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Overview

1 Challenges and perspectives
Three challenges of robust dynamic optimization
Statement of the uncertain optimal control problem and three perspectives

Perspective 1: Robust Optimization
Perspective 2: OCP with set-valued trajectories
Perspective 3: Robust dynamic programming

2 Some robust OCP formulations – Optimal and suboptimal, tight and overly conservative
Scenario tree for polytopic systems with convex costs and constraints
Dual norm formulations for uncertainty affine systems
Ellipsoidal tubes for ℓ2-bounded disturbance sequence
Affine Disturbance Feedback Parameterization
Overapproximating ellipsoidal tubes for stagewise bounded uncertainty

3 Nonlinear OCP and tailored algorithms
Tube approximation for robust nonlinear MPC
Zero-order robust optimization (zoRO)
Feedback optimization with Sequential Inexact Robust Optimization (SIRO)
Algorithms for disturbance feedback
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The predicted trajectory cuts the corner tightly, in nominal MPC.
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Predicting an uncertainty set (“tube”), we see that the car would often crash.
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Due to uncertainty, the center of the tube needs to keep a distance (“backoff”) from the corner.

This corresponds to open-loop robust MPC.
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DBut: we know that in the future we will apply feedback.
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Considering future feedback allows for a more realistic, less conservative prediction.

This corresponds to closed-loop robust MPC.
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Three challenges of robust dynamic optimization

When formulating and solving the robust dynamic optimization problems, one needs to address
three major challenges:

▶ Challenge 1: Robust constraint satisfaction. How can the state uncertainty be
approximated and propagated over the prediction horizon in order to guarantee robust
constraint satisfaction?

▶ Challenge 2: Feedback predictions. How can feedback control policies be approximated
and incorporated into the robust MPC optimization problem in order to reduce its
conservatism?

▶ Challenge 3: Dual control. How can we reduce uncertainty by systematically and
purposefully collecting information? (explore-exploit-tradeoff)

In this lecture, we address Challenges 1 and 2.
Challenge 3 will be addressed on Friday.
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Uncertain optimal control problem statement

Uncertain optimal control problem in discrete time

min
x, u

N−1∑
k=0

ℓ(xk, uk) + Vf(xN )

s.t. x0 = x̄0,

xk+1 = f(xk, uk, wk), k = 0, . . . , N − 1,

0 ≥ h(xk, uk), k = 0, . . . , N − 1,

0 ≥ r(xN ).

▶ The future disturbance trajectory w = (w0, . . . , wN−1) is unknown, such that the above
OCP is insufficiently specified.

▶ Otherwise, we could simply solve a standard OCP.

▶ Instead, we robustify the OCP against all possible w ∈ W for a given set W ⊂ Rnw .

▶ ... facing the three challenges of robust dynamic optimization.
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Three perspectives

We consider three perspectives in order to address the challenges. They are not mutually
exclusive and sometimes go hand-in-hand or yield the same answers.

▶ Perspective 1: Robust optimization. Bring OCP into high-level standard form and use
results from the Robust Optimization or Minmax MPC lecture.

▶ Perspective 2: OCP with set-valued trajectories. Explicitly predict and compute sets
of values that the state trajectory may take.

▶ Perspective 3: Robust dynamic programming. Describe solution via DP recursion /
Bellman operator. Especially important as a conceptual tool.
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Perspective 1: Robust Optimization

Eliminate state trajectory – as in single shooting – via a recursion started at x̃0(u,w) := x̄0 and

looping through the state transitions x̃k+1(u,w) := f(x̃k(u,w), uk, wk) for k = 0, . . . , N − 1:

Open-loop min-max robust OCP (as in single shooting)

min
u

max
w∈W

N−1∑
k=0

ℓ(x̃k(u,w), uk) + Vf(x̃N (u,w))

s.t. max
w∈W

h(x̃k(u,w), uk) ≤ 0, k = 0, . . . , N − 1

max
w∈W

r(x̃N (u,w)) ≤ 0

Identify the cost with F0(u,w) and the constraints componentwise with Fi(u,w):

min
u

max
w∈W

F0(u,w) s.t. max
w∈W

Fi(u,w) ≤ 0, i = 1, . . . , nF

Thus, all methods from the Robust Optimization lecture apply. We will look at their specific
instantiation later.
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Perspective 2: OCP with set-valued trajectories

Set-based robust OCP

min
X, π(·)

N−1∑
k=0

L(Xk, πk(·)) + Lf(XN )

s.t. X0 = {x̄0},
Xk+1 = F(Xk, πk(·)), k = 0, . . . , N − 1,

0 ≥ h(xk, πk(·)), ∀xk ∈ Xk, k = 0, . . . , N − 1,

0 ≥ r(xN ), ∀xN ∈ XN .

▶ Set dynamics: F(Xk, πk(·)) = {f(xk, πk(xk), wk) | xk ∈ Xk, wk ∈ W̄}

▶ Feedback policy: uk = πk(xk)

▶ Careful: Assumes state is exactly observed!

▶ Assign costs L(Xk, πk(·)) to set Xk based on ℓ(xk, uk), e.g., worst-case or average.

▶ Covers both tube and scenario-tree approaches.
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Perspective 2: OCP with set-valued trajectories

Set-based robust OCP

min
X, π(·)

N−1∑
k=0

L(Xk, uk) + Lf(XN )

s.t. X0 = {x̄0},
Xk+1 = F(Xk, πk(·)), k = 0, . . . , N − 1,

0 ≥ h(xk, πk(·)), ∀xk ∈ Xk, k = 0, . . . , N − 1,

0 ≥ r(xN ), ∀xN ∈ XN .

▶ Optimization over policy functions πk(·) makes this an
infinite dimensional problem
▶ Parametrize feedback law to gain finite dimensional problem.
▶ Constant πk(xk) ≡ ūk yields open loop robust OCP.

▶ Parametrize state sets Xk, e.g., by basic shapes such as
ellipsoids or polyhedra.
▶ Shape typically not preserved by nonlinear dynamics. Require

overapproximation instead: Xk+1 ⊇ F(Xk, πk(·)).

The nonlinear transformation of
an ellipsoid is in general not
ellipsoidal.
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Special case: scenario-tree OCP for finite disturbances
Also known as multistage robust OCP

▶ In each stage: m disturbance values {w1, . . . , wm}
▶ Exact state set parameterization Xk = {x1k, . . . , xm

k

k }
▶ One control uik for each state xik parametrizes feedback

▶ “Epigraph slack control” vik collects worst-case objective

Exact scenario-tree OCP

min
x, u, v

ℓ(x10, u
1
0) + v10

s.t. x10 = x̄0,

xik+1 = f(x
⌈i/mk⌉
k , u

⌈i/mk⌉
k , w i]m1 ), k = 0, . . . , N − 1,

v
⌈i/mk⌉
k ≥ ℓ(xik+1, u

i
k+1) + vik+1, i = 1, . . . ,mk+1,

0 ≥ h(x
⌈i/mk⌉
k , u

⌈i/mk⌉
k ), i = 1, . . . ,mk,

0 ≥ r(xjN ), vjN ≥ Vf(x
j
N ), j = 1, . . . ,mN .

x10, u
1
0

x11, u
1
1

x21, u
2
1

x12

x22

x32

x42

w1

w2

w1

w2

w1

w2

Given discrete disturbances,
scenario trees exactly solve
Challenge 1 (constraints) and
Challenge 2 (feedback) for
nonlinear systems! However,
we need to deal with
exponential scenario growth.

⌈·⌉: ceiling function, i]m1 wraps i to {1, . . . ,m}.
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Prelude of Perspective 3: Extended Cost Values

Assign infinite cost to infeasible points, using the extended reals R̄ := R ∪ {∞,−∞}

Constrained OCP

min
x,u

N−1∑
k=0

ℓ(xk, uk) + Vf(sN )

s.t. x0 = x̄0

xk+1 = f(xk, uk, wk),

0 ≥ h(xk, uk), k = 0, . . . , N−1,

0 ≥ r(xN ).

Equivalent unconstrained formulation

min
x,u

N−1∑
k=0

ℓ̄(xk, uk) + V̄f(xN )

s.t. x0 = x̄0,

xk+1 = f(xk, uk, wk), k = 0, . . . , N−1,

with ℓ̄(x, u) =

{
ℓ(x, u) if h(x, u) ≤ 0

∞ else

}

and V̄f(x) =

{
Vf(x) if r(x) ≤ 0

∞ else

}
.
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Prelude of Perspective 3: Extended Cost Values

Assign infinite cost to infeasible points, using the extended reals R̄ := R ∪ {∞,−∞}

Equivalent unconstrained formulation

min
x,u

N−1∑
k=0

ℓ(xk, uk) + Vf(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk, wk), k = 0, . . . , N−1,

with ℓ : Rnx × Rnu → R̄

and Vf : Rnx → R̄.
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Perspective 3: Robust Dynamic Programming (robust DP)

Assume uncertainty is restricted to set wk ∈ W̄ in each time step.

Robust DP Recursion

Starting with the terminal cost, iterate backwards using the robust Bellman equation

JN (xN ) =Vf(xN ),

Jk(xk) =min
uk

max
wk∈W̄

ℓ(xk, uk) + Jk+1(f(xk, uk, wk)), k = N − 1, . . . , 0.

The corresponding optimal policy is

π⋆
k(xk) = argmin

uk

max
wk∈W̄

ℓ(xk, uk) + Jk+1(f(xk, uk, wk)).

▶ Robust DP exactly characterizes the solution of the closed-loop robust OCP without
needing to explicitly consider policy parametrizations nor sets in state space.

▶ Perfectly addresses Challenges 1 to 3, at least conceptually.

▶ Intractable in this general form, but important conceptual tool, e.g., for proofs.
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Monotonicity of Robust Dynamic Programming

The “cost-to-go” Jk is often also called “value function” Vk.

The robust dynamic programming operator T mapping between value functions is defined by

T [J ](x) := min
u

max
w∈W̄

ℓ(x, u) + J(f(x, u, w)).

Write DP recursion compactly as Jk = T [Jk+1].

We write J ≥ J ′ if J(x) ≥ J ′(x) for all x ∈ Rnx .

One can prove that
J ≥ J ′ ⇒ T [J ] ≥ T [J ′].

This is called “monotonicity” of dynamic programming. It holds also for deterministic or
stochastic dynamic programming. It can e.g. be used in existence proofs for solutions of the
stationary Bellman equation, or in stability proofs for MPC (JN ≥ JN−1 ⇒ J1 ≥ J0).
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Convex Robust Dynamic Programming

Certain RDP operators T preserve convexity of the value function J : Rnx → R̄:

Theorem

If

▶ system is affine f(x, u, w) = A(w)x+B(w)u+ c(w) and

▶ stage cost ℓ(x, u) convex in (x, u),

then the robust DP operator T preserves convexity of J , i.e.,

J convex ⇒ T [J ] convex.

Note: no assumptions on disturbance set W̄ or on how w enters cost and dynamics.

M. Diehl. Formulation of closed loop min-max MPC as a quadratically constrained quadratic program. IEEE
Transactions on Automatic Control, 52(2):339–343, 2007

Robust Dynamic Optimization F. Messerer 17/59



Proof of Convexity Preservation

The function
ℓ(x, u) + J( A(w)x+B(w)u+ c(w) )

is convex in (x, u) for any fixed w, as concatenation of an affine function inside a convex one.

Because the maximum over convex functions (indexed by w) preserves convexity, the function

Q(x, u) := max
w∈W̄

ℓ(x, u) + J( A(w)x+B(w)u+ c(w) )

is also convex in (x, u).
Finally, the minimization of a convex function over one of its arguments preserves convexity,
i.e., the resulting value function T [J ] defined by

T [J ](x) = min
u
Q(x, u)

is convex.
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Why is convexity of the value function important?

where the matrices and and the vector are uncertain but contained in the convex hull

(6)

and we identify each with the corresponding matrix to keep notation simple. We also
assume that the stage- and terminal cost functions are piecewise linear,

and

with vectors , , . In particular, and are convex, as depicted in the
following sketch of .

Linear constraints like bounds on states and controls can also be represented by piecewise linear functions

and

again with vectors , and . The corresponding feasible sets are convex
polyhedra. We will in the sequel make the assumption that there is an such that the set

is nonempty and bounded. In particular, this implies that

(7)

We show in the next section that the remain piecewise linear under the recursion (3), and then that the
same holds for the in the constrained robust Bellman equation (4).

2 A New Method for Robust Dynamic Programming
In the remainder of this paper we will make strong use of the following useful observation.

Lemma 2.1 Assume that is a bounded polytope as in (6) and that is piece-

wise linear. Then for all

(8)

where the are the vertices of .

3

▶ Value function J(x) can be represented (or approximated) as the maximum of affine
functions with vectors ai ∈ R1+nx with indices i in some (finite or infinite) set S

J(x) = max
i∈S

a⊤i

[
1

x

]
▶ Computation of feedback law argminuQ(x, u) is convex
▶ Convexity of value function allows us to conclude, in case of polytopic uncertainty, that

worst case is assumed on boundary of the polytope, making scenario-tree formulation
possible [D.: Formulation of Closed-Loop Min-Max MPC as a QCQP. IEEE TAC 2007]
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Scenario Tree for Polytopic Systems with Convex Costs and Constraints
Extension of scenario-tree formulation to infinite polytopic disturbance sets, using convexity of RDP cost-to-go

Assume:

▶ Polytopic uncertainty W̄ = conv{w1, . . . , wm} ⊂ Rnw ,

▶ Affine dynamics xk+1 = A(wk)xk +B(wk)uk + c(wk),

▶ Affine dependence of A(w), B(w), c(w) on w ∈ Rnw ,

▶ convexity of functions ℓ, h, Vf , r.

Then worst-case is taken in vertices of W̄ and scenario-tree suffices.

Exact Convex Scenario Tree for Polytopic Systems [D., IEEE TAC 2007]

min
x, u, v

ℓ(x10, u
1
0) + v10

s.t. x10 = x̄0,

xik+1 = A
(
w i]m1

)
x
⌈i/mk⌉
k +B

(
w i]m1

)
u
⌈i/mk⌉
k + c

(
w i]m1

)
,

v
⌈i/mk⌉
k ≥ ℓ(xik+1, u

i
k+1) + vik+1, k = 0, . . . , N − 1,

0 ≥ h(x
⌈i/mk⌉
k , u

⌈i/mk⌉
k ), i = 1, . . . ,mk+1,

0 ≥ r(xjN ), vjN ≥ Vf(x
j
N ), j = 1, . . . ,mN .

x10, u
1
0

x11, u
1
1

x21, u
2
1

x12

x22

x32

x42

w1

w2

w1

w2

w1

w2

Exactly solves Challenge 1
and (implicitly) Challenge 2!
However: exponential
scenario growth.

(Proof via Perspective 3 and
convexity of value function.)
⌈·⌉: ceiling function, i]m1 wraps
i to {1, . . . ,m}.
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Dual norm formulations for uncertainty affine systems

Back to Perspective 1:
Regard disturbance trajectories w = (w0, . . . , wN−1) ∈ RNnw̄ in norm ball
W = {w ∈ Rnw | ∥w∥ ≤ 1} for any norm ∥ · ∥, with nw = Nnw̄.

1

Define “single shooting” state trajectory x̃k(u,w) at time k as function of (u,w) trajectories,
where u = (ū0, . . . , ūN−1) ∈ Rnu , and nu = Nnū.

For simplicity, omit terminal constraint and uncertainty in objective.

Open-loop robust OCP

min
u

F0(u)

s.t. max
w∈W

hj(x̃k(u,w), ūk)︸ ︷︷ ︸
=:Fk,j(u,w)

≤ 0, k = 0, . . . , N − 1, j = 1, . . . , nh.

If functions Fk,j(u,w) are affine in uncertainty w, the dual norm formulation is applicable (cf.
Robust Optimization lecture).

1A mixed ℓ∞-ℓp-norm covers the case of independent, stage-wise p-norm bounded uncertainties,
W = W̄× . . .× W̄ with ℓp-norm balls W̄ = {w̄ ∈ Rnw̄ | ∥w̄∥p ≤ 1}.
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Dual norm formulations for uncertainty affine systems

For constraints affine in the uncertainty trajectory we obtain

max
w∈W

Fk,j(u,w) = hj(x̃k(u, 0), ūk) + ∥∇wx̃k(u, 0)∇xhj(x̃k(u, 0), ūk)∥∗.

For uncertainty affine systems xk+1 = a(uk) +A(uk)xk + Γ(uk)wk

the derivative of state xk w.r.t. disturbance wm is given by

Gk,m(u) :=
∂x̃k
∂wm

(u,w) = A(uk−1) · · ·A(um+1)Γ(um)

so that we obtain

max
w∈W

Fk,j(u,w) = hj(x̃k(u, 0), ūk) +

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



Gk,0(u)
⊤

...

Gk,k−1(u)
⊤

0
...


∇xhj(x̃k(u, 0), ūk)︸ ︷︷ ︸

=:gk,j(u)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∗

.

In detail, this looks different for different norms...
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Infinity Norm – Exact Dual Norm Formulation

Dual of infinity norm is ℓ1-norm.

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



Gk,0(u)
⊤

...

Gk,k−1(u)
⊤

0
...


gk,j(u)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
1

=

k−1∑
m=0

∥Gk,m(u)⊤gk,j(u)∥1

This formulation is very expensive, because one needs to compute all matrices Gk,m(u) for
k = 1, . . . , N − 1 and m = 0, . . . , k − 1, corresponding to O(N2nxnw̄) extra variables.
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Infinity Norm – Exact Dual Norm Formulation

Dual of infinity norm is ℓ1-norm.

Exact open-loop robust OCP for ℓ∞-norm bounded disturbances

min
u

F0(u)

s.t. hj(x̃k(u,w), ūk) +

k−1∑
m=0

∥Gk,m(u)⊤gk,j(u)∥1 ≤ 0,

k = 0, . . . , N − 1, j = 1, . . . , nh.

This formulation is very expensive, because one needs to compute all matrices Gk,m(u) for
k = 1, . . . , N − 1 and m = 0, . . . , k − 1, corresponding to O(N2nxnw̄) extra variables.
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Euclidean Norm – Exact Formulation

Euclidean ℓ2-norm is self-dual, so its dual is also the ℓ2-norm.∥∥∥∥∥∥∥∥∥∥∥∥∥∥



Gk,0(u)
⊤

...

Gk,k−1(u)
⊤

0
...


gk,j(u)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

= gk,j(u)
⊤



Gk,0(u)
⊤

...

Gk,k−1(u)
⊤

0
...



⊤ 

Gk,0(u)
⊤

...

Gk,k−1(u)
⊤

0
...


gk,j(u)

= gk,j(u)
⊤

(
k−1∑
m=0

Gk,m(u)Gk,m(u)⊤

)
gk,j(u)

The computations can be much more efficient if one computes the matrix sums differently:

k∑
m=0

Gk+1,m(u)Gk+1,m(u)⊤︸ ︷︷ ︸
=Pk+1(u)

= A(uk)

(
k−1∑
m=0

Gk,m(u)Gk,m(u)⊤

)
︸ ︷︷ ︸

=Pk(u)

A(uk)
⊤ + Gk+1,k(u)Gk+1,k(u)

⊤︸ ︷︷ ︸
=Γ(uk)Γ(uk)⊤

Start at P0(u) := 0 ∈ Rnx×nx , compute Pk+1(u) := A(uk)Pk(u)A(uk)
⊤ + Γ(uk)Γ(uk)

⊤
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Euclidean Norm – Exact Formulation

Euclidean ℓ2-norm is self-dual, so its dual is also the ℓ2-norm.

Exact open-loop robust OCP for ℓ2-norm bounded disturbances

min
u

F0(u)

s.t. hj(x̃k(u,w), ūk) +

√√√√gk,j(u)⊤

(
k−1∑
m=0

Gk,m(u)Gk,m(u)⊤

)
gk,j(u) ≤ 0,

k = 0, . . . , N − 1, j = 1, . . . , nh.

The computations can be much more efficient if one computes the matrix sums differently:

k∑
m=0

Gk+1,m(u)Gk+1,m(u)⊤︸ ︷︷ ︸
=Pk+1(u)

= A(uk)
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︸ ︷︷ ︸
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Euclidean Norm – Exact formulation with smart sensitivity computation

Lift formulation, resulting in a sparse NLP in only O(N) variables: u = (u0, . . . , uN−1),
x = (x0, . . . , xN ), P = (P0, . . . , PN ), with Pk ∈ Rnx×nx , P = P⊤.

Exact open-loop robust OCP for ℓ2-norm bounded disturbances (lifted)

min
u,x,P

N−1∑
k=0

ℓ(xk, uk) + Vf(xN )

s.t. x0 = x̄0, P0 = 0,

xk+1 = f(xk, uk, 0)

Pk+1 = A(xk) Pk A(xk)
⊤ + Γ(uk)Γ(uk)

⊤

0 ≥ hj(xk, uk) +
√
∇xhj(xk, uk)⊤Pk∇xhj(xk, uk),

k = 0, . . . , N − 1, j = 1, . . . , nh.

▶ Exact for f(x, u, w) = a(uk) +A(uk)xk + Γ(uk)wk and h(xk, uk) affine in xk.

▶ Or: use as linearization-based approximation for any nonlinear system x+ = f(x, u, w).
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Tube-based robust OCP

OCP with set-valued trajectory (Perspective 2)

min
X, π

N−1∑
k=0

L(Xk, πk) + LN (XN )

s.t. X0 = {x̄0},
Xk+1 = F(Xk, πk), k = 0, . . . , N − 1,

0 ≥ h(xk, πk(xk)),∀xk ∈ Xk, k = 0, . . . , N − 1,

0 ≥ r(xN ), ∀xN ∈ XN .

▶ Tube-based OCP: parametrize Xk as continuous, compact,
and connected set, e.g.,:
▶ ellipsoids,
▶ various flavors of polyhedra.

▶ We also need some (simple) parametrization of the policy π.

▶ Nonlinearity in general leads to non-parametrizable sets →
overapproximate.
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Ellipsoidal tubes – dynamics

Consider the linear time-varying system, for k = 0, . . . , N − 1,

x0 = ¯̄x0, xk+1 = Akxk+Bkuk+Γkwk, with w = (w0, . . . , wN−1) ∈ W = {w | ∥w∥2 ≤ 1}.

What is the sequence of sets Xk, so that xk ∈ Xk for all disturbance realizations (”tube”)?

▶ Variant 1, open-loop control trajectory:
πk(xk) ≡ ūk.
This results in ellipsoidal state uncertainty sets
Xk = E(x̄k, Pk), with

x̄0 = ¯̄x0, x̄k+1 = Akx̄k +Bkūk,

P0 = 0, Pk+1 = AkPkA
⊤
k + ΓkΓ

⊤
k .

▶ Variant 2, with additional linear feedback:
πk(xk) = ūk +Kk(xk − x̄k).
Only the ellipsoid dynamics are modified:

Pk+1 = (Ak +BkKk)Pk(Ak +BkKk)
⊤ + ΓkΓ

⊤
k .

c

Q

Ellipsoids can be defined via center c and
shape matrix (“variance”) Q ≻ 0.
E(c,Q) := {x | (x− c)⊤Q−1(x− c) ≤ 1}
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Ellipsoidal tubes – constraints

Given ellipsoidal uncertainty set Xk = E(x̄k, Pk), how to treat
constraints?

b+ a⊤xk ≤ 0 ∀xk ∈ E(x̄k, Pk)

Reformulate as
b+ max

xk∈E(x̄k,Pk)
a⊤xk ≤ 0.

For affine constraints we can compute the maximum analytically
(e.g. via dual norm) as

max
xk∈E(x̄k,Pk)

a⊤xk = a⊤x̄k +
√
a⊤Pka,

resulting in

b+ c⊤x̄k +
√
a⊤Pka ≤ 0.
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Ellipsoidal tubes – resulting OCP

Ellipsoidal tube OCP for linear systems with linear state feedback (ℓ2-norm bounded dist.)

min
x̄, ū, P,K

N−1∑
k=0

ℓ(x̄k, ūk) + Vf(x̄N )

s.t. x̄0 = ¯̄x0, P0 = 0,

x̄k+1 = Akx̄k +Bkūk, k = 0, . . . , N − 1,

Pk+1 = (Ak +BkKk)Pk(Ak +BkKk)
⊤ + ΓkΓ

⊤
k , k = 0, . . . , N − 1,

0 ≥ bi + a⊤i x̄k +
√
a⊤i Pkai, i = 1, . . . , nc,

0 ≥ b̃j + ã⊤j ūk +
√
ã⊤j KkPkK⊤

k ãj , j = 1, . . . , nc̃.

▶ For K = 0: Same OCP as from dual norm derivation.
▶ Nonconvex due to optimization over state feedback gains Kk (O(N) variables).
▶ If Kk fix, then also Pk fix, resulting in standard OCP with backoff.
▶ Side remark: Stochastic i.i.d. noise wk ∼ N (0, I), and chance constraints lead to

numerically identical OCP, with stochastic tube xk ∼ N (x̄k, Pk).
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Affine Disturbance Feedback Parameterization

▶ Optimization over state feedback matrices K is nonconvex and can be challenging to solve.
▶ Alternative 2: Disturbance feedback instead of state feedback.

uk = ūk +

k−1∑
m=0

Mk,mwm

▶ Ties in neatly with Perspective 1 and dual norm formulation.
▶ Affinely adjustable robust counterpart1 for causal structure of OCP.
▶ Leads to convex problem for linear systems: xk+1 = Akxk +Bkuk + Γkwk.

▶ For linear systems: equivalent to linear state feedback on all past states.2

▶ Same principle behind system level synthesis (SLS).3

▶ Many feedback gains → large-dimensional, expensive optimization problems (O(N2)
variables).

1A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust solutions of uncertain linear
programs. Mathematical Programming, 99(2):351–376, 2004
2P. J. Goulart, E. C. Kerrigan, and J. M. Maciejowski. Optimization over state feedback policies for robust
control with constraints. Automatica, 42:523–533, 2006
3J. Anderson, J. C. Doyle, S. H. Low, and N. Matni. System level synthesis. Annual Reviews in Control, 47,
2019
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Affine disturbance feedback formulation for ℓ2-norm

Robust OCP (ℓ2-norm bounded dist.) with aff. dist. feedback (O(N2) variables)

min
x̄, ū, G,M

N−1∑
k=0

ℓk(x̄k, ūk) + Vf(x̄N )

s.t. x̄0 = ¯̄x0,

x̄k+1 = Akx̄k +Bkūk, k = 0, . . . , N − 1,

Gk+1,k = Γk, k = 0, . . . , N − 1,

Gk+1,n = AkGk,n +BkMk,n n = 0, . . . , k − 1,

0 ≥ bi + a⊤i x̄k +

√√√√a⊤i

(
k−1∑
m=0

Gk,mG⊤
k,m

)
ai, i = 1, . . . , nc,

0 ≥ b̃j + ã⊤j ūk +

√√√√ã⊤j

(
k−1∑
m=0

Mk,mM⊤
k,m

)
ãj , j = 1, . . . , nc̃.

For convex quadratic objectives, this is a convex second order cone program (SOCP).
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Affine disturbance feedback formulation for ℓ∞-ℓ2-norm

Robust OCP (ℓ∞-ℓ2-norm bounded dist.) with aff. dist. feedback (O(N2) variables)

min
x̄, ū, G,M

N−1∑
k=0

ℓk(x̄k, ūk) + Vf(x̄N )

s.t. x̄0 = ¯̄x0,

x̄k+1 = Akx̄k +Bkūk, k = 0, . . . , N − 1,

Gk+1,k = Γk, k = 0, . . . , N − 1,

Gk+1,n = AkGk,n +BkMk,n n = 0, . . . , k − 1,

0 ≥ bi + a⊤i x̄k +

k−1∑
m=0

∥G⊤
k,mai∥2, i = 1, . . . , nc,

0 ≥ b̃j + ã⊤j ūk +

k−1∑
m=0

∥M⊤
k,mai∥2, j = 1, . . . , nc̃.

For convex quadratic objectives, this is a convex second order cone program (SOCP).
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Mini summary of the last few slides

▶ Use dual norm to derive robust counterpart for norm-bounded disturbances
(Perspective 1)
▶ Typically, we need to compute many derivatives (O(N2) variables in lifted form)
▶ Special case ℓ2-norm: Compute derivatives in a smart way to reduce to O(N) variables!

▶ Derived ellipsoidal tube formulation for ℓ2-norm bounded noise (Perspective 2)
▶ Without feedback: corresponds to OCP derived via dual norm in Perspective 1.

▶ Feedback policy parametrizations:

Aff. state FB Aff. disturbance FB

Convex for linear systems No Yes

Parameters O(N) O(N2)

Ties in neatly with Perspective 2 (Tube) Perspective 1 (RO)

& ℓ2-norm & any norm

▶ All of them: Exact (tight) constraint robustification (Challenge 1), but suboptimal
feedback (Challenge 2).
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A closer look at the assumptions on w – Case 1

x0 = 0, xk+1 = xk + wk, k = 0, . . . , N − 1, w = (w0, . . . , wN−1) ∈ W

▶ Case 1: Full trajectory is ℓ2-norm-bounded:

W = {w ∈ RNnw | ∥w∥2 ≤ 1}

▶ Encodes dependence across time: wk cannot take
an extreme value for all k.

▶ Similar effect as i.i.d. assumption in stochastic
context.
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A closer look at the assumptions on w – Case 2

x0 = 0, xk+1 = xk + wk, k = 0, . . . , N − 1, w = (w0, . . . , wN−1) ∈ W

▶ Case 2: Each wk is ℓ2-norm-bounded independently:

W = W̄× · · · × W̄,

with W̄ = {w̄ ∈ Rnw̄ | w̄⊤w̄ ≤ 1}

▶ Encodes independence across time: wk can take an
extreme value for all k.

▶ Corresponds to mixed ℓ∞-ℓ2-norm bound on full
trajectory.
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Extending ellipsoidal tubes to independent stage noise?

x0 = ¯̄x0, xk+1 = Akxk +Bkuk + Γkwk.

So far, we assumed w = (w0, . . . , wN ) ∈ W = {w ∈ RNnw | ∥w∥2 ≤ 1}. This contains the
assumption that the noise is dependent across time.
Alternative assumption: noise is norm-bounded independently at each time

W = W̄× · · · × W̄︸ ︷︷ ︸
N−times

with W̄ = {w ∈ Rnw̄ | w⊤w ≤ 1}.

Can in principle be addressed using the affine case with mixed ℓ∞-ℓ2-norm, combined with any
feedback parameterization – but this is expensive. Can we use ellipsoidal tubes instead?
Assume we have Xk = E(x̄k, Pk). Then

Xk+1 = AkXk +Bkuk + ΓkW̄
= E(Akx̄k +Bkuk, AkPkA

⊤
k ) + E(0,ΓkΓ

⊤
k )

Problem: The sum of two ellipsoids is not an ellipsoid.
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Sum of ellipsoids (Minkowski sum)

E(Q0)

E(Q1)

E(Q0) + E(Q1)

E(Q0)

E(Q1)

E(Q2)

E(Q0) + E(Q1) + E(Q2)

The sum of ellipsoids is not ellipsoidal.
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Overapproximating sum of ellipsoids by ellipsoid

▶ Aim: find Q such that E(Q) ⊇ E(Q1) + E(Q2)

▶ More general: Find Q such that E(Q) ⊇∑N
k=1 E(Qk)

▶ Construct family of outer approximations parametrized by α ∈ RN
++

Q(α) =

N∑
k=1

1

αk
Qk ⇒ E(Q(α)) ⊇

N∑
k=1

E(Qk) ∀α ∈ RN
++ with

N∑
k=1

αk = 1

▶ Denote set of feasible α by AN (basically a simplex)

▶ Parametrized outer approximation is tight:

⋂
α∈AN

E(Q(α)) =

N∑
k=1

E(Qk)

A. Kurzhanski and P. Valyi. Ellipsoidal Calculus for Estimation and Control. Birkhäuser Boston, 1997

B. Houska. Robust Optimization of Dynamic Systems. PhD thesis, KU Leuven, 2011. (ISBN:
978-94-6018-394-2)
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Overapproximating sum of ellipsoids by ellipsoid (cont.)

▶ In general: Choose α according to some criterion
▶ e.g., such that E(Q(α)) has minimal size, e.g., minα∈AN tr(Q(α))
▶ or E(Q(α)) tight in a given direction g ∈ Rn (approximation touches true sum)

min
α ∈ AN

(
max

x ∈ Rn
g⊤x s.t. x ∈ E(Q(α))

)
= min

α ∈ AN

√
g⊤Q(α)g =̂ min

α ∈ AN
tr(gg⊤Q(α))

▶ Special case N = 2
▶ Q(α) = 1

α1
Q1 +

1
α2

Q2 with α1 + α2 = 1

▶ Reparametrize: α2 = 1− α1, β = 1
1−α1

> 0

▶ Q̃(β) = (1 + 1
β
)Q1 + (1 + β)Q2
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Overapproximations of sum of two ellipsoids

E(Q0)

E(Q1)

E(Q0) + E(Q1)

min trace overapprox

minkowski sum

tight overapprox

tight overapprox
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Overapproximations of sum of three ellipsoids

E(Q0)

E(Q1)

E(Q2)

E(Q0) + E(Q1) + E(Q2)

min trace overapprox

minkowski sum

tight overapprox

tight overapprox
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Uncertain linear dynamical system

xk+1 = Akxk +Bkuk + Γkwk,

▶ Reachable set

xk ∈ E(x̄k, Pk), wk ∈ W̄

⇒ xk+1 ∈ X̃k+1 = E(Akx̄k +Bkuk, AkPkA
⊤
k ) + E(ΓkΓ

⊤
k )

▶ X̃k+1 not ellipsoidal
▶ Overapproximate by ellipsoid

▶ Overapproximation of reachable set

Pk+1 = (1 + βk)AkPkA
⊤
k + (1 + 1

βk
)ΓkΓ

⊤
k

⇒ X̃k+1 ⊆ E(Pk+1)

⇒ xk+1 ∈ E(Pk+1)
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Overapproximating tubes for stagewise ellipsoidal uncertainty

Ellipsoidal tube OCP for linear systems with linear state feedback (ℓ∞ − ℓ2-norm bounded dist.)

min
x̄, ū, β, P,K

N−1∑
k=0

ℓ(x̄k, ūk) + Vf(x̄N )

s.t. x̄0 = ¯̄x0, P0 = 0, β ≥ 0,

x̄k+1 = Akx̄k +Bkūk, k = 0, . . . , N − 1,

Pk+1 = (1 + βk)(Ak +BkKk)Pk(Ak +BkKk)
⊤ + (1 + (1/βk))ΓkΓ

⊤
k ,

0 ≥ bi + a⊤i x̄k +
√
a⊤i Pkai, i = 1, . . . , nc,

0 ≥ b̃j + ã⊤j ūk +
√
ã⊤j KkPkK⊤

k ãj , j = 1, . . . , nc̃.

▶ Conservative (non-tight) constraint satisfaction (Challenge 1) but suboptimal feedback.
Nonconvex. O(N) variables.

▶ Not the same as – and cheaper than – dual norm formulation for ℓ∞-ℓ2-norm.
▶ Three types of “controls” with two different tasks

▶ Nominal ū = (ū0, . . . , ūN−1) influence x̄k.
▶ Gains K = (K0, . . . ,KN−1) and “Minkowski-multipliers” β = (β0, . . . , βN−1) influence Pk.
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Overview

1 Challenges and perspectives
Three challenges of robust dynamic optimization
Statement of the uncertain optimal control problem and three perspectives

Perspective 1: Robust Optimization
Perspective 2: OCP with set-valued trajectories
Perspective 3: Robust dynamic programming

2 Some robust OCP formulations – Optimal and suboptimal, tight and overly conservative
Scenario tree for polytopic systems with convex costs and constraints
Dual norm formulations for uncertainty affine systems
Ellipsoidal tubes for ℓ2-bounded disturbance sequence
Affine Disturbance Feedback Parameterization
Overapproximating ellipsoidal tubes for stagewise bounded uncertainty

3 Nonlinear OCP and tailored algorithms
Tube approximation for robust nonlinear MPC
Zero-order robust optimization (zoRO)
Feedback optimization with Sequential Inexact Robust Optimization (SIRO)
Algorithms for disturbance feedback

Robust Dynamic Optimization F. Messerer 45/59



Ellipsoidal tube approximation for robust nonlinear MPC

▶ We switch to a nonlinear system

x0 = ¯̄x0, xk+1 = fk(xk, uk, wk), k = 0, . . . , N − 1.

▶ w = (w0, . . . , wN−1) is drawn from ℓ2-ball with radius σ, i.e., w ∈ E(0, I)
▶ Similar approach with ellipsoids as before, but we will only have “approximate robustness”

based on linearization at nominal trajectory

x̄0 = ¯̄x0, x̄k+1 = fk(x̄k, ūk, 0)

Ak =
∂fk
∂xk

(x̄k, ūk, 0), Bk =
∂fk
∂uk

(x̄k, ūk, 0), Γk =
∂fk
∂wk

(x̄k, ūk, 0), k = 0, . . . , N − 1.

▶ In principle it is possible to bound the linearization error.

Z. Nagy and R. Braatz. Open-loop and closed-loop robust optimal control of batch processes using
distributional and worst-case analysis. Journal of Process Control, 14:411–422, 2004

M. Diehl, H. Bock, and E. Kostina. An approximation technique for robust nonlinear optimization.
Mathematical Programming, 107:213–230, 2006

B. Houska. Robust Optimization of Dynamic Systems. PhD thesis, KU Leuven, 2011. (ISBN:
978-94-6018-394-2)
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Feedback to reduce the uncertainty

▶ Plan with linear feedback law to reduce uncertainty

uk = κk(xk) = ūk +Kk(xk − x̄k), k = 0, . . . , N − 1, K0 = 0.

▶ Propagate ellipsoids according to linearized dynamics

P0 = 0, Pk+1 = (Ak +BkKk)Pk(Ak +BkKk)
⊤ + ΓkΓ

⊤
k︸ ︷︷ ︸

=: ψ(x̄k, ūk, Pk,Kk)

▶ Left out here, but could also generalize to ℓ∞-ℓ2-norms by including
Minkowski-multipliers, βk, or to affine disturbance feedback
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Nonlinear ellipsoidal-tube OCP with linear state feedback

Nonlinear ellipsoidal-tube OCP with linear state feedback (“approximately
robust”)

min
x̄, ū, P,K

N−1∑
k=0

ℓk(x̄k, ūk) + Vf(x̄N )

s.t. x̄0 = ¯̄x0, P0 = 0,

x̄k+1 = fk(x̄k, ūk, 0), k = 0, . . . , N − 1,

Pk+1 = ψk(x̄k, ūk, Pk,Kk),

0 ≥ hk(x̄k, ūk) + bk(x̄k, ūk, Pk,Kk),

0 ≥ hN (x̄N ) + bN (x̄N , PN ).

bik(x̄k, ūk, Pk,Kk) =

√
∇hik(x̄k, ūk)⊤

[
I K⊤

k

]⊤
Pk

[
I K⊤

k

]
∇hik(x̄k, ūk),

biN (x̄N , PN ) =
√

∇hiN (x̄N )⊤PN∇hiN (x̄N ),
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Zero-order robust optimization (zoRO) algorithm

▶ Consider nonlinear ellipsoidal-tube OCP with
fixed feedback gains (e.g. K = 0)

▶ Augmented state: xk ∈ Rnx , Pk ∈ Rn2
x

▶ Controls: uk ∈ Rnu

▶ Complexity per iteration of standard OCP
algorithm: O(Nn6

x) (Riccati recursion)

▶ Zero-order robust optimization (zoRO)
▶ Alternate between nominal OCP with fixed

backoff and uncertainty propagation.
→ Complexity per iteration: O(Nn3

x)
▶ Neglects some sensitivities, such that it

converges to feasible but suboptimal point.
▶ Efficient implementation in acados

Solve nominal OCP
with fixed backoffs

Propagate ellipsoids
& compute backoffs

backoffs bk

nominal trajectory x̄, ū

zoRO

A. Zanelli, J. Frey, F. Messerer, and M. Diehl. Zero-order robust nonlinear model predictive control with
ellipsoidal uncertainty sets. Proceedings of the IFAC Conference on Nonlinear Model Predictive Control
(NMPC), 2021

J. Frey, Y. Gao, F. Messerer, A. Lahr, M. N. Zeilinger, and M. Diehl. Efficient zero-order robust optimization for
real-time model predictive control with acados. In Proceedings of the European Control Conference (ECC), 2024
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zoRO iterations

▶ Iterate between (A) nominal problem with fixed backoffs, and (B) matrix propagation

(A) Nominal problem with backoffs – standard NMPC problem

min
x̄, ū

N−1∑
k=0

ℓk(x̄k, ūk) + Vf(x̄N )

s.t. x̄0 = ¯̄x0, xk+1 = fk(x̄k, ūk, 0), k = 0, . . . , N − 1,

0 ≥ hk(x̄k, ūk) + bk, 0 ≥ hN (x̄N ) + bN .

(B) Matrix propagation to compute backoffs

P0 := 0, Pk+1 := ψk(x̄k, ūk, Pk,Kk),

bik :=

√
∇hik(x̄k, ūk)⊤

[
I K⊤

k

]⊤
Pk

[
I K⊤

k

]
∇hik(x̄k, ūk), k = 0, . . . , N − 1

biN :=
√
∇hiN (x̄N )⊤PN∇hiN (x̄N ).
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Computation times zoRO
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Code available at www.github.com/FreyJo/zoro-NMPC-2021,

J. Frey, Y. Gao, F. Messerer, A. Lahr, M. N. Zeilinger, and M. Diehl. Efficient zero-order robust optimization for
real-time model predictive control with acados. In Proceedings of the European Control Conference (ECC), 2024
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Feedback optimization with Sequential Inexact Robust Optimization
(SIRO)

▶ Consider nonlinear ellipsoidal-tube OCP with
feedback gain optimization

▶ Augmented state: xk ∈ Rnx , Pk ∈ Rn2
x

▶ Augmented controls: uk ∈ Rnu , Kk ∈ Rnxnu

▶ Complexity per iteration, standard algorithm:
O(Nn6

x)
▶ Additionally highly nonconvex and challenging

to solve

▶ Sequential inexact robust optimization (SIRO)
▶ Split into nominal variables x̄, ū and

uncertainty variables P,K.
▶ Alternate between:

▶ Nominal OCP for the nominal variables
▶ Riccati recursion and uncertainty

propagation for the uncertainty variables

▶ Complexity per iteration: O(Nn3
x)

Solve nominal OCP
with fixed backoffs

Optimize feedback gains,
propagate ellipsoids
& compute backoffs

backoffs bk,
gradient correction ck

nominal trajectory x̄, ū,
inequality multipliers µk

SIRO

F. Messerer and M. Diehl. An efficient algorithm for tube-based robust nonlinear optimal control with optimal
linear feedback. In Proceedings of the IEEE Conference on Decision and Control (CDC), 2021
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Open-loop robust trajectory
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(b) open loop robust, T̂F = 253.23 kN

Code available at www.github.com/fmesserer/plain-siro.
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Closed-loop robust trajectory with optimal linear feedback
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(c) closed loop robust, T̂F = 260.04 kN

Code available at www.github.com/fmesserer/plain-siro.
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Related algorithm: fast-SLS

▶ Consider: linear dynamics, ℓ∞-ℓ2-bounded disturbance, disturbance feedback, convex
quadratic cost.
▶ Results in convex SOCP with O(N2) decision variables
▶ Standard sparsity algorithm, complexity per iteration: O(N4)

▶ Algorithm fast-SLS1 employs SIRO-like alternation of nominal OCP and N Riccati
recursions
▶ Complexity per iteration: O(N2)
▶ Reduction to O(N) via straightforward parallelization

▶ For QP resulting from ℓ∞-ℓ2 or ℓ∞-ℓ1 bounded noise, reformulation resulting in different
sparsity pattern2 yields O(N3)

1A. P. Leeman, J. Kohler, F. Messerer, A. Lahr, M. Diehl, and M. N. Zeilinger. Fast system level synthesis:
Robust model predictive control using riccati recursions. IFAC-PapersOnLine, 58(18):173–180, 2024
2P. J. Goulart, E. C. Kerrigan, and D. Ralph. Efficient robust optimization for robust control with constraints.
Math. Program., 114, 2008
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Computation times fast-SLS
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Code available at www.github.com/antoineleeman/fast-SLS.
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Summary / Conclusions

▶ We focused on the first two of three challenges for robust optimal control: Robust
constraint satisfaction and feedback optimization.

▶ We used three perspectives on robust OCP: Robust optimization, OCP with set valued
trajectories, Robust Dynamic Programming.

▶ Robust Dynamic Programming (RDP) conceptually solves the robust OCP exactly.

▶ Scenario-trees allow to exactly solve the problem for finite uncertainties and polytopic
systems, but suffer from exponential growth

▶ Normbounded disturbances can be elegantly treated via the dual norm.

▶ State feedback leads to nonconvex optimization problems.

▶ Affine disturbance feedback yields convex but higher dimensional problems.

▶ Robust nonlinear MPC problems can be addressed by linearization, yielding approximate
robustness if the linearization errors are not overbounded.

▶ Family of algorithms to reduce computational complexity: zoRO, SIRO, fastSLS.
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