
Optimization with CasADi and Modelica/FMI
Summer School on Robust Model Predictive Control with CasADi,

Freiburg (Germany), September 15-19, 2025

Joel Andersson

FMIOPT AS (Stavanger, Norway)
joel@fmiopt.com

17 September 2025

joel@fmiopt.com

Bio: Joel Andersson

1982: Born in Sweden,
undergrad at Chalmers

2007–2018: M.Sc. thesis on
parameter estimation for batch
chromatography at FZ Jülich

2008–2013: Ph.D with
Moritz Diehl at KU Leuven

▶ Optimization w/ Modelica
▶ Main outcome: CasADi

2015–2018: Postdoc with James B.
Rawlings at University of
Wisconsin-Madison

2018–2020: Optimization algorithms
for cancer treatment planning at Philips

2020–: Self-employed, mainly Modelica

▶ USA → Åland (FI) → Norway
▶ New software: FMIOPT (2024–)

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 2 / 41

Topics covered

What is Modelica?

What is the Functional Mock-up Interface (FMI)?

Modelica/FMI interoperability in CasADi

Tutorial

▶ Derivative/sensitivity calculations with imported FMI models
▶ Optimization with imported FMI models
▶ FMI model export from CasADi

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 3 / 41

1 Modelica and FMI

2 Calculating derivatives
Algorithmic differentiation (AD)
Derivative information in FMUs

3 CasADi
Modelica/FMI interoperability

4 Outlook

5 Tutorial

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 4 / 41

Table of Contents

1 Modelica and FMI

2 Calculating derivatives
Algorithmic differentiation (AD)
Derivative information in FMUs

3 CasADi
Modelica/FMI interoperability

4 Outlook

5 Tutorial

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 5 / 41

What is Modelica?

Object-oriented, equation-based, modeling language for dynamical systems

Enables assembling complex dynamic models from reusable components

Open standard, supported by multiple software vendors (Dymola,
OpenModelica, Wolfram SystemModeler, Modelon Impact, . . .)

Large ecosystem of free and commercial model libraries

Multi-domain, especially popular in automotive, process control, building
management (heating/ventilation/cooling, HVAC)

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 6 / 41

Example of industrial use of Modelica: Formula 1

Modelica used to model whole system: engine, gears, tires, aero, track, . . .

Design changes multiple times per season

Software-in-the-loop, driver-in-the-loop simulations

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 7 / 41

Hybrid system modeling

Modelica makes it easy to model discrete events

Simulate automatic controllers, model state-machines

A bouncing ball is the “Hello, world!” in Modelica:

model BouncingBall "Bouncing ball"

type Height=Real(unit="m");

type Velocity=Real(unit="m/s");

parameter Real e=0.8

"Coefficient of restitution";

parameter Height h0=1.0

"Initial height";

Height h;

initial equation

h = h0;

equation

v = der(h);

der(v) = -9.81;

when h<0 then

reinit(v, -e*pre(v));

end when;

end BouncingBall;

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 8 / 41

Complex systems can be modeled in GUIs or in code

Complex dynamic models are created by connecting components in block
diagrams or by writing Modelica code

E.g. in Dymola:

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 9 / 41

Modelica: Dynamic model

The Modelica language is expressive:

▶ Variables have different units, types (real, integer, strings), variability
(continuous, discrete), causality (input, output, internal), . . .

▶ Equations: Differential, algebraic, initial, . . .
▶ Events triggered at certain times, conditionally, periodically, . . .
▶ Object oriented features: Classes, inheritence, records, connectors, . . .

Can always be compiled into a hybrid ODE or DAE

▶ Simplified: ODE augmented with output equations, zero-crossing
functions and event transition dynamics





x(t) = lim
τ→t−

Ej(x(τ)) if ∃j : Zj(x(t)) < 0

ẋ(t) = f (x(t), u(t)) otherwise

y(t) = h(x(t), u(t))

(1)

▶ Process involving sorting, index-reduction, state-selection, etc.

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 10 / 41

Modelica Association

Non-profit

▶ International meetings every two years (US/Asian meetings off years)
▶ Mix of industry and academia/labs

Large interest in optimization within the Modelica community!

▶ CasADi – most attended tutorial (out of 15) at Modelica 2025!
▶ Starting to see optimization results in industrial applications

Maintains Modelica Language and Libraries as well as:

▶ FMI: Functional Mock-up Interface
▶ SSP: System Structure and Parameterization
▶ DCP: Distributed Co-simulation Protocol
▶ eFMI: Functional Mock-up Interface for Embedded Systems

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 11 / 41

Functional Mock-up Interface (FMI)

Functional Mock-up Interface (FMI) is a standard for representing model
dynamics: Supported by 250+ Modelica and non-Modelica tools

FMI defines Functional Mock-up Unit (FMU), which typically support

▶ Co-simulation: Simulate the system from time tk to tk+1, and/or
▶ Model-exchange: Evaluate ẋ , y , event dynamics

Especially since FMI 3.0, possible to extract all the model information
needed for efficient numerical optimal control, but with many pitfalls

▶ Model issues, e.g. non-smoothness, non-monotonicity
▶ Toolchain issues, e.g. calling overhead, limited accuracy, derivatives
▶ Wealth of industry relevant problems to solve

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 12 / 41

System Structure and Parameterization (SSP)

Define complete systems, consisting of components and interconnections

Components can be FMUs or other SSP

Gaining popularity – opportunity for optimization?

Often possible to split up monolithic system models into components

▶ Expose more model structure than possible with FMI alone
▶ More efficient Jacobian and Hessian calculations
▶ Analytic derivatives for “most” of the model
▶ Better, more granular diagnostics
▶ Lifted NLP formulations? (Albersmeyer2010)

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 13 / 41

Table of Contents

1 Modelica and FMI

2 Calculating derivatives
Algorithmic differentiation (AD)
Derivative information in FMUs

3 CasADi
Modelica/FMI interoperability

4 Outlook

5 Tutorial

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 14 / 41

Recall: NLP software

Direct methods transcribe OCPs into a nonlinear program (NLP):

minimize
X∈RNX

F (X)

subject to G (X) = 0, X ≤ X ≤ X

Second-order methods (SQP or nonlinear interior point) typically need:

1 Undifferentiated functions: F (X) and G (X)

2 First order derivatives: ∇XF (X) and
∂G

∂X
(X)

3 Second order derivatives (Λ given):

∇2
X

(
F (X) + ΛT G (X)

)
=

∂

∂X

(
∇XF (X) + ΛT ∂G

∂X
(X)

)

Reasonable methods for calculating derivatives

1 Finite differences (FD), sometimes

2 Algorithmic differentiation (AD)

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 15 / 41

Finite differences

Consider a function y = f (x) : Rnx → Rny with Jacobian J(x) =
∂f

∂x

J(x) x̂ ≈ f (x + t x̂)− f (x)

t

Pros and cons:

+ Easy to implement and relatively fast

▶ One additional evaluation of f for J(x) x̂

− Poor accuracy, need to carefully choose t:

▶ Small t ⇒ cancellation errors
▶ Large t ⇒ approximation errors

+ Can get higher accuracy with higher-order schemes (e.g. 5-point stencils)

− No efficient way to calculate ŷ⊺ J(x)

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 16 / 41

Algorithmic differentiation (AD) (e.g. Griewank & Walther, 2008)

Decomposable function: y = f (x)

f : Rn0 → RnK sufficiently smooth

Decompose into “atomic operations” with known differentiation rules:
z0 ← x
for k = 1, . . . ,K do

zk ← fk ({zi}i∈Ik
)

end for
y ← zK
return y

Such a decomposition is always
available if f written as a computer
program!

Example

y = sin(
√
x)

z0 ← x
z1 =

√
z0

z2 = sin z1
y ← z2
return y

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 17 / 41

Decomposition can be with simple scalar operations . . .

▶ x + y , x ∗ y , sin(x), xy

. . . or with higher-level operations for which a chain-rule can be defined

▶ x⊺, x [i] = y , XY , eX , det(X)
▶ Linear and nonlinear systems of equations
▶ Initial-value problems in ODE or DAE ⇒ E.g. Shooting methods
▶ Nonlinear programs ⇒ E.g. calculate confidence intervals
▶ FMUs (another differentiable building block in optimization?)

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 18 / 41

Idea: Differentiate the algorithm for f (x) w.r.t. x

z0 ← x
for k = 1, . . . ,K do

zk ← fk ({zi}i∈Ik
)

end for
y ← zK
return y

⇒

z0 ← x
dz0
dx
← I

for k = 1, . . . ,K do
zk ← fk ({zi}i∈Ik

)

dzk
dx
←

∑

i∈Ik

∂fk
∂zi

({zi}i∈Ik
)
dzi
dx

end for
y ← zK

J ← dzK
dx

return y , J

For fixed x , write as a system of linear equations:

dz

dx
= B + L

dz

dx
, J = A⊺ dz

dx
,

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 19 / 41

For fixed x , write as a system of linear equations:

dz

dx
= B + L

dz

dx
, J = A⊺ dz

dx
,

with

z =




z0
z1
...
zK


 , A =




0
...
0
I


 and B =




I
0
...
0


 ,

with I and 0 of appropriate dimensions, as well as the extended Jacobian,

L =




0 0

∂f1
∂z0

. . .
...

...
. . .

. . .
...

∂fK
∂z0

. . . ∂fK
∂zK−1

0




,

Since I − L is invertible, we can solve for J:

J = A⊺ (I − L)−1 B

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 20 / 41

Have J = A⊺ (I − L)−1 B

Multiply J from the right: Forward mode of AD

▶ ŷ := J x̂ = A⊺ (I − L)−1 B x̂
▶ Cheap with forward substitution of lower triangular (I − L)
▶ Computational cost: ≈ cost of evaluating f
▶ Small memory requirements (no storage of L needed)

Multiply JT from the right: Reverse (adjoint) mode of AD

▶ x̄ := J⊺ ȳ = B⊺ (I − L)−⊺ A ȳ
▶ Cheap with backward substitution of upper triangular (I − L)⊺

▶ Computational cost: ≈ cost of evaluating f
▶ If f (x) is scalar, ȳ = 1 gives ∇x f (x)
▶ Intermediate operations (or their linearization) must be stored

⋆ Potentially large memory use
⋆ Decrease memory use using checkpointing

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 21 / 41

Checkpointing – trade memory for recalculations

E.g.

y = f (x):
z0 ← x
for k = 1, . . . , 1000 do

zk ← sin(zk−1)
end for
y ← z1000

Divide up!:

y = f (x) :
z0 ← x
for k = 1, . . . , 20 do

zk ← g(zk−1)
end for
y ← z20

y = g(x) :
z0 ← x
for k = 1, . . . , 50 do

zk ← sin(zk−1)
end for
y ← z50

Memory for reverse mode decreases from 50 ∗ 20 to 50 + 20

Price: Need to reevaluate g(x) – twice as many sin calls!

▶ Small cost if you are calculating multiple derivative directions

In CasADi: Create nested functions

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 22 / 41

Calculating Jacobians and Hessians

Jacobians can be calculated by multiplying with ncol unity vectors from the
right or nrow unity vectors from the left

Worst-case: ≈ min(nrow, ncol) times cost of evaluating f

Much cheaper if J is sparse, e.g. banded. Illustration:

J =




∗
∗
∗
∗




⇒ x̂ = [1, 1, 1, 1]

J =




∗
∗ ∗
∗ ∗
∗ ∗




⇒ x̂1 = [0, 1, 1, 1],
x̂2 = [1, 0, 0, 0]

J =




∗ ∗ ∗ ∗
∗
∗
∗




⇒ x̂1 = [1, 0, 0, 0],
ȳ2 = [1, 0, 0, 0]

Good heauristics exist based on graph coloring (cf. Gebremedhin et al, 2005)

Hessians: Jacobian of reverse mode algorithm

▶ Exploit symmetry, especially in graph coloring

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 23 / 41

Derivative information in FMUs

Recall: FMU described by ODE state-space model with event dynamics





x(t) = lim
τ→t−

Ej(x(τ)) if ∃j : Zj(x(t)) < 0

ẋ(t) = f (x(t), u(t)) otherwise

y(t) = h(x(t), u(t))

(2)

FMI 2.0: Have forward derivatives, Jacobian sparsity patterns for f and h

FMI 3.0: Also adjoint derivatives

No second order derivatives, but you can do finite differences of adjoint

(Some) Hessian sparsity information

No derivative information for events (Ej and Zj) ⇒ Use FD?

▶ Event time implicitly defined by Zj(x(t)) = 0

“Good enough” for dynamic optimization, with many caveats

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 24 / 41

Summary: AD

Jacobian-times-vector products cheap using forward mode AD

Vector-times-Jacobian products cheap using reverse mode AD

▶ Checkpointing can avoid excessive memory use

Complete Jacobians and Hessians: depends on sparsity pattern

▶ Worse case: ≈ min(nrow, ncol) times cost of evaluating F
▶ Good heauristics exist for complete sparse Jacobians and Hessians

Software exists for many languages and domain specific languages

▶ CasADi, JAX, Julia, Pyomo, MATLAB, . . .

Can be applied to FMUs ⇒ More in tutorial

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 25 / 41

Table of Contents

1 Modelica and FMI

2 Calculating derivatives
Algorithmic differentiation (AD)
Derivative information in FMUs

3 CasADi
Modelica/FMI interoperability

4 Outlook

5 Tutorial

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 26 / 41

[Andersson et al., 2019]

A freely available, open-source framework for numerical optimization

In particular: Facilitates OCP→NLP transcription by providing the building
blocks for efficient optimal control (“100 instead of 10k lines of code”)

▶ Not an OCP solver, but a framework for writing solvers

Developed since 2009 by Joel Andersson and Joris Gillis, then graduate
students with Prof. Moritz Diehl at KU Leuven

Now widely used in academic research, teaching and industry
▶ 5000+ citations on CasADi implementation papers to date

Version 3.7.2 (released September 10, 2025) available from casadi.org

CasADi – A software framework for nonlinear optimization and optimal
control by J Andersson, J Gillis, G Horn, JB Rawlings and M Diehl
Math. Prog. Comp. 11(1):1–36 (2019)
Read it online: http://rdcu.be/2SS7

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 27 / 41

casadi.org
http://rdcu.be/2SS7

CasADi components

Symbolic framework written in self-contained C++

State-of-the-art algorithmic differentiation (AD) [Andersson, 2013]

▶ Source code transformation AD framework supporting high-level
operations: sparse linear algebra, (non)linear solvers, integrators, . . .

▶ AD can be used for gradient-based optimization, implicit integrator
schemes, ODE/DAE sensitivity analysis, DAE index reduction,
Lagrange-based modeling, Lyapunov differential equations, . . .

In-house solvers and interfaces to numerical software, e.g.

▶ (MI)NLP solvers (IPOPT, SNOPT, KNITRO, WORHP, FATROP, Bonmin, CasADi’s own codes)

▶ (MI)QP solvers (qpOASES, GUROBI, CPLEX, OOQP, HPMPC, . . .)

▶ ODE/DAE integrators (SUNDIALS, CasADi’s own codes)

Front-ends to C++, Python, MATLAB/Octave

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 28 / 41

Important feature: C code generation

...

/* #1516: output[266][0] = @12 */

casadi_copy(w12, 930, res[266]);

/* #1517: {@14, @15, @16} = f_mx(@0, @1, @2, @3) */

arg1[0]=w0;

arg1[1]=w1;

arg1[2]=w2;

arg1[3]=w3;

res1[0]=w14;

res1[1]=w15;

res1[2]=w16;

if (casadi_f1(arg1, res1, iw, w, 0)) return 1;

/* #1518: @14 = (@14-@8) */

for (i=0, rr=w14, cs=w8; i<930; ++i) (*rr++) -= (*cs++);

/* #1519: @15 = (@15-@9) */

...

Export self-contained C code without dynamic memory allocation

Why C code generation?

▶ Speedup: Typically 3-4x faster than virtual machine code
▶ Portability: Embedded optimization
▶ Introspection: C code mirrors CasADi’s virtual machine code

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 29 / 41

Modelica interoperability from the start of CasADi

Original motivation to develop CasADi was to solve optimization problems
formulated in Modelica (vICERP project, around 2010)

Different approaches have been implemented:

CasADi continuous time




ẋ = f(x, z, u, p)
0 = g(x, z, u, p)
y = h(x, z, u, p)

CasADi discrete time




Xk+1 = F (Xk, Zk, Uk, P)
0 = G(Xk, Zk, Uk, P)
Yk+1 = H(Xk, Zk, Uk, P)

CasADi NLP

minimize f(x)
subject to g(x) = 0

x ≤ x ≤ xFMIModelica

FMUX
Tools accepting

CasADi
expressions,

e.g. ACADOS

Solvers in-
terfaced with

CasADi,
e.g. IPOPT

1

2 3

1 FMUX: A symbolic extension of FMI 1.0 [JModelica.org,
OpenModelica] (incomplete, no longer maintained)

2 Symbolic, tool-specific couplings [Modelon Impact, Pymoca]
3 Via standard model-exchange FMI 2.0 and FMI 3.0 [several tools]

Note: Symbolic interfaces, e.g. in Modelon Impact

Much faster, works with codegen in e.g. acados, but limited to subset of Modelica

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 30 / 41

New native CasADi interface to standard FMI (2021–)
[Andersson, 2023]

Flexible interface to create twice differentiable functions that can be
embedded into symbolic expressions

Supports all variable types for parameterizing problems, but only subsets of
the real-valued variables can enter in CasADi functions

Efficient, parallelized calculations of first and second order derivatives:

▶ Directional derivatives: Forward, adjoint, forward-over-adjoint
▶ Sparse Jacobians and Hessians
▶ Diagnostics to check correctness of derivative information

Supports FMI 2.0 and FMI 3.0

Work in progress

Continuously improving: Many industrial applications

Many missing pieces: Events support, C code export, . . .

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 31 / 41

FMI export and reimport in CasADi

CasADi can generate FMUs from symbolic expressions

▶ Standard FMI 3.0 with efficient derivative calculation
▶ Simulate model in e.g. FMPy, Modelica tools, Simulink

New feature in CasADi, but builds on mature functionality, in particular AD
and C code export

CasADi FMUs contain serialized expressions adhering to a layered standard

▶ If FMU is imported into CasADi (can be a different installation), get
the expressions back – no information is lost

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 32 / 41

Sensitivity analysis & optimization for systems with events

Event dynamics are common in realistic Modelica/FMI models

▶ How to solve optimal control problems for such systems?
▶ Missing in FMI: Derivatives for event triggering, state reset conditions

In Julia: https://github.com/ThummeTo/FMISensitivity.jl

▶ Standard FMUs, finite differences for missing derivatives
▶ Proposal to supplement the FMI standard [Thummerer et al., 2025]

In CasADi: Focus on symbolic Modelica import

▶ Analysis and C code generation
▶ Compatibility with e.g. NOSNOC [Nurkanovic and Diehl, 2022]
▶ Ongoing work, main challenges:

1 Missing event support in CasADi, in particular for sensitivity analysis
2 Missing standardized symbolic model import supporting events

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 33 / 41

https://github.com/ThummeTo/FMISensitivity.jl

Challenge 1: Event support in CasADi
Support for analytic sensitivity analysis for systems with events
[Andersson and Goppert, 2024]

Bouncing ball: Sensitivity w.r.t. initial height, initial velocity:

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 34 / 41

Challenge 2: Symbolic model import supporting events

Can we find a standardized way to import Modelica models symbolically?

Before numerical simulation, Modelica tools compile models into a simplified
form without constructs such as classes, inheritance, connectors, etc.

Base Modelica [Kurzbach et al., 2023]: Standardize this form across tools

▶ Multiple tools, most mature implementation in OpenModelica

Opportunity: Much easier to implement symbolic import

CasADi continuous time




ẋ = f(x, z, u, p)
0 = g(x, z, u, p)
y = h(x, z, u, p)

CasADi discrete time




Xk+1 = F (Xk, Zk, Uk, P)
0 = G(Xk, Zk, Uk, P)
Yk+1 = H(Xk, Zk, Uk, P)

CasADi NLP

minimize f(x)
subject to g(x) = 0

x ≤ x ≤ xFMIModelica

FMUX
Tools accepting

CasADi
expressions,

e.g. ACADOS

Solvers in-
terfaced with

CasADi,
e.g. IPOPT

1

2 3

Base Modelica

4

Open-source project: Rumoca [Condie et al., 2025]

▶ Compile Base Modelica to CasADi, sympy, JAX, . . .

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 35 / 41

Table of Contents

1 Modelica and FMI

2 Calculating derivatives
Algorithmic differentiation (AD)
Derivative information in FMUs

3 CasADi
Modelica/FMI interoperability

4 Outlook

5 Tutorial

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 36 / 41

Outlook: Optimization with Modelica/FMI

Maturing FMI export and import (CasADi, Julia, Pyomo), with derivatives

▶ Progressed past simple problems (where it’s better to rewrite model)

Efforts to make FMI more suitable for optimization

▶ Layered standard for sensitivity information for events
[Thummerer et al., 2025]

▶ Layered standard for index-1 DAEs in FMI?
⋆ Currently, model-exchange FMUs define ODEs, resulting in overhead

and accuracy loss due to Newton iterations inside model equations

▶ Layered standard for causalized symbolic expressions in FMI?
⋆ Should be tool-agnostic (Julia, CasADi, JAX, Pyomo, . . .)

New standard for specifying optimal control problems in FMI?

Synnergies between “competing” software tools

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 37 / 41

Industrial workflows for dynamic optimization

Modeling environments like Modelica enables industrial users to formulate
thousands of different, but similar models (e.g. HVAC for building)

If you want to solve dynamic optimization problems at scale, you need to
think about workflows

▶ “Why is there a NaN in my Jacobian?”
▶ “Can I trust the derivatives from tool X?”
▶ “Why is dual infeasibiltity not going down?”
▶ “Why does the solver converge to a local minimum?”
▶ “How should I weigh my objectives?”
▶ “How do I initialize my problem?”

How do you systematically solve these problems?

▶ Can the process be automated or faciliated?

Can we standardize the interfaces?

▶ Solve same problem with different tools (e.g. CasADi and Julia)
▶ Solve different problems for same model

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 38 / 41

New optimization framework: FMIOPT (2024–)

Higher-level, scalable framework, funded by industry

Robust workflows for optimization that start with existing simulation models

State-of-the-art, parallelized numerics compatible with model-exchange FMI
(and CasADi)

Excellent diagnostics: When something goes wrong, give actionable
feedback on how to resolve it

Clean, method-agnostic REST API separating front end and back end

FMU
FMIOPT front ends

(Python/MATLAB/GUI)

Objective terms
Constraints

Other problem data

Standardized OCP
(FMU + JSON)

FMIOPT back end
(C++, with REST API)

DAE oracle NLP oracle

CasADi solver interfaces

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 39 / 41

Table of Contents

1 Modelica and FMI

2 Calculating derivatives
Algorithmic differentiation (AD)
Derivative information in FMUs

3 CasADi
Modelica/FMI interoperability

4 Outlook

5 Tutorial

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 40 / 41

Tutorial

https://github.com/jaeandersson/rmpc_summer_school_2025

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 41 / 41

https://github.com/jaeandersson/rmpc_summer_school_2025

Andersson, J. (2013).

A General-Purpose Software Framework for Dynamic Optimization.

PhD thesis, Arenberg Doctoral School, KU Leuven.

Andersson, J. (2023).

Import and Export of Functional Mockup Units in CasADi.

In Proceedings of the 15th International Modelica Conference, volume 2855,
pages 321–326.

Andersson, J. and Goppert, J. (2024).

Event support for DAE simulation and sensitivity analysis in CasADi for use
with Modelica and FMI.

In Proceedings of the American Modelica Conference 2024.

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., and Diehl, M.
(2019).

CasADi: a software framework for nonlinear optimization and optimal
control.

Math. Prog. Comp., 11(1):1 – 36.
Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 41 / 41

Condie, M., Woodbury, A., Goppert, J., and Andersson, J. (2025).

Rumoca: Towards a Translator from Modelica to AlgebraicModeling
Languages.

In Proceedings of the 16th International Modelica & FMI Conference.

Kurzbach, G., Lenord, O., Olsson, H., Sjölund, M., and Tidefelt, H. (2023).

Design proposal of a standardized Base Modelica language.

In Proceedings of the 15th International Modelica Conference, volume 2855,
pages 469–478.

Nurkanovic, A. and Diehl, M. (2022).

NOSNOC: A Software Package for Numerical Optimal Control of
Nonsmooth Systems.

IEEE Control Systems Letters, 6:3110–3115.

Thummerer, T., Olsson, H., Song, C., Gundermann, J., Blochwitz, T., and
Mikelsons, L. (2025).

LS-SA: Developing an FMI layered standard for holistic & efficient sensitivity
analysis of FMUs.

In Proceedings of the 16th International Modelica & FMI Conference.

Joel Andersson (joel@fmiopt.com) Optimization w/ CasADi and Modelica/FMI 17 September 2025 41 / 41

	Outline
	Modelica and FMI
	Calculating derivatives
	Algorithmic differentiation (AD)
	Derivative information in FMUs

	CasADi
	Modelica/FMI interoperability

	Outlook
	Tutorial

