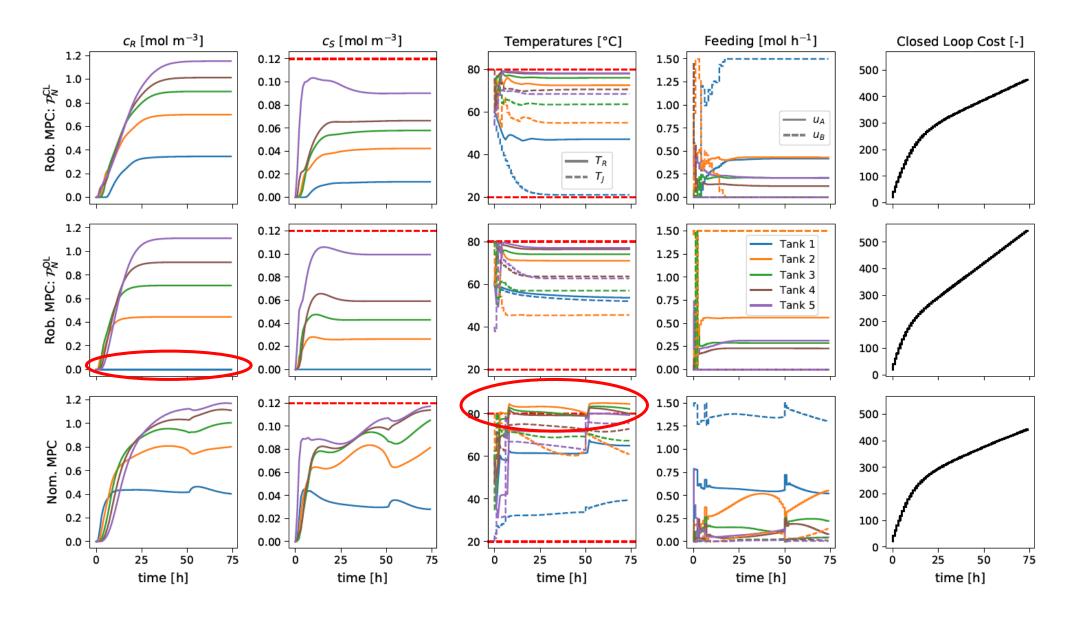
Comparison of closed loop and open loop

n_R	n_x	n_p	μ_s for $\mathcal{P}_N^{\mathrm{CL}_d}$	Closed-loop cost		Comp. time $[s]$	
				$\mathcal{P}_N^{\mathrm{OL}_d}$	$\mathcal{P}_N^{\operatorname{CL}_d}$	$\mathcal{P}_N^{ ext{OL}_d}$	$\mathcal{P}_N^{ ext{CL}_d}$
1	5	4	32	149%	129%	1.70	36.40
3	15	12	16	161%	114%	16.35	111.45
5	25	20	4	142%	122%	42.76	72.38

- Values averaged over 50 closed-loop simulations
- Closed loop cost (CLC) compared to MPC with correct parameters
- For 5 reactors, partitioning three times in $c_{S,1}$
- Rigorous robustness guarantees

M. Heinlein, S. Subramanian, and S. Lucia, "Robust Model Predictive Control Exploiting Monotonicity Properties," *IEEE Transactions on Automatic Control*, vol. 70, no. 9, pp. 6260–6267, Sep. 2025, doi: 10.1109/TAC.2025.3558137.

Simulation for 5 reactors



General difference inequality – non-monotone

$$S\left[\mathbb{X}_{k+1}(\boldsymbol{u}_{k})\right](c) \geq \left(\max_{\boldsymbol{x} \in \mathbb{X}_{k}, \boldsymbol{w} \in \mathbb{W}} \boldsymbol{c}^{\mathsf{T}} f_{\mathrm{d}}(\boldsymbol{x}, \boldsymbol{u}_{k}, \boldsymbol{w})\right) \quad \forall \boldsymbol{c} \in \mathbb{R}^{n}$$

- Solution to max overapproximated
 - Mixed monotonicity
 - Interval arithmetics
- Introduces
 overapproximation
 error for non monotone systems

- Partitioning based feedback strategy leaves dynamics unaltered
- Increase in complexity with the number of subregions

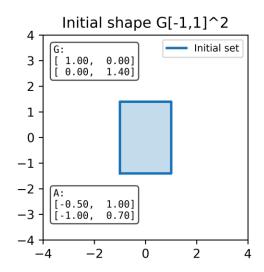
- Interval sets
- Computationally cheap
- Cannot capture rotation through dynamics

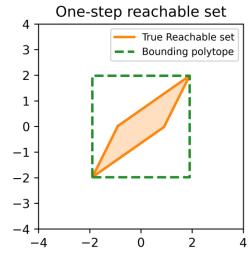
More than rectangles

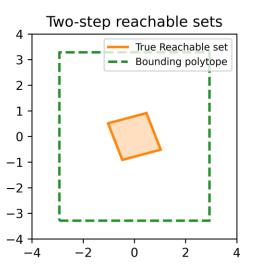
Exploring more complex shapes to avoid the wrapping effect

The wrapping effect

- Interval sets capture monotone dynamics well
- They cannot represent rotation (non-monotonicity)
- This leads to conservativeness due to over-approximation
- The error accumulates over multiple time steps
- Termed "wrapping effect"
- Best orientation depends on dynamics







Edgy reachable sets in the linear case

- Rotated sets may capture the dynamics better
- Zonotopes $\mathbb{X}^{\mathrm{zono}} = \{ \boldsymbol{x} \in \mathbb{R}^{n_x} | \alpha^- \leq \boldsymbol{G} \boldsymbol{x} \leq \alpha^+ \}$
 - $extbf{\emph{G}} \in \mathbb{R}^{n_g imes n_x}$ with $n_g \geq n_x$
 - Linear transformed intervals
 - Generalized by polytopes $\mathbb{X}^{\mathrm{poly}} = \{ m{x} \in \mathbb{R}^{n_x} | m{V} m{x} \leq lpha \} \ v_{\mathrm{zono \ as \ poly}} = \left[egin{matrix} G & \mathbf{0} \\ \mathbf{0} & -G \end{matrix} \right], \ \alpha_{\mathrm{zono \ as \ poly}} = \left[egin{matrix} \alpha^+ \\ -\alpha^- \end{matrix} \right]$

 T_R Step k=0

- If $n_g = n_x$ and linear systems-> "Low complexity tube-base MPC"
- Polytopes propagated for linear systems with Farkas Lemma
 - -> "General complexity tube-based MPC"

$$egin{aligned} m{HF_1} &= m{F_2}, \ m{H} b_1 &\leq b_2. \end{aligned} egin{aligned} m{F_1} &= m{V}, & ext{from } m{Vx_k} \leq oldsymbol{lpha_k} \ m{b_1} \ m{F_2} &= m{VA}, & ext{from } m{V} oldsymbol{x_{k+1}} \leq lpha_{k+1} \Leftrightarrow m{VAx_k} \leq oldsymbol{lpha_{k+1}} - m{Bu_k} \ m{b_2} \end{aligned}$$

B. Kouvaritakis and M. Cannon, Model Predictive Control. in Advanced Textbooks in Control and Signal Processing. Cham: Springer International Publishing, 2016, doi: 10.1007/978-3-319-24853-0.

 T_R Step k=2

Solving zonotopic difference inequality

Difference inclusion

$$lpha_{k+1,i}^- \le \min_{lpha_k^- \le oldsymbol{G} oldsymbol{x} \le lpha_k^+, oldsymbol{w} \in \mathbb{W}} oldsymbol{G} f_i(oldsymbol{x}, oldsymbol{u}_k, oldsymbol{w}), \ lpha_{k+1,i}^+ \ge \max_{lpha_k^- \le oldsymbol{G} oldsymbol{x} \le lpha_k^+, oldsymbol{w} \in \mathbb{W}} oldsymbol{G} f_i(oldsymbol{x}, oldsymbol{u}_k, oldsymbol{w})$$

 For bounded Jacobian or with a lot of analytical effort Decomposition:

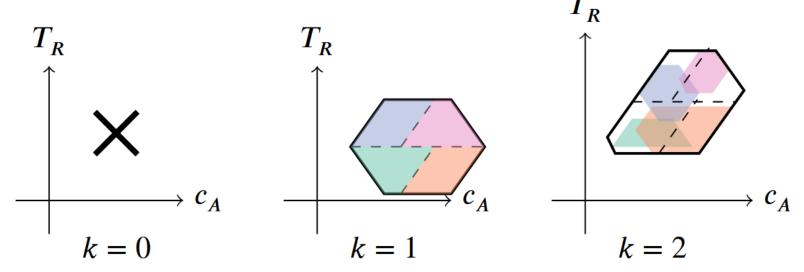
$$egin{aligned} oldsymbol{d}_{\mathbb{W},i}^+(lpha_k^+,lpha_k^-,oldsymbol{u}_k) &\geq \max_{lpha_k^- \leq oldsymbol{G}oldsymbol{x} \leq lpha_k^+,oldsymbol{w} \in \mathbb{W}} oldsymbol{G}f_i(oldsymbol{x},oldsymbol{u}_k,oldsymbol{w}), \ oldsymbol{d}_{\mathbb{W},i}^-(lpha_k^+,lpha_k^-,oldsymbol{u}_k) &\leq \min_{lpha_k^- \leq oldsymbol{G}oldsymbol{x} \leq lpha_k^+,oldsymbol{w} \in \mathbb{W}} oldsymbol{G}f_i(oldsymbol{x},oldsymbol{u}_k,oldsymbol{w}) \end{aligned}$$

Assume also decomposition for constraints

$$oldsymbol{e}_{\mathbb{W}}(lpha_k^+,lpha_k^-,oldsymbol{u}_k) \geq \max_{lpha_k^- \leq oldsymbol{G}oldsymbol{x} \leq lpha_k^+, \ oldsymbol{w} \in \mathbb{W}} oldsymbol{g}(oldsymbol{x},oldsymbol{u}_k,oldsymbol{w})$$

Feedback strategy for zonotopic sets

- Optimizing over feedback policies complicates decomposition
- Use same partitioning strategy

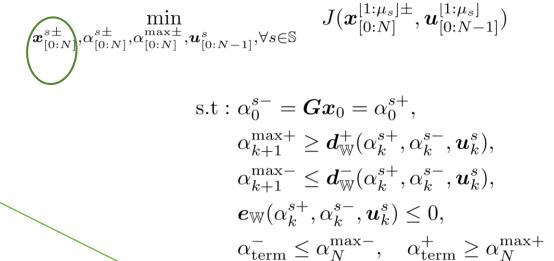


ullet For zonotope both sides of partition again zonotope with same $oldsymbol{G}$

Robust MPC with zonotopes

- Similar to previous approaches
- $\alpha_{[0:N]}^{s\pm}$ for subregions, $\alpha_{[0:N]}^{\max\pm}$ for bound
- Introducing auxiliary variable to ensure non-emptiness
- Can also be used in cost
- Terminal set RCI, if replaced by

$$\alpha_{N-1}^{\text{max}-} \le \alpha_N^{\text{max}-}, \quad \alpha_{N-1}^{\text{max}+} \ge \alpha_N^{\text{max}+}$$



 $\boldsymbol{u}_0^1 = \boldsymbol{u}_0^s, \quad \alpha_0^1 = \alpha_0^s$

 $h(\alpha_k^{[1:\mu_s]\pm}, \alpha_k^{\max\pm}) \leq \mathbf{0},$

 $\alpha_k^{s-} \le Gx_k^s \le \alpha_k^{s+},$

But how to get these decompositions reliably?

Learning reachable set propagations

Surrogate modeling of decomposition functions

Surrogate decomposition function

• For notational convenience, assume general polytope

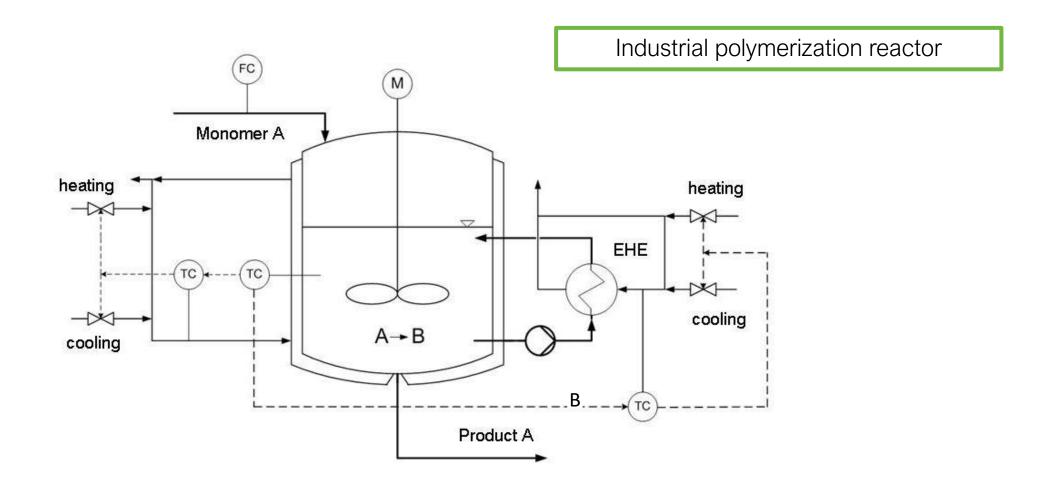
$$\mathbb{X}^{\text{poly}} = \{ \boldsymbol{x} \in \mathbb{R}^{n_x} | \boldsymbol{V} \boldsymbol{x} \leq \alpha \}$$

We seek surrogate model for constraints and propagation

$$\mathcal{N}(\alpha_k, \boldsymbol{u}_k) \geq \begin{bmatrix} \max_{\boldsymbol{V} \boldsymbol{x} \leq \alpha_k, \boldsymbol{w} \in \mathbb{W}} \boldsymbol{V} \boldsymbol{f}_i(\boldsymbol{x}, \boldsymbol{u}_k, \boldsymbol{w}) \\ \max_{\boldsymbol{V} \boldsymbol{x} \leq \alpha_k, \boldsymbol{w} \in \mathbb{W}} \boldsymbol{g}(\boldsymbol{x}, \boldsymbol{u}_k, \boldsymbol{w}) \end{bmatrix}$$

- ToDos
 - Choice of $oldsymbol{V}/oldsymbol{G}$ (zonotope to be used in RMPC)
 - Data generation
 - Training
 - Implementation in RMPC

Case study



An industrial batch polymerization reactor

$$\begin{split} \dot{m}_{\rm W} &= \dot{m}_{\rm F} \omega_{\rm W,F}, \\ \dot{m}_{\rm A} &= \dot{m}_{\rm F} \omega_{\rm A,F} - k_{R1} m_{\rm A,R} - k_{R2} m_{\rm AWT} \frac{m_{\rm A}}{m_{\rm ges}}, \\ \dot{m}_{\rm P} &= k_{R1} m_{\rm A,R} + p_1 k_{R2} m_{\rm AWT} \frac{m_{\rm A}}{m_{\rm ges}}, \\ \dot{m}_{\rm A}^{\rm acc} &= \dot{m}_{\rm F}, \\ \dot{T}_{\rm R} &= \frac{1}{c_{p,\rm R} m_{\rm ges}} \bigg[\dot{m}_{\rm F} c_{p,\rm F} (T_{\rm F} - T_{\rm R}) \Delta H_R k_{R1} m_{\rm A,R} - k_K A (T_{\rm R} - T_{\rm S}) - \dot{m}_{\rm AWT} c_{p,\rm R} (T_{\rm R} - T_{\rm EK}) \bigg], \\ \dot{T}_{\rm S} &= \frac{1}{c_{p,\rm S} m_{\rm S}} \bigg[k_K A (T_{\rm R} - T_{\rm S}) - k_K A (T_{\rm S} - T_{\rm M}) \bigg], \\ \dot{T}_{\rm M} &= \frac{1}{c_{p,\rm W} m_{\rm M,KW}} \bigg[\dot{m}_{\rm M,KW} c_{p,\rm W} (T_{\rm M}^{\rm IN} - T_{\rm M}) + k_K A (T_{\rm S} - T_{\rm M}) \bigg], \\ \dot{T}_{\rm EK} &= \frac{1}{c_{p,\rm R} m_{\rm AWT}} \bigg[\dot{m}_{\rm AWT} c_{p,\rm W} (T_{\rm R} - T_{\rm EK}) - \alpha (T_{\rm EK} - T_{\rm AWT}) + k_{R2} m_{\rm A} m_{\rm AWT} \frac{\Delta H_R}{m_{\rm ges}} \bigg], \\ \dot{T}_{\rm AWT} &= \bigg[\dot{m}_{\rm AWT,KW} c_{p,\rm W} (T_{\rm AWT}^{\rm IN} - T_{\rm AWT}) - \alpha (T_{\rm AWT} - T_{\rm EK}) \bigg] (c_{p,\rm W} m_{\rm AWT,KW}). \\ \bullet & \text{Tight temperature constraints} \end{split}$$

Maximization of product in batch

9 differential states

3 control inputs

9 uncertain parameters (±10%)

1 nonlinear constraint

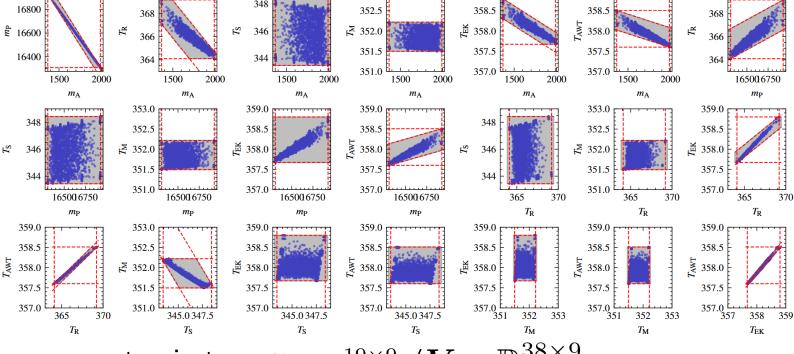
$$\begin{split} U &= \frac{m_{\rm P}}{m_{\rm A} + m_{\rm P}}, \\ m_{\rm ges} &= m_{\rm W} + m_{\rm A} + m_{\rm P}, \\ k_{R1} &= k_0 \exp\left(-\frac{E_a}{R(T_{\rm R} + 273.15)}\right) \\ (k_{U1}(1-U) + k_{U2}U), \\ k_{R2} &= k_0 \exp\left(-\frac{E_a}{R(T_{\rm EK} + 273.15)}\right) \\ (k_{U1}(1-U) + k_{U2}U), \\ k_K &= \frac{m_{\rm W}k_{\rm WS} + m_{\rm A}k_{\rm AS} + m_{\rm P}k_{\rm PS}}{m_{\rm ges}}, \\ m_{\rm A,R} &= m_{\rm A} - \frac{m_{\rm A}m_{\rm AWT}}{m_{\rm ges}}, \end{split}$$

$$T_{
m adiabat} = rac{\Delta H_R}{m_{
m res} c_{n\,
m R}} m_{
m A} + T_{
m R}.$$

S. Lucia, J. A. E. Andersson, H. Brandt, M. Diehl, und S. Engell, "Handling uncertainty in economic nonlinear model predictive control: A comparative case study", *J. Process Control*, Bd. 24, Nr. 8, S. 1247–1259, Aug. 2014, doi: 10.1016/j.jprocont.2014.05.008.

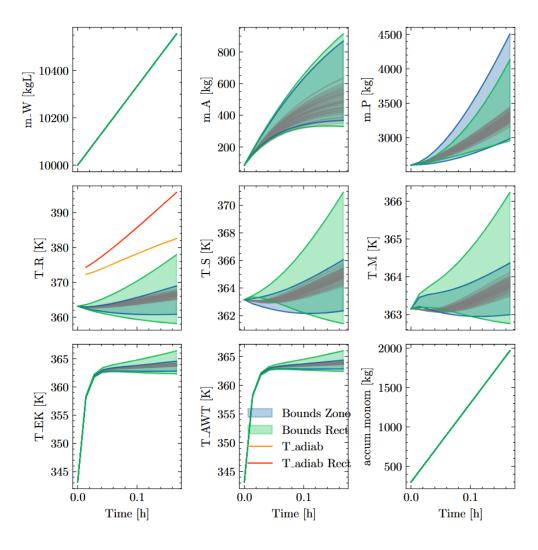
Choice of the orientation of the zonotope

- Heuristic approach because of nonlinearity
- Sampling reachable sets from multiple initial states
- Halfplanes from 2D projections
- ullet Focus on T_R and m_A
- Keep axis aligned halfspaces for easy



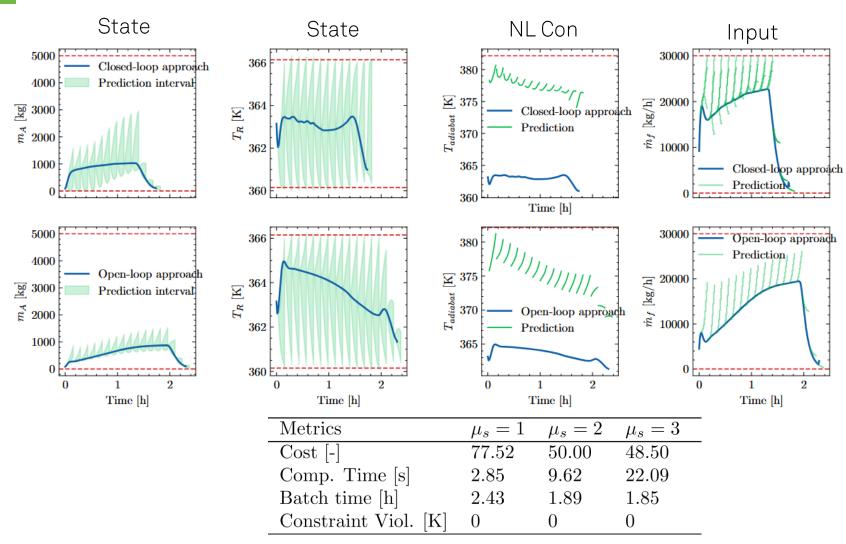
implementation of box constraints: $G \in \mathbb{R}^{19 \times 9}$ / $V \in \mathbb{R}^{38 \times 9}$

Prediction capability – Zonotope vs Interval sets



- Neural networks with 1 layer and 120 neurons
- Open-loop predictions for constant input
- Zonotopes tighter bounds
- Small violations

Implementation on closed loop



- Top: 2 partitions in T_R
- Bottom: no partitions
- Recourse enables more aggressive feeding strategy
- Smaller batch times

General difference inequality – Zonotopes

$$S\left[\mathbb{X}_{k+1}(\boldsymbol{u}_{k})\right](c) \geq \left(\max_{\boldsymbol{x} \in \mathbb{X}_{k}, \boldsymbol{w} \in \mathbb{W}} \boldsymbol{c}^{\intercal} f_{\mathrm{d}}(\boldsymbol{x}, \boldsymbol{u}_{k}, \boldsymbol{w})\right) \quad \forall \boldsymbol{c} \in \mathbb{R}^{n}$$

- Solution to max learned with neural network
- Complicates solution
- No need for analytical decomposition function

- Partitioning based feedback strategy leaves dynamics unaltered
- Increase in complexity with the number of subregions

- Zonotopic sets
- Less prone to wrapping effect
- Increased complexity
 - Number of parameters
 - Handling of constraints

► That's it, folks!

Conclusion - Main takeaways

- Reachable sets are monotone, but not boring
- Propagation of reachable sets describable by generalized difference/differential inequalities $S\left[\mathbb{X}_{k+1}(\boldsymbol{u}_k)\right](c) \geq \max_{\boldsymbol{x} \in \mathbb{X}_k, \boldsymbol{w} \in \mathbb{W}} \boldsymbol{c}^\intercal f_{\mathrm{d}}(\boldsymbol{x}, \boldsymbol{u}_k, \boldsymbol{w})$
- Tractability by convex parameterizations
 - Intervals: Cheap, but conservative for non-monotone systems
 - Zonotopes/Polytopes: More flexible, but more complex
 - Ellipsoids: Also great option, but not covered here
- Overapproximation of inner maximization problem
 - Analytical (decomposition function, monotonicity)
 - Data-based
- Recourse by partitioning leaves dynamics unaltered