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The basics—linear algebra

We assume throughout that the parameters D ∈ Rn×n ≥ 0,
A ∈ Rm×n, b ∈ Rm, d ∈ Rn. 1

Let A+ ∈ Rn×m denote the pseudoinverse of matrix A ∈ Rm×n.

Let N(A) and R(A) denoted the null space and range space of matrix
A, respectively.

We will also make use of the singular value decomposition (SVD) of
A given by

A = USV

A =
[
U1 U2

] [Σr 0
0 0

] [
V ′
1

V ′
2

]
= U1ΣrV

′
1 (1)

and r is the rank of A.

We also have that A+ = V1Σ
−1
r U ′

1. (mnemonic)

1This material is taken from Rawlings, Mannini, and Kuntz (2024).
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The basics—linear algebra

The properties of the SVD and the fundamental theorem of linear
algebra imply that

▶ the orthonormal columns of U1 and U2 are bases for R(A) and N(A′)
▶ the orthonormal columns of V1 and V2 are bases for R(A′) and N(A)

Edge cases: A = 0 has r = 0 and empty U1,V1,Σr matrices, so
U = U2,V = V2 and
R(A) = {0},R(A′) = {0},N(A) = Rn,N(A′) = Rm.

Other extreme: if A is square and invertible, r = m = n and U2,V2

are empty so U = U1,V = V1, and
R(A) = Rn,R(A′) = Rm,N(A) = {0},N(A′) = {0}. a

aIn this case, don’t say (as I often do) that N(A) is empty. Why not?
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Solving linear algebra problems

We require solutions to linear algebra problems when such solutions exist.

Proposition 1 (Solving linear algebra problems.)

Consider the linear algebra problem

Ax = b

1 A solution exists if and only if b ∈ R(A).

2 For b ∈ R(A), the solution (set of solutions) is given bya

x0 ∈ A+b + N(A) (2)

aWe overload the addition symbol to mean set addition when adding singletons
(A+b) and sets (N(A)).
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Derivation or proof, which matters more? 2

If one is interested in deriving (2) use the two orthogonal coordinate
systems provided by the SVD of A

Let x = Vα, b = Uβ, and solve that simpler decoupled linear algebra
problem for α0 as a function of β,

Convert back to x0 in terms of b.

If b /∈ R(A), x0 is still well-defined, but
Ax0 − b = (AA+ − I )b = −U2U

′
2b ̸= 0.

In this case, the x0 given in (2) solves minx |Ax − b| (least-squares
solution), and achieves value

∣∣Ax0 − b
∣∣ = |U ′

2b|.

1In my experience derivation matters when you want to know the answer. Proof
matters when you want to know when the answer is valid.
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Proposition 2 (Minimum of quadratic functions)

Consider the quadratic function V (·) : Rn → R with D ∈ Rn×n ≥ 0

V (u) := (1/2)u′Du + u′d

1 A solution to minu V exists if and only if d ∈ R(D).

2 For d ∈ R(D), the optimal solution and value function are

u0 ∈ −D+d + N(D) V 0 = −(1/2)d ′D+d (3)

and (d/du)V (u) = 0 at u0.

For maximization problems, we can replace V with −V and min with max.
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Minmax and Maxmin

We are interested in a function V (u,w) V : U×W → R and the
optimization problems

inf
u∈U

sup
w∈W

V (u,w) sup
w∈W

inf
u∈U

V (u,w)

We assume in the following that the inf and sup are achieved on the
respective sets and replace them with min and max.

min
u∈U

max
w∈W

V (u,w) max
w∈W

min
u∈U

V (u,w)
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Continuous functions

Let’s start here. According to Wikipedia, von Neumann’s minimax
theorem states (von Neumann, 1928)

Theorem 3 (Minimax Theorem)

Let U ⊂ Rm and W ⊂ Rn be compact convex sets. If V : U×W → R is a
continuous function that is convex-concave, i.e., V (·,w) : U → R is
convex for all w ∈ W, and V (u, ·) : W → R is concave for all u ∈ U
Then we have that

min
u∈U

max
w∈W

V (u,w) = max
w∈W

min
u∈U

V (u,w)

Note that existence of min and max is guaranteed by compactness of U,W
(closed, bounded). And that’s the Weierstrass (extreme value) theorem: a
continuous function on a closed and bounded set attains its min and max.
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Weak duality

Also note that the following holds for any continuous function V

min
u∈U

max
w∈W

V (u,w) ≥ max
w∈W

min
u∈U

V (u,w)

(mnemonic)

This is often called weak duality. It’s easy to establish.a

We are regarding the switching of the order of min and max as a form
of duality. (Think of observability and controllability as duals of each
other.)

aNever trust authors when they say something is easy to establish!
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Strong duality and duality gap

min
u∈U

max
w∈W

V (u,w) ≥ max
w∈W

min
u∈U

V (u,w)

So when this inequality achieves equality, that’s often called strong
duality.

So the minimax theorem says that continuous functions that are
convex-concave on compact sets satisfy strong duality.

When strong duality is not achieved, we refer to the difference as the
duality gap, which is positive due to weak duality

min
u∈U

max
w∈W

V (u,w)− max
w∈W

min
u∈U

V (u,w) > 0
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Saddle Points

In characterizing solutions of these problems, it is useful to define a saddle
point of the function V (u,w).

Definition 4 (Saddle point)

The point (u∗,w∗) ∈ U×W is called a saddle point of V (·) if

V (u∗,w) ≤ V (u∗,w∗) ≤ V (u,w∗) for all u ∈ U,w ∈ W (4)

Why are saddle points useful?

Proposition 5 (Saddle-point theorem)

The point (u∗,w∗) ∈ U×W is a saddle point of function V (·) if and only
if strong duality holds and (u∗,w∗) is a solution to the two problems

min
u∈U

max
w∈W

V (u,w) = max
w∈W

min
u∈U

V (u,w) = V (u∗,w∗) (5)

u∗ = argmin
u∈U

max
w∈W

V (u,w) w∗ = arg max
w∈W

min
u∈U

V (u,w) (6)
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The inner problems

In the following development it is convenient to define the solutions to the
inner minimization and maximization problems

u0(w) := argmin
u∈U

V (u,w), w ∈ W (7)

w0(u) := arg max
w∈W

V (u,w), u ∈ U (8)

Note that these inner solution sets are too “large” in the following sense.
Even if we evaluate them at the optimizers of their respective outer
problems, we know only that

u∗ ⊆ u0(w∗) w∗ ⊆ w0(u∗)

and these subsets may be strict. So we have to exercise some care when
we exploit strong duality and want to extract the optimizer from a dual
problem. We shall illustrate this issue in the upcoming results.
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Audience participation

Let V (u,w) = (u − w)2, U = R,W = {w | w2 = 1}, i.e. W = {±1}
Solving minu∈U maxw∈W V (u,w)

1 Solve inner maxw∈W V (u,w) and find w0(u) and V (u,w0(u))
2 Sketch the function V (u,w0(u)) vs. u
3 Now solve minu V (u,w0(u)) for u0 and V 0

Find the stationary points (us ,ws) of V (u,w) and evaluate V (us ,ws)

Solving maxw∈W minu∈U V (u,w)

1 Solve minu V (u,w) and find u0(w) and V (u0(w),w)
2 Now solve maxw∈W V (u0(w),w) for w0 and V 0

Is this problem strongly dual? If not, what is the duality gap? What is the
interpretation of the stationary points in this problem?
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Quadratic functions

In control problems, we will min and max over possibly unbounded
sets

So we’ll need something other than compactness to guarantee
existence of solutions.

When we have linear dynamic models and quadratic stage cost (LQ),
we develop the following results for quadratic functions.

First up. A saddle-point theorem for quadratic functions.
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Partitioned semidefinite matrices

For quadratic functions, we shall make extensive use of partitioned
matrices

M =

[
M11 M12

M ′
12 M22

]
We have the following result for positive semidefinite partitioned matrices
(Boyd and Vandenberghe, 2004, p.651).

Proposition 6 (Positive semidefinite partitioned matrices)

The matrix M ≥ 0 if and only if M11 ≥ 0, M22 −M ′
12M

+
11M12 ≥ 0, and

R(M12) ⊆ R(M11).

Note also that given the partitioning in M, we define

M̃11 := M22 −M ′
12M

+
11M12

M̃22 := M11 −M12M
+
22M

′
12 (9)

and M̃11 is known as the Schur complement of M11, and M̃22 is known as
the Schur complement of M22.
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Proposition 7 (Saddle-Point Theorem for Quadratic Functions)

Consider the quadratic function V (·) : Rn+m → R

V (u,w) := (1/2)

[
u
w

]′ [
M11 M12

M ′
12 M22

] [
u
w

]
+

[
u
w

]′ [
d1
d2

]
with M symmetric, M11 ∈ Rm×m, M22 ∈ Rn×n, M12 ∈ Rm×n, d ∈ Rm+n.
For d ∈ R(M), define stationary points (u∗,w∗) of function V (·) as
dV (u,w)/d(u,w) = 0 at (u∗,w∗), satisfying

M

[
u∗

w∗

]
= −d

[
u∗

w∗

]
∈ −M+d + N(M) (10)

with cost
V (u∗,w∗) = −(1/2)d ′M+d (11)

Denote the solutions to the inner optimizations, when they exist, by
u0(w) := argminu V (u,w) and w0(u) := argmaxw V (u,w).
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Proposition 7 (cont.)

1 Solutions to minu maxw V exist if d ∈ R(M), M22 ≤ 0, and M̃22 ≥ 0 and
satisfy

argmin
u

max
w

V (u,w) = u∗ M ′
12u

∗ +M22w
0(u∗) = −d2

V (u∗,w0(u∗)) = −(1/2)d ′M+d

2 Similarly, solutions to maxw minu V exist if d ∈ R(M), M11 ≥ 0, and
M̃11 ≤ 0, and satisfy

argmax
w

min
u

V (u,w) = w∗ M11u
0(w∗) +M12w

∗ = −d1

V (u0(w∗),w∗) = −(1/2)d ′M+d

3 Strong duality holds if and only if d ∈ R(M), M11 ≥ 0, and M22 ≤ 0

min
u

max
w

V (u,w) = max
w

min
u

V (u,w) = V (u∗,w∗)

In this case both inner optimizations exist and u∗ ⊆ u0(w∗) and
w∗ ⊆ w0(u∗).
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Useful intermediate result in the proof of Proposition 7

Expand V (·) as

V (u,w) = (1/2)w ′M22w + w ′(M ′
12u + d2) + (1/2)u′M11u + u′d1 (12)

From Proposition 2, maxw V exists if and only M22 ≤ 0 and
M ′

12u + d2 ∈ R(M22). This condition is satisfied for some nonempty set of
u by the bottom half of d ∈ R(M). For such u we have the necessary and
sufficient condition for the optimum

M22w
0 +M ′

12u + d2 = 0

which defines an implicit function w0(u), and optimal value given by (3)

w0(u) = −M+
22(M

′
12u + d2) + N(M22)

V (u,w0(u)) = (1/2)u′M̃22u + u′(d1 −M12M
+
22d2)

− (1/2)d2M
+
22d2 (13)

We’ll use V (u,w0(u)) later
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Lagrangian functions

The connections between constrained optimization problems via the use of
Lagrange multipliers and game theory problems are useful (Rockafellar,
1993).

For optimization problems of convex type, Lagrange multipliers
take on a game-theoretic role that could hardly even have been
imagined before the creative insights of von Neumann [32], [33], in
applying mathematics to models of social and economic conflict.

–T.A. Rockafellar
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Lagrangian functions—motivation

In optimal control problems with linear models, we often use
quadratic stage cost

x+ = Ax + Bu + Gw , ℓ(x , u) = (1/2)(x ′Qx + u′Ru)

So V (x ,u) typically has a positive definite penalty on w so
V (x ,u) → +∞ as w → ∞.

So we must constrain w to even have a solution to maxw V .

Consider w ′w ≤ 1 as a standard (scaled) constraint. Typically this
constraint is always active at the solution, so we consider

max
w ′w=1

V (x , u) L(x , u,w) = V (x , u)− λ(w ′w − 1)
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Lagrangian functions

So we are interested in the Lagrangian function L(·) : Rn+m+1 → R

L(u,w , λ) := (1/2)

[
u
w

]′ [
M11 M12

M ′
12 M22

] [
u
w

]
+

[
u
w

]′
d − (1/2)λ(w ′w − 1)

= (1/2)

[
u
w

]′ [
M11 M12

M ′
12 M22 − λI

] [
u
w

]
+

[
u
w

]′
d + λ/2

with M ∈ Rm+n×m+n ≥ 0, M22 ∈ Rn×n, M11 ∈ Rm×m, M12 ∈ Rm×n.

Note that M ≥ 0 implies M22 ≥ 0 so that maxw is not bounded
unless we choose λ large enough to make M22 − λI ≤ 0.

The following Schur complements are useful for expressing the
solution.

M̃11(λ) := (M22 − λI )−M ′
12M

+
11M12

M̃22(λ) := M11 −M12(M22 − λI )+M ′
12

Freiburg—2025 Minmax Fundamentals 22 / 35



Proposition 8 (Minmax and maxmin of a quadratic function with a
parameter)

Consider the Lagrangian function L(·) : Rm+n+1 → R

L(u,w , λ) := (1/2)

[
u
w

]′
M(λ)

[
u
w

]
+

[
u
w

]′
d + λ/2

with M11 > 0, M(0) ≥ 0, and the two problems

min
u

max
w

L(u,w , λ) max
w

min
u

L(u,w , λ) (14)

We characterize existence of solutions as a function of (decreasing) parameter λ.

1 For λ > |M22|: Solutions to both problems exist for all d ∈ Rm+n.

2 For λ = |M22|, we have the following two cases:

1 For d ∈ R(M(|M22|)): The solutions to both problems exist.
2 For d /∈ R(M(|M22|)): Neither problem has a solution.

If M(0) is such that |M̃11| < |M22|, then we have the following cases.

Freiburg—2025 Minmax Fundamentals 23 / 35



Proposition 8 (cont.)

3 For |M̃11| < λ < |M22|: Only the solution to the maxw minu L problem
exists, and it exists for all d ∈ Rm+n.

4 For λ = |M̃11|, we have the following two cases:

1 For d ∈ R(M(|M̃11|)): Only the solution to the maxw minu L problem
exists.

2 For d /∈ R(M(|M̃11|)): Neither problem has a solution.

5 For λ < |M̃11|: Neither problem has a solution.

If M(0) is such that |M̃11| = |M22|, then cases 3 and 4 do not arise.
For d ∈ R(M(λ)) denote the stationary points (u∗(λ),w∗(λ)) by[

u∗

w∗

]
(λ) ∈ −M+(λ)d + N(M(λ))

When solutions to the respective problems exist, we have that

u∗(λ) = argmin
u

max
w

L(u,w , λ) w∗(λ) = argmax
w

min
u

L(u,w , λ)

L0(λ) = −(1/2)d ′M+(λ)d + λ/2
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minu maxw L
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Figure 1: The optimal value function L0 for minu maxw L and maxw minu L versus
parameter λ.
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Constrained quadratic optimization

A mysterious piece of information has been uncovered. In our
innocence we thought we were engaged straightforwardly in solving
a single problem (P). But we find we’ve assumed the role of Player
1 in a certain game in which we have an adversary, Player 2, whose
interests are diametrically opposed to ours!

–T.A. Rockafellar

We next address the maximization of a convex function so that a
constraint is required for existence of a solution.
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Constrained minmax and maxmin

Consider quadratic function V (·) : Rm+n → R, compact constraint set W,
and Lagrangian function L(·) : Rm+n+1 → R

V (u,w) = (1/2)

[
u
w

]′
M(0)

[
u
w

]
+

[
u
w

]′
d W := {w | w ′w = 1}

L(u,w , λ) = (1/2)

[
u
w

]′
M(λ)

[
u
w

]
+

[
u
w

]′
d + λ/2

We consider the two constrained optimization problems

min
u

max
w∈W

V (u,w) robust control (15)

max
w∈W

min
u
V (u,w) worst-case feedforward control (16)

Assume M(0) ≥ 0 and M11 > 0.

Freiburg—2025 Minmax Fundamentals 27 / 35



Constrained minmax and maxmin (cont.)

For d ∈ R(M(λ)) denote stationary points by (u∗(λ),w∗(λ)) and
evaluated Lagrangian function[
u∗(λ)
w∗(λ)

]
∈ −M+(λ)d + N(M(λ))

L(λ) = V (u∗,w∗)− (1/2)λ((w∗)′w∗ − 1) = −(1/2)d ′M+(λ)d + λ/2

This is the one that we need!
(15) is the robust control problem;
(16) is the worst-case feedforward control problem.
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Robust control, constrained minmax

Theorem 9 (Constrained Minmax and Maxmin)

1 The solution to problem (15) exists for all d ∈ Rm+n and is given by

u0r = u∗(λ0
r ) w0

r = w0 ∩W

where λ0
r denotes the solution to the following optimization, which

exists for all d ∈ Rm+n

λ0
r = arg min

λ≥|M22|
L(λ) (17)

and w0 is all solutions to

M11u
∗(λ0

r ) +M12w
0 = −d1

The optimal cost is given by V (u0r ,w
0
r ) = L(λ0

r ).
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Worst-case feedforward control, constrained maxmin

Theorem 9 (cont.)

2 The solution to problem (16) exists for all d ∈ Rm+n and is given by

u0f = u0 w0
f = w∗(λ0

f ) ∩W

where λ0
f denotes the solution to the following optimization, which

exists for all d ∈ Rm+n

λ0
f = arg min

λ≥|M̃11|
L(λ) (18)

and u0 is all solutions to

M ′
12u

0 + (M22 − λ0
f I )w

∗(λ0
f ) = −d2

The optimal cost is given by V (u0f ,w
0
f ) = L(λ0

f ).

Freiburg—2025 Minmax Fundamentals 30 / 35



Finally, the constrained minmax also with input constraints

In MPC, we will also want to enforce input constraints, u ∈ U with U
polyhedral.

Consider quadratic function V (·) : Rm+n → R, compact constraint set W,
and Lagrangian function L(·) : Rm+n+1 → R

V (u,w) = (1/2)

[
u
w

]′
M(0)

[
u
w

]
+

[
u
w

]′
d W := {w | w ′w = 1}

L(u,w , λ) = (1/2)

[
u
w

]′
M(λ)

[
u
w

]
+

[
u
w

]′
d + λ/2

and the fully constrained optimization problems

min
u∈U

max
w∈W

V (u,w) Input constrained robust control (19)

Assume M(0) ≥ 0 and M11 > 0.
This is the last one that we need!
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Theorem 10 (Constrained minmax with input and disturbance
constraints)

Solving (19) is equivalent to solving the NLP

min
u∈U,λ≥|M22|

(1/2) u′(M̃22(λ))u + u′(d1 −M12(M22 − λI )+d2)−

(1/2)d2(M22 − λI )+d2 + λ/2

where M̃22(λ) := M11 −M12(M22 − λI )+M ′
12.

Here we finally need to solve an NLP for the optimal control with input
constraints.
Note: in this notation the nominal MPC problem is the QP

min
u∈U

(1/2)u′M11u + u′d1

Freiburg—2025 Minmax Fundamentals 32 / 35



Input constrained robust control

Derivation of the NLP in Theorem 10

Apply Proposition 8 to the constrained minmax

min
u∈U

max
w∈W

V (u,w) = min
u∈U

max
w

min
λ

L(u,w , λ) =

min
u∈U

min
λ

max
w

L(u,w , λ) = min
u∈U,λ≥|M22|

L(u,w0(u, λ), λ)

and use (13) in the proof of Proposition 7 for L(u,w0(u, λ), λ).
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A student comes to your office hours. . .

A student taking your class presents this argument for V (u,w) quadratic

Robust control Worst-case FF control

min
u

max
w∈W

V (u,w) max
w∈W

min
u

V (u,w)

= =
min
u

max
w

min
λ

L(u,w , λ) max
w

min
λ

min
u

L(u,w , λ)

= =
min
u

min
λ

max
w

L(u,w , λ) min
λ

max
w

min
u

L(u,w , λ)

= =
min
λ

min
u

max
w

L(u,w , λ) min
λ

min
u

max
w

L(u,w , λ)

The student says that each line follows from the previous due to strong duality.
The last two expressions are obviously equal.
So robust control achieves the same cost as worst-case feedforward control?!

How do you respond to this student?
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Further reading I

S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

J. B. Rawlings, D. Mannini, and S. J. Kuntz. Background results for
robust minmax control of linear dynamical systems, 2024. URL
http://arxiv.org/abs/2406.15682. arXiv:2406.15682 [eecs, math].

R. T. Rockafellar. Lagrange multipliers and optimality. SIAM Rev., 35(2):
183–238, 1993.

J. von Neumann. Zur Theorie der Gesellschaftsspiele. Math. Ann., 100:
295–320, 1928. doi: 10.1007/BF01448847.

J. von Neumann and O. Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, Princeton and Oxford, 1944.

Freiburg—2025 Minmax Fundamentals 35 / 35

http://arxiv.org/abs/2406.15682

	Outline
	Linear algebra
	Optimization
	Minmax and Maxmin
	Constraints, Lagrangians, and game theory
	

