
The acados software
An Introduction & Research Spotlights

Jonathan Frey

Systems Control and Optimization Laboratory (syscop)

September 18, 2025

Me: Jonathan Frey

PhD student in Freiburg
with Moritz Diehl

Studied mathematics
I Bachelor: TU Ilmeanu
I Master: Uni Freiburg

Research
Fast MPC implementations acados
MPC + RL via leap-c
Advanced OCP discretizations

1

Me: Jonathan Frey

PhD student in Freiburg
with Moritz Diehl
Studied mathematics
I Bachelor: TU Ilmeanu
I Master: Uni Freiburg

Research
Fast MPC implementations acados
MPC + RL via leap-c
Advanced OCP discretizations

1

Me: Jonathan Frey

PhD student in Freiburg
with Moritz Diehl
Studied mathematics
I Bachelor: TU Ilmeanu
I Master: Uni Freiburg

Research
Fast MPC implementations acados
MPC + RL via leap-c
Advanced OCP discretizations

1

Talk structure

1. Overview on acados
2. Differentiable Nonlinear Model Predictive Control

2

acados – fast embedded solvers for nonlinear optimal control
An open-source software package mainly developed in Freiburg, Germany

Efficiency, usability, modularity, state-of-the-art optimization algorithms

Written in C using high-performance
linear algebra provided by BLASFEO
Fully exploits sparsity of optimal control
structured NLPs

Interfaces to Python, Matlab,
Simulink
nonlinear & symbolic models via CasADi
Flexible problem formulation:
multi-phase & MHE

Minimal dependencies =⇒ embeddable
Integrators for ODE & DAE: ERK & IRK,
efficient sensitivity propagation
QP solvers: full & partial condensing via HPIPM
HPIPM, DAQP, qpOASES, qpDUNES, OSQP
NLP solvers: SQP, DDP, RTI, AS-RTI
Robust & stochastic MPC via zoRO
Exploit convex-over-nonlinear structures

github.com/acados/acados docs.acados.org discourse.acados.org

3

github.com/acados/acados
docs.acados.org
discourse.acados.org

acados – fast embedded solvers for nonlinear optimal control
An open-source software package mainly developed in Freiburg, Germany

Efficiency, usability, modularity, state-of-the-art optimization algorithms

Written in C using high-performance
linear algebra provided by BLASFEO
Fully exploits sparsity of optimal control
structured NLPs
Interfaces to Python, Matlab,
Simulink
nonlinear & symbolic models via CasADi
Flexible problem formulation:
multi-phase & MHE

Minimal dependencies =⇒ embeddable

Integrators for ODE & DAE: ERK & IRK,
efficient sensitivity propagation
QP solvers: full & partial condensing via HPIPM
HPIPM, DAQP, qpOASES, qpDUNES, OSQP
NLP solvers: SQP, DDP, RTI, AS-RTI
Robust & stochastic MPC via zoRO
Exploit convex-over-nonlinear structures

github.com/acados/acados docs.acados.org discourse.acados.org

3

github.com/acados/acados
docs.acados.org
discourse.acados.org

acados – fast embedded solvers for nonlinear optimal control
An open-source software package mainly developed in Freiburg, Germany

Efficiency, usability, modularity, state-of-the-art optimization algorithms

Written in C using high-performance
linear algebra provided by BLASFEO
Fully exploits sparsity of optimal control
structured NLPs
Interfaces to Python, Matlab,
Simulink
nonlinear & symbolic models via CasADi
Flexible problem formulation:
multi-phase & MHE

Minimal dependencies =⇒ embeddable
Integrators for ODE & DAE: ERK & IRK,
efficient sensitivity propagation
QP solvers: full & partial condensing via HPIPM
HPIPM, DAQP, qpOASES, qpDUNES, OSQP

NLP solvers: SQP, DDP, RTI, AS-RTI
Robust & stochastic MPC via zoRO
Exploit convex-over-nonlinear structures

github.com/acados/acados docs.acados.org discourse.acados.org

3

github.com/acados/acados
docs.acados.org
discourse.acados.org

acados – fast embedded solvers for nonlinear optimal control
An open-source software package mainly developed in Freiburg, Germany

Efficiency, usability, modularity, state-of-the-art optimization algorithms

Written in C using high-performance
linear algebra provided by BLASFEO
Fully exploits sparsity of optimal control
structured NLPs
Interfaces to Python, Matlab,
Simulink
nonlinear & symbolic models via CasADi
Flexible problem formulation:
multi-phase & MHE

Minimal dependencies =⇒ embeddable
Integrators for ODE & DAE: ERK & IRK,
efficient sensitivity propagation
QP solvers: full & partial condensing via HPIPM
HPIPM, DAQP, qpOASES, qpDUNES, OSQP
NLP solvers: SQP, DDP, RTI, AS-RTI
Robust & stochastic MPC via zoRO
Exploit convex-over-nonlinear structures

github.com/acados/acados docs.acados.org discourse.acados.org

3

github.com/acados/acados
docs.acados.org
discourse.acados.org

acados – fast embedded solvers for nonlinear optimal control
An open-source software package mainly developed in Freiburg, Germany

Efficiency, usability, modularity, state-of-the-art optimization algorithms

Written in C using high-performance
linear algebra provided by BLASFEO
Fully exploits sparsity of optimal control
structured NLPs
Interfaces to Python, Matlab,
Simulink
nonlinear & symbolic models via CasADi
Flexible problem formulation:
multi-phase & MHE

Minimal dependencies =⇒ embeddable
Integrators for ODE & DAE: ERK & IRK,
efficient sensitivity propagation
QP solvers: full & partial condensing via HPIPM
HPIPM, DAQP, qpOASES, qpDUNES, OSQP
NLP solvers: SQP, DDP, RTI, AS-RTI
Robust & stochastic MPC via zoRO
Exploit convex-over-nonlinear structures

github.com/acados/acados docs.acados.org discourse.acados.org
3

github.com/acados/acados
docs.acados.org
discourse.acados.org

Structure of the acados software

BLASFEO
linear algebra

HPIPM
QP, condensing

C interface

acados core

Python
interface

Matlab
interface

CasADi

m
or

e
us

er
-fr

ien
dl

y

m
or

e
ve

rs
at

ile
de

pe
nd

en
.

The interplay between the acados dependencies, the ‘core’ C library and its interfaces.
I BLASFEO: Basic Linear Algebra for Embedded Optimization (Frison et al., 2018)
I HPIPM: High-Performance Interior Point Method (Frison & Diehl, 2020)

4

Intro

I Real-world control applications
I fast dynamics,
I nonlinear optimal control problem formulations,
I strict hardware limitations

require tailored high-performance algorithms.
I acados implements such algorithms
I Application projects include

I Wind turbines
I Drones
I Race cars
I Driving assistance systems
I Electric drives
I Vessels
I …

5

Intro – Model Predictive Control

Continuous-time optimal control problem (OCP):

minimize
x(·),z(·),u(·)

∫ T

t=0

`(x(t), z(t), u(t))dt + M (x(T))

subject to x(0) = x̄0,
0 = f (ẋ(t), x(t), z(t), u(t)), t ∈ [0,T],

0 ≥ g(x(t), z(t), u(t)), t ∈ [0,T].

(1)

I State x, control u, (algebraic variables z)
I Cost l, M
I Dynamics f
I Constraints g

In MPC, instances of these problems are solved repeatedly, with current state x̄0.

6

OCP structured NLP handled in acados

minimize
x0,...,xN ,

u0,...,uN−1,
z0,...,zN−1,

s0,...,sN

N−1∑
k=0

lk(xk, uk, zk) + M (xN) +

N∑
k=0

ρk(sk) (2a)

subject to
[
xk+1

zk

]
= φk(xk, uk), k = 0, . . . ,N − 1, (2b)

0 ≥ gk(xk, zk, uk)− Js,ksk k = 0, . . . ,N − 1, (2c)
0 ≥ gN(xN)− Js,NsN , (2d)
0 ≤ sk k = 0, . . . ,N . (2e)

I φk – discrete time dynamics on [tk, tk+1] – typically acados integrator from ODE or DAE
I lk – approximation of Lagrange cost term ` on [tk, tk+1]

I efficient treatment of slack variables sk, with linear-quadratic penalties ρk(·)
I inequality constraints gk

I general formulation: problem functions can vary stage wise

7

Ingredients of SQP-type methods and acados modules

SQP-type algorithm:
I NLP solver
I Linearization
I Regularization
I QP solution
I Globalization

8

Ingredients of SQP-type methods and acados modules

SQP-type algorithm:
NLP solver – Linearization – Regularization – QP solution – Globalization

acados module Variants
OCP-NLP solver SQP, RTI, AS-RTI 1 , DDP2 , SQP_WITH_FEASIBLE_QP

Nonlinear functions CasADi8 generated, generic C functions
Dynamics ERK, IRK, GNSF-IRK7, Discrete dynamics

Hessian approximation Exact, Gauss-Newton, Convex-over-nonlinear, custom
Regularization Mirror, Project, Convexify 3

Condensing Full condensing, Partial condensing 4

OCP QP HPIPM5, OSQP9, qpDUNES, HPMPC
Dense QP HPIPM, qpOASES, DAQP6

Globalization Merit function, Funnel

1(Frey et al., 2024), 2(Kiessling et al., 2024), 3(Verschueren et al., 2017) 4(Frison et al., 2016) 5(Frison &
Diehl, 2020), 6(Arnstrom et al., 2022), 7(Frey et al., 2019) 8(Andersson et al., 2019), 9(Stellato et al., 2020)

8

Important Ressources: Documentation page
docs.acados.org/

9

docs.acados.org/

Important Ressources: acados forum
https://discourse.acados.org/

10

https://discourse.acados.org/

Research spotlight 1

Multi-Phase Optimal Control Problems for Efficient Nonlinear
Model Predictive Control with acados
– Jonathan Frey, Katrin Baumgärtner, Gianluca Frison, Moritz Diehl

Optimal Control Applications and Methods, 2025

11

Multi-phase OCPs for efficient MPC with acados

Classic approach: for continuous-time, inifinite horizon problem
I Choose time horizon T , discretize with N stages
I Capture remaining infinite horizon in terminal cost

Multi-phase approach: allow more flexible treatment
I Conceptionally: OCP is initial stage u0 and cost-to-go approximation
I Allows successively coarser formulation and models over the horizon

12

Multi-phase OCPs for efficient MPC with acados

Classic approach: for continuous-time, inifinite horizon problem
I Choose time horizon T , discretize with N stages
I Capture remaining infinite horizon in terminal cost

Multi-phase approach: allow more flexible treatment
I Conceptionally: OCP is initial stage u0 and cost-to-go approximation
I Allows successively coarser formulation and models over the horizon

12

Multi-phase OCPs for efficient MPC with acados

Classic approach: for continuous-time, inifinite horizon problem
I Choose time horizon T , discretize with N stages
I Capture remaining infinite horizon in terminal cost

Multi-phase approach: allow more flexible treatment
I Conceptionally: OCP is initial stage u0 and cost-to-go approximation
I Allows successively coarser formulation and models over the horizon

I Phase 1: x = [p, v], u = a
I Phase 2: x = p, u = v

0

2

p

phase 1

phase 2

−5

0

v

0.0 0.2 0.4 0.6 0.8 1.0
−50

0

a

12

Multi-phase OCPs for efficient MPC with acados

Classic approach: for continuous-time, inifinite horizon problem
I Choose time horizon T , discretize with N stages
I Capture remaining infinite horizon in terminal cost

Multi-phase approach: allow more flexible treatment
I Conceptionally: OCP is initial stage u0 and cost-to-go approximation
I Allows successively coarser formulation and models over the horizon
I Variety of control parameterizations, e.g. piecewise polynomial, closed-loop costing, …

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

t[s]

−40

−30

−20

−10

0

10

20

30

40

ν
[N

]

REF-N10: Grid B, pw constant

PW-CUBIC-B: Grid B, pw polynomial ndeg = 3, npc = 10

PW-LIN-A: Grid A, pw polynomial ndeg = 1, npc = 2

PW-CUBIC-2: Grid A, pw polynomial ndeg = 3, npc = 6

12

Multi-phase OCPs for efficient MPC with acados

Classic approach: for continuous-time, inifinite horizon problem
I Choose time horizon T , discretize with N stages
I Capture remaining infinite horizon in terminal cost

Multi-phase approach: allow more flexible treatment
I Conceptionally: OCP is initial stage u0 and cost-to-go approximation
I Allows successively coarser formulation and models over the horizon
I Variety of control parameterizations, e.g. piecewise polynomial, closed-loop costing, …

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

t[s]

−40

−30

−20

−10

0

10

20

30

40

ν
[N

]

REF-N10: Grid B, pw constant

PW-CUBIC-B: Grid B, pw polynomial ndeg = 3, npc = 10

PW-LIN-A: Grid A, pw polynomial ndeg = 1, npc = 2

PW-CUBIC-2: Grid A, pw polynomial ndeg = 3, npc = 6

Summary (Frey et al., 2025):
MOCP based NMPC controllers
can trade off computation time
and performance more effiently
than standard OCPs.

12

Research spotlight 2

Advanced-Step Real-Time Iterations with Four Levels – New Error
Bounds and Fast Implementation in acados
– Jonathan Frey, Armin Nurkanović, Moritz Diehl

IEEE Control Systems Letters, 2024

13

Real-time algorithms

I The Real-Time Iteration (RTI) performs only one SQP iteration in each sampling interval,
(DIehl et al., 2001)

I Idea: give fast feedback and “converge over time” – examples follow

I Additionally: x̄0 enters only constraints linearly
=⇒ allows to split SQP iteration into a feedback and a preparation phase.

14

Real-time algorithms

I The Real-Time Iteration (RTI) performs only one SQP iteration in each sampling interval,
(DIehl et al., 2001)

I Idea: give fast feedback and “converge over time” – examples follow
I Additionally: x̄0 enters only constraints linearly

=⇒ allows to split SQP iteration into a feedback and a preparation phase.

14

Convergence over time illustration – RTI

0

1

x
[m

]

RTI instance 1

t

−50

0

50

F

realized planned
0.0

2.5

θ
[r

ad
]

−10

0

10

v
[m

]

0.0 0.2 0.4 0.6 0.8 1.0
t

−10

0

10

θ̇
[r

ad
/s

]

15

Convergence over time illustration – RTI

0

1

x
[m

]

RTI instance 2

t

−50

0

50

F

realized planned
0.0

2.5

θ
[r

ad
]

−10

0

10

v
[m

]

0.0 0.2 0.4 0.6 0.8 1.0
t

−10

0

10

θ̇
[r

ad
/s

]

15

Convergence over time illustration – RTI

0

1

x
[m

]

RTI instance 3

t

−50

0

50

F

realized planned
0.0

2.5

θ
[r

ad
]

−10

0

10

v
[m

]

0.0 0.2 0.4 0.6 0.8 1.0
t

−10

0

10

θ̇
[r

ad
/s

]

15

Convergence over time illustration – RTI

0

1

x
[m

]

RTI instance 4

t

−50

0

50

F

realized planned
0.0

2.5

θ
[r

ad
]

−10

0

10

v
[m

]

0.0 0.2 0.4 0.6 0.8 1.0
t

−10

0

10

θ̇
[r

ad
/s

]

15

Convergence over time illustration – RTI

0

1

x
[m

]

RTI instance 5

t

−50

0

50

F

realized planned
0.0

2.5

θ
[r

ad
]

−10

0

10

v
[m

]

0.0 0.2 0.4 0.6 0.8 1.0
t

−10

0

10

θ̇
[r

ad
/s

]

15

Convergence over time illustration – RTI

0

1

x
[m

]

RTI instance 6

t

−50

0

50

F

realized planned
0.0

2.5

θ
[r

ad
]

−10

0

10

v
[m

]

0.0 0.2 0.4 0.6 0.8 1.0
t

−10

0

10

θ̇
[r

ad
/s

]

15

Convergence over time illustration – RTI

0

1

x
[m

]

RTI instance 15

t

−50

0

50

F

realized planned
0.0

2.5

θ
[r

ad
]

−10

0

10

v
[m

]

0.0 0.2 0.4 0.6 0.8 1.0
t

−10

0

10

θ̇
[r

ad
/s

]

15

Real-time NMPC algorithms

minimize
w∈Rnw

f (w) (3a)

subject to 0 = g(w) + Mx, (3b)
0 ≤ h(w), (3c)

minimize
∆w

(ak,j)>∆w + 1
2∆w>Ak,j∆w

(4a)
subject to gk,j + Mxk + Gk,j∆w = 0, (4b)

hk,j + H k,j∆w ≥ 0. (4c)

AS-RTI steps
(S1) At time t = tk: Predict the initial state xk+1

pred at tk+1

(S2) At t ∈
[
tk, tk+1

)
: Starting with zk, iterate on (3) with x = xk+1

pred to obtain zk
lin

– “the inner iterations”. Use MLI variant (next slide)
(S3) At t ∈

[
tk, tk+1

)
: Construct QP (4) on the linearization point zk

lin.
(S4) At time tk+1, solve (4) with x = xk+1. – “feedback phase”

Remarks
I RTI: 2 simplifies to setting zk

lin = zk or shifted variant
I Advanced-step controller (ASC): zk

lin is a local minimizer of (3) with x = xk+1
pred

I Denote AS-RTI with level X iteration as AS-RTI-X ;

16

Real-time NMPC algorithms

minimize
w∈Rnw

f (w) (3a)

subject to 0 = g(w) + Mx, (3b)
0 ≤ h(w), (3c)

minimize
∆w

(ak,j)>∆w + 1
2∆w>Ak,j∆w

(4a)
subject to gk,j + Mxk + Gk,j∆w = 0, (4b)

hk,j + H k,j∆w ≥ 0. (4c)
AS-RTI steps

(S1) At time t = tk: Predict the initial state xk+1
pred at tk+1

(S2) At t ∈
[
tk, tk+1

)
: Starting with zk, iterate on (3) with x = xk+1

pred to obtain zk
lin

– “the inner iterations”. Use MLI variant (next slide)

(S3) At t ∈
[
tk, tk+1

)
: Construct QP (4) on the linearization point zk

lin.
(S4) At time tk+1, solve (4) with x = xk+1. – “feedback phase”

Remarks
I RTI: 2 simplifies to setting zk

lin = zk or shifted variant
I Advanced-step controller (ASC): zk

lin is a local minimizer of (3) with x = xk+1
pred

I Denote AS-RTI with level X iteration as AS-RTI-X ;

16

Real-time NMPC algorithms

minimize
w∈Rnw

f (w) (3a)

subject to 0 = g(w) + Mx, (3b)
0 ≤ h(w), (3c)

minimize
∆w

(ak,j)>∆w + 1
2∆w>Ak,j∆w

(4a)
subject to gk,j + Mxk + Gk,j∆w = 0, (4b)

hk,j + H k,j∆w ≥ 0. (4c)
AS-RTI steps

(S1) At time t = tk: Predict the initial state xk+1
pred at tk+1

(S2) At t ∈
[
tk, tk+1

)
: Starting with zk, iterate on (3) with x = xk+1

pred to obtain zk
lin

– “the inner iterations”. Use MLI variant (next slide)
(S3) At t ∈

[
tk, tk+1

)
: Construct QP (4) on the linearization point zk

lin.
(S4) At time tk+1, solve (4) with x = xk+1. – “feedback phase”

Remarks
I RTI: 2 simplifies to setting zk

lin = zk or shifted variant
I Advanced-step controller (ASC): zk

lin is a local minimizer of (3) with x = xk+1
pred

I Denote AS-RTI with level X iteration as AS-RTI-X ;

16

Real-time NMPC algorithms

minimize
w∈Rnw

f (w) (3a)

subject to 0 = g(w) + Mx, (3b)
0 ≤ h(w), (3c)

minimize
∆w

(ak,j)>∆w + 1
2∆w>Ak,j∆w

(4a)
subject to gk,j + Mxk + Gk,j∆w = 0, (4b)

hk,j + H k,j∆w ≥ 0. (4c)
AS-RTI steps

(S1) At time t = tk: Predict the initial state xk+1
pred at tk+1

(S2) At t ∈
[
tk, tk+1

)
: Starting with zk, iterate on (3) with x = xk+1

pred to obtain zk
lin

– “the inner iterations”. Use MLI variant (next slide)
(S3) At t ∈

[
tk, tk+1

)
: Construct QP (4) on the linearization point zk

lin.
(S4) At time tk+1, solve (4) with x = xk+1. – “feedback phase”

Remarks
I RTI: 2 simplifies to setting zk

lin = zk or shifted variant
I Advanced-step controller (ASC): zk

lin is a local minimizer of (3) with x = xk+1
pred

I Denote AS-RTI with level X iteration as AS-RTI-X ;
16

Schematic overview of the real-time iterations for NMPC

Preparation phase:
I at t ∈

[
tk, tk+1

)
: eval. derivatives at wk, construct QP

Feedback phase:
I at tk+1, solve QP with x = x̂k+1 for wk+1 = wk +∆wk

I at tk+1 + δtqp pass u0(x̂k+1) = Πwk+1 to the plant

Time

tk tk+1 tk+2 tk+3

Evaluate derivatives and functions at wk before x̂k+1 known

Solve QP with x̂k+1

17

Convergence over time illustration – AS-RTI-A

0

1

x
[m

]

AS-RTI-A instance 1

t

−50

0

50

F

realized planned
0.0

2.5

θ
[r

ad
]

−10

0

10

v
[m

]

0.0 0.2 0.4 0.6 0.8 1.0
t

−10

0

10

θ̇
[r

ad
/s

]

18

Convergence over time illustration – AS-RTI-A

0

1

x
[m

]

AS-RTI-A instance 2

t

−50

0

50

F

realized planned
0.0

2.5

θ
[r

ad
]

−10

0

10

v
[m

]

0.0 0.2 0.4 0.6 0.8 1.0
t

−10

0

10

θ̇
[r

ad
/s

]

18

Convergence over time illustration – AS-RTI-A

0

1

x
[m

]

AS-RTI-A instance 3

t

−50

0

50

F

realized planned
0.0

2.5

θ
[r

ad
]

−10

0

10

v
[m

]

0.0 0.2 0.4 0.6 0.8 1.0
t

−10

0

10

θ̇
[r

ad
/s

]

18

Convergence over time illustration – AS-RTI-A

0

1

x
[m

]

AS-RTI-A instance 4

t

−50

0

50

F

realized planned
0.0

2.5

θ
[r

ad
]

−10

0

10

v
[m

]

0.0 0.2 0.4 0.6 0.8 1.0
t

−10

0

10

θ̇
[r

ad
/s

]

18

Convergence over time illustration – AS-RTI-A

0

1

x
[m

]

AS-RTI-A instance 5

t

−50

0

50

F

realized planned
0.0

2.5

θ
[r

ad
]

−10

0

10

v
[m

]

0.0 0.2 0.4 0.6 0.8 1.0
t

−10

0

10

θ̇
[r

ad
/s

]

18

Convergence over time illustration – AS-RTI-A

0

1

x
[m

]

AS-RTI-A instance 6

t

−50

0

50

F

realized planned
0.0

2.5

θ
[r

ad
]

−10

0

10

v
[m

]

0.0 0.2 0.4 0.6 0.8 1.0
t

−10

0

10

θ̇
[r

ad
/s

]

18

Convergence over time illustration – AS-RTI-A

0

1

x
[m

]

AS-RTI-A instance 15

t

−50

0

50

F

realized planned
0.0

2.5

θ
[r

ad
]

−10

0

10

v
[m

]

0.0 0.2 0.4 0.6 0.8 1.0
t

−10

0

10

θ̇
[r

ad
/s

]

18

Research spotlight 3

Differentiable Nonlinear Model Predictive Control
– Jonathan Frey, Katrin Baumgärtner, Gianluca Frison, Dirk Reinhardt, Jasper Hoffmann, Leonard Fichtner,
Sebastien Gros, Moritz Diehl

https://arxiv.org/abs/2505.01353

19

https://arxiv.org/abs/2505.01353

Solution sensitivities – Intro

Motivation
I Embedding optimization solvers in neural networks requires solution sensitivities
I Learning-enhanced MPC schemes, MPC-RL

Related works
I “Differentiable MPC” – flaws in nonlinear case, implementation fails with constraints,

(Amos et al., 2018)
I cvxpylayers, cvxpygen, limitation to convex problems, no OCP structure exploitation,

(Agrawal et al., 2019; Schaller & Boyd, 2025)

Approach
Implicit function theorem on smoothed interior-point KKT system
Efficient Riccati factorization based on HPIPM
Adjoint sensitivities for efficient backward pass

20

Solution sensitivities – Intro

Motivation
I Embedding optimization solvers in neural networks requires solution sensitivities
I Learning-enhanced MPC schemes, MPC-RL

Related works
I “Differentiable MPC” – flaws in nonlinear case, implementation fails with constraints,

(Amos et al., 2018)

I cvxpylayers, cvxpygen, limitation to convex problems, no OCP structure exploitation,
(Agrawal et al., 2019; Schaller & Boyd, 2025)

Approach
Implicit function theorem on smoothed interior-point KKT system
Efficient Riccati factorization based on HPIPM
Adjoint sensitivities for efficient backward pass

20

Solution sensitivities – Intro

Motivation
I Embedding optimization solvers in neural networks requires solution sensitivities
I Learning-enhanced MPC schemes, MPC-RL

Related works
I “Differentiable MPC” – flaws in nonlinear case, implementation fails with constraints,

(Amos et al., 2018)
I cvxpylayers, cvxpygen, limitation to convex problems, no OCP structure exploitation,

(Agrawal et al., 2019; Schaller & Boyd, 2025)

Approach
Implicit function theorem on smoothed interior-point KKT system
Efficient Riccati factorization based on HPIPM
Adjoint sensitivities for efficient backward pass

20

Solution sensitivities – Intro

Motivation
I Embedding optimization solvers in neural networks requires solution sensitivities
I Learning-enhanced MPC schemes, MPC-RL

Related works
I “Differentiable MPC” – flaws in nonlinear case, implementation fails with constraints,

(Amos et al., 2018)
I cvxpylayers, cvxpygen, limitation to convex problems, no OCP structure exploitation,

(Agrawal et al., 2019; Schaller & Boyd, 2025)

Approach
Implicit function theorem on smoothed interior-point KKT system
Efficient Riccati factorization based on HPIPM
Adjoint sensitivities for efficient backward pass

20

KKT conditions & Smoothing

zsol(θ) := arg min
z∈Rnz

f (z; θ)

subject to g(z; θ) = 0,

h(z; θ) ≤ 0

Wanted: ∂zsol

∂θ (θ)

Lagrangian function

L(z, λ, µ; θ) = f (z; θ) + λ>g(z; θ) + µ>h(z; θ).

∇zf (z; θ) +∇zg(z; θ)λ+∇zh(z; θ)µ = 0,

g(z; θ) = 0,

h(z; θ) ≤ 0,

µ ≥ 0,

µihi(z; θ) = τ , i = 1, . . . ,nh.

Interior-point methods (IPM) solve this for τ → 0,
e.g. IPOPT, HPIPM, FORCES, Clarabel, fmincon, …

21

KKT conditions & Smoothing

zsol(θ) := arg min
z∈Rnz

f (z; θ)

subject to g(z; θ) = 0,

h(z; θ) ≤ 0

Wanted: ∂zsol

∂θ (θ)

Lagrangian function

L(z, λ, µ; θ) = f (z; θ) + λ>g(z; θ) + µ>h(z; θ).

∇zf (z; θ) +∇zg(z; θ)λ+∇zh(z; θ)µ = 0,

g(z; θ) = 0,

h(z; θ) ≤ 0,

µ ≥ 0,

µihi(z; θ) = τ , i = 1, . . . ,nh.

Interior-point methods (IPM) solve this for τ → 0,
e.g. IPOPT, HPIPM, FORCES, Clarabel, fmincon, …

21

Simple dense NLP example

minimize
x

(x − θ2)2

subject to −1 ≤ x ≤ 1,

Nondifferentiable solution map

x?(θ) =

{
θ2, if θ ∈ [−1, 1]

1, otherwise

Derivative

∂θx?(θ) =


2 · θ, if θ ∈ (−1, 1)

0, if |θ| > 1

not defined, for θ ∈ −1, 1

Code acados/examples/acados_python/solution_sensitivities_convex_example/non_ocp_example.py

22

https://github.com/acados/acados/blob/main/examples/acados_python/solution_sensitivities_convex_example/non_ocp_example.py

Simple dense NLP example

minimize
x

(x − θ2)2

subject to −1 ≤ x ≤ 1,

Nondifferentiable solution map

x?(θ) =

{
θ2, if θ ∈ [−1, 1]

1, otherwise

Derivative

∂θx?(θ) =


2 · θ, if θ ∈ (−1, 1)

0, if |θ| > 1

not defined, for θ ∈ −1, 1

0.0

0.2

0.4

0.6

0.8

1.0

so
lu

ti
on

x
?

analytic

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
θ

−2

−1

0

1

2

d
er

iv
at

iv
e
∂
θ
x
?

Code acados/examples/acados_python/solution_sensitivities_convex_example/non_ocp_example.py

22

https://github.com/acados/acados/blob/main/examples/acados_python/solution_sensitivities_convex_example/non_ocp_example.py

KKT conditions & Smoothing

zsol(θ) := arg min
z∈Rnz

f (z; θ)

subject to g(z; θ) = 0,

h(z; θ) ≤ 0

Wanted: ∂zsol

∂θ (θ)

Lagrangian function

L(z, λ, µ; θ) = f (z; θ) + λ>g(z; θ) + µ>h(z; θ).

∇zf (z; θ) +∇zg(z; θ)λ+∇zh(z; θ)µ = 0,

g(z; θ) = 0,

h(z; θ) ≤ 0,

µ ≥ 0,

µihi(z; θ) = τ , i = 1, . . . ,nh.

Interior-point methods (IPM) solve this for τ → 0,
e.g. IPOPT, HPIPM, FORCES, Clarabel, fmincon, …

23

KKT conditions & Smoothing

zsol(θ) := arg min
z∈Rnz

f (z; θ)

subject to g(z; θ) = 0,

h(z; θ) ≤ 0

Wanted: ∂zsol

∂θ (θ)

Lagrangian function

L(z, λ, µ; θ) = f (z; θ) + λ>g(z; θ) + µ>h(z; θ).

∇zf (z; θ) +∇zg(z; θ)λ+∇zh(z; θ)µ = 0,

g(z; θ) = 0,

h(z; θ) ≤ 0,

µ ≥ 0,

µihi(z; θ) = τ , i = 1, . . . ,nh.

Interior-point methods (IPM) solve this for τ → 0,
e.g. IPOPT, HPIPM, FORCES, Clarabel, fmincon, …

23

KKT conditions & Smoothing

zsol(θ) := arg min
z∈Rnz

f (z; θ)

subject to g(z; θ) = 0,

h(z; θ) ≤ 0

Wanted: ∂zsol

∂θ (θ)

Lagrangian function

L(z, λ, µ; θ) = f (z; θ) + λ>g(z; θ) + µ>h(z; θ).

KKT conditions

∇zf (z; θ) +∇zg(z; θ)λ+∇zh(z; θ)µ = 0,

g(z; θ) = 0,

h(z; θ) ≤ 0,

µ ≥ 0,

µihi(z; θ) = 0, i = 1, . . . ,nh.

Interior-point methods (IPM) solve this for τ → 0,
e.g. IPOPT, HPIPM, FORCES, Clarabel, fmincon, …

23

KKT conditions & Smoothing

zsol(θ) := arg min
z∈Rnz

f (z; θ)

subject to g(z; θ) = 0,

h(z; θ) ≤ 0

Wanted: ∂zsol

∂θ (θ)

Lagrangian function

L(z, λ, µ; θ) = f (z; θ) + λ>g(z; θ) + µ>h(z; θ).

Interior-point smoothed KKT conditions

∇zf (z; θ) +∇zg(z; θ)λ+∇zh(z; θ)µ = 0,

g(z; θ) = 0,

h(z; θ) ≤ 0,

µ ≥ 0,

µihi(z; θ) = τ , i = 1, . . . ,nh.

Interior-point methods (IPM) solve this for τ → 0,
e.g. IPOPT, HPIPM, FORCES, Clarabel, fmincon, …

23

Simple dense NLP example

minimize
x

(x − θ2)2

subject to −1 ≤ x ≤ 1,

Nondifferentiable solution map

x?(θ) =

{
θ2, if θ ∈ [−1, 1]

1, otherwise

Derivative

∂θx?(θ) =


2 · θ, if θ ∈ (−1, 1)

0, if |θ| > 1

not defined, for θ ∈ −1, 1

0.0

0.2

0.4

0.6

0.8

1.0

so
lu

ti
on

x
?

analytic

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
θ

−2

−1

0

1

2

d
er

iv
at

iv
e
∂
θ
x
?

Code acados/examples/acados_python/solution_sensitivities_convex_example/non_ocp_example.py

24

https://github.com/acados/acados/blob/main/examples/acados_python/solution_sensitivities_convex_example/non_ocp_example.py

Simple dense NLP example

minimize
x

(x − θ2)2

subject to −1 ≤ x ≤ 1,

Nondifferentiable solution map

x?(θ) =

{
θ2, if θ ∈ [−1, 1]

1, otherwise

Derivative

∂θx?(θ) =


2 · θ, if θ ∈ (−1, 1)

0, if |θ| > 1

not defined, for θ ∈ −1, 1

0.0

0.2

0.4

0.6

0.8

1.0

so
lu

ti
on

x
?

analytic

τ = 10−6

τ = 10−4

τ = 10−3

τ = 10−2

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
θ

−2

−1

0

1

2

d
er

iv
at

iv
e
∂
θ
x
?

Code acados/examples/acados_python/solution_sensitivities_convex_example/non_ocp_example.py

24

https://github.com/acados/acados/blob/main/examples/acados_python/solution_sensitivities_convex_example/non_ocp_example.py

Theory: Solution map & IP Smoothing

Assumptions
I Problem functions f , g, h, twice differentiable in z, once in θ.
I (z?, λ?, µ?) KKT point of the NLP with LICQ, SOSC and strict complementarity for θ̄

Theoretical results
I In a neighborhood of θ̄, there exists a differentiable function zsol(θ) with zsol(θ̄) = z? that

corresponds to a locally unique solution.
For small positive values of τ
I The solution of the smoothed IP KKT system zsol

ipm(τ ; θ̄) is a continuously differentiable
function with limτ→0+ zsol

ipm(τ, θ̄) = zsol(θ̄) and
∥∥zsol

ipm(τ ; θ̄)− z?
∥∥ ∈ O(τ)

I In a neighborhood of θ̄, there exists a differentiable function
v(τ ; θ) = (z(τ ; θ), λ(τ ; θ), µ(τ ; θ)) that corresponds to a locally unique solution of the
smoothed interior-point KKT system and v(0; θ̄) := limτ→0+ v(τ ; θ̄) = (z?, λ?, µ?) holds.

25

Theory: Solution map & IP Smoothing

Assumptions
I Problem functions f , g, h, twice differentiable in z, once in θ.
I (z?, λ?, µ?) KKT point of the NLP with LICQ, SOSC and strict complementarity for θ̄

Theoretical results
I In a neighborhood of θ̄, there exists a differentiable function zsol(θ) with zsol(θ̄) = z? that

corresponds to a locally unique solution.

For small positive values of τ
I The solution of the smoothed IP KKT system zsol

ipm(τ ; θ̄) is a continuously differentiable
function with limτ→0+ zsol

ipm(τ, θ̄) = zsol(θ̄) and
∥∥zsol

ipm(τ ; θ̄)− z?
∥∥ ∈ O(τ)

I In a neighborhood of θ̄, there exists a differentiable function
v(τ ; θ) = (z(τ ; θ), λ(τ ; θ), µ(τ ; θ)) that corresponds to a locally unique solution of the
smoothed interior-point KKT system and v(0; θ̄) := limτ→0+ v(τ ; θ̄) = (z?, λ?, µ?) holds.

25

Theory: Solution map & IP Smoothing

Assumptions
I Problem functions f , g, h, twice differentiable in z, once in θ.
I (z?, λ?, µ?) KKT point of the NLP with LICQ, SOSC and strict complementarity for θ̄

Theoretical results
I In a neighborhood of θ̄, there exists a differentiable function zsol(θ) with zsol(θ̄) = z? that

corresponds to a locally unique solution.
For small positive values of τ
I The solution of the smoothed IP KKT system zsol

ipm(τ ; θ̄) is a continuously differentiable
function with limτ→0+ zsol

ipm(τ, θ̄) = zsol(θ̄) and
∥∥zsol

ipm(τ ; θ̄)− z?
∥∥ ∈ O(τ)

I In a neighborhood of θ̄, there exists a differentiable function
v(τ ; θ) = (z(τ ; θ), λ(τ ; θ), µ(τ ; θ)) that corresponds to a locally unique solution of the
smoothed interior-point KKT system and v(0; θ̄) := limτ→0+ v(τ ; θ̄) = (z?, λ?, µ?) holds.

25

SQP and IPM

Setting: solve NLP with acados SQP
SQP solves QP in ∆ space of primal variables

Theorem: Denote QP solution map at NLP solution ∆zsol
QP(θ, v?). For exact Hessian QP, the

solution maps zsol(θ) and z? +∆zsol
QP(θ, v?), and their sensitivities, ∂zsol

∂θ (θ) and ∂∆zsol
QP

∂θ (θ, v?)
coincide.

Blending SQP with IP QP solver (HPIPM): Shrink τ in QP solver to τmin > 0 instead of 0.
Not an SQP method for τmin > 0

Convergence to IP-smoothed KKT solution

26

SQP and IPM

Setting: solve NLP with acados SQP
SQP solves QP in ∆ space of primal variables

Theorem: Denote QP solution map at NLP solution ∆zsol
QP(θ, v?). For exact Hessian QP, the

solution maps zsol(θ) and z? +∆zsol
QP(θ, v?), and their sensitivities, ∂zsol

∂θ (θ) and ∂∆zsol
QP

∂θ (θ, v?)
coincide.

Blending SQP with IP QP solver (HPIPM): Shrink τ in QP solver to τmin > 0 instead of 0.
Not an SQP method for τmin > 0

Convergence to IP-smoothed KKT solution

26

SQP and IPM

Setting: solve NLP with acados SQP
SQP solves QP in ∆ space of primal variables

Theorem: Denote QP solution map at NLP solution ∆zsol
QP(θ, v?). For exact Hessian QP, the

solution maps zsol(θ) and z? +∆zsol
QP(θ, v?), and their sensitivities, ∂zsol

∂θ (θ) and ∂∆zsol
QP

∂θ (θ, v?)
coincide.

Blending SQP with IP QP solver (HPIPM): Shrink τ in QP solver to τmin > 0 instead of 0.

Not an SQP method for τmin > 0

Convergence to IP-smoothed KKT solution

26

SQP and IPM

Setting: solve NLP with acados SQP
SQP solves QP in ∆ space of primal variables

Theorem: Denote QP solution map at NLP solution ∆zsol
QP(θ, v?). For exact Hessian QP, the

solution maps zsol(θ) and z? +∆zsol
QP(θ, v?), and their sensitivities, ∂zsol

∂θ (θ) and ∂∆zsol
QP

∂θ (θ, v?)
coincide.

Blending SQP with IP QP solver (HPIPM): Shrink τ in QP solver to τmin > 0 instead of 0.
Not an SQP method for τmin > 0

Convergence to IP-smoothed KKT solution

26

SQP and IPM

Setting: solve NLP with acados SQP
SQP solves QP in ∆ space of primal variables

Theorem: Denote QP solution map at NLP solution ∆zsol
QP(θ, v?). For exact Hessian QP, the

solution maps zsol(θ) and z? +∆zsol
QP(θ, v?), and their sensitivities, ∂zsol

∂θ (θ) and ∂∆zsol
QP

∂θ (θ, v?)
coincide.

Blending SQP with IP QP solver (HPIPM): Shrink τ in QP solver to τmin > 0 instead of 0.
Not an SQP method for τmin > 0

Convergence to IP-smoothed KKT solution

26

Highly-parametric optimal control example

I Pendulum on cart inspired
I θ in cost, dynamics, constraints
I θ mass of cart

Wrong results!
Gauss-Newton Hessian approx. in IFT

27

Highly-parametric optimal control example

I Pendulum on cart inspired
I θ in cost, dynamics, constraints
I θ mass of cart

Wrong results!
Gauss-Newton Hessian approx. in IFT

27

Hessian approximations & Two-solver approach

I Hessian approximations often beneficial in SQP
I convergence
I computational complexity
I regularity

I Regularization needed when dealing with indefinite Hessians
IFT requires exact Hessian

28

Hessian approximations & Two-solver approach

I Hessian approximations often beneficial in SQP
I convergence
I computational complexity
I regularity

I Regularization needed when dealing with indefinite Hessians
IFT requires exact Hessian

Two-solver approach
1. Nominal solver: can use approximate Hessian, regularization etc.
2. Sensitivity solver

I load solution
I evaluate exact Hessian
I evaluate partial derivatives w.r.t. θ
I solve linear system effiently with HPIPM Riccati

28

Hessian approximations & Two-solver approach

I Hessian approximations often beneficial in SQP
I convergence
I computational complexity
I regularity

I Regularization needed when dealing with indefinite Hessians
IFT requires exact Hessian

Two-solver approach
1. Nominal solver: can use approximate Hessian, regularization etc.
2. Sensitivity solver

I load solution
I evaluate exact Hessian
I evaluate partial derivatives w.r.t. θ
I solve linear system effiently with HPIPM Riccati

28

Hessian approximations & Two-solver approach

I Hessian approximations often beneficial in SQP
I convergence
I computational complexity
I regularity

I Regularization needed when dealing with indefinite Hessians
IFT requires exact Hessian

Two-solver approach
1. Nominal solver: can use approximate Hessian, regularization etc.
2. Sensitivity solver

I load solution
I evaluate exact Hessian
I evaluate partial derivatives w.r.t. θ
I solve linear system effiently with HPIPM Riccati

28

Benchmark: bounded LQR problems

Table: Timings in [ms] for solving nbatch=128 instances with N =20, nx =8, nu =4, nθ=248. In
parentheses are multiples of the acados runtime.

Nominal solution Solution + adjoint sens.
umax acados mpc.pytorch cvxpygen acados mpc.pytorch cvxpygen

104 8.5 78 (×9.2) 262 (×31) 34.5 125 (×3.6) 658 (×19)
1.0 17.6 21024 (×1200) 6402 (×360) 42.0 21899 (×520) 6845 (×160)

29

Benchmark: details

minimize
x0,...,xN ,

u0,...,uN91

N91∑
n=0

[
xn
un

]>
H

[
xn
un

]
+ x>NHxxN (5a)

subject to x0 = x̄0, (5b)
xn+1 = Axn + Bun + b, n = 0, . . . ,N 9 1, (5c)

−umax ≤ un ≤ umax, n = 0, . . . ,N 9 1, (5d)

I A = 1 + 0.2 · M and B, b and M sampled from standard normal distribution.
I H = 1 identity
I Hx submatrix with first nx rows and columns of H .
I The problem data A,B, b,H is regarded as parameter θ, such that

nθ = n2
x + nxnu + nx + (nx + nu)

2.

30

Final slide

Summary
Smoothed interior-point KKT conditions to differentiate across active-set changes

Fast implementation
In mature software acados
Adjoint solution sensitivities for efficient backward pass
Wrapped in pytorch layer in leap-c

Ongoing research
Incorporation in MPC-RL schemes and method comparison

Thanks for your attention!
I look forward to questions, discussions and collaborations!

31

Final slide

Summary
Smoothed interior-point KKT conditions to differentiate across active-set changes
Fast implementation
In mature software acados

Adjoint solution sensitivities for efficient backward pass
Wrapped in pytorch layer in leap-c

Ongoing research
Incorporation in MPC-RL schemes and method comparison

Thanks for your attention!
I look forward to questions, discussions and collaborations!

31

Final slide

Summary
Smoothed interior-point KKT conditions to differentiate across active-set changes
Fast implementation
In mature software acados
Adjoint solution sensitivities for efficient backward pass

Wrapped in pytorch layer in leap-c

Ongoing research
Incorporation in MPC-RL schemes and method comparison

Thanks for your attention!
I look forward to questions, discussions and collaborations!

31

Final slide

Summary
Smoothed interior-point KKT conditions to differentiate across active-set changes
Fast implementation
In mature software acados
Adjoint solution sensitivities for efficient backward pass
Wrapped in pytorch layer in leap-c

Ongoing research
Incorporation in MPC-RL schemes and method comparison

Thanks for your attention!
I look forward to questions, discussions and collaborations!

31

Final slide

Summary
Smoothed interior-point KKT conditions to differentiate across active-set changes
Fast implementation
In mature software acados
Adjoint solution sensitivities for efficient backward pass
Wrapped in pytorch layer in leap-c

Ongoing research
Incorporation in MPC-RL schemes and method comparison

Thanks for your attention!
I look forward to questions, discussions and collaborations!

31

Final slide

Summary
Smoothed interior-point KKT conditions to differentiate across active-set changes
Fast implementation
In mature software acados
Adjoint solution sensitivities for efficient backward pass
Wrapped in pytorch layer in leap-c

Ongoing research
Incorporation in MPC-RL schemes and method comparison

Thanks for your attention!
I look forward to questions, discussions and collaborations!

31

References I

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., & Kolter, J. Z. (2019).
Differentiable convex optimization layers. Advances in neural information processing
systems, 32.

Amos, B., Jimenez, I., Sacks, J., Boots, B., & Kolter, J. Z. (2018). Differentiable MPC for
end-to-end planning and control. Advances in neural information processing systems, 31.

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., & Diehl, M. (2019). CasADi – a
software framework for nonlinear optimization and optimal control. Mathematical
Programming Computation, 11(1), 1–36. doi: 10.1007/s12532-018-0139-4

Arnstrom, D., Bemporad, A., & Axehill, D. (2022). A dual active-set solver for embedded
quadratic programming using recursive LDLT updates. IEEE Transactions on Automatic
Control. doi: 10.1109/TAC.2022.3176430

32

References II

DIehl, M., Uslu, I., Findeisen, R., Schwarzkopf, S., Allgöwer, F., Bock, H. G., … Stein, E.
(2001). Real-time optimization for large scale processes: Nonlinear model predictive
control of a high purity distillation column. In M. Grötschel, S. O. Krumke, & J. Rambau
(Eds.), Online optimization of large scale systems: State of the art (pp. 363–384).
Springer. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.8798
(download at:
http://www.zib.de/dfg-echtzeit/Publikationen/Preprints/Preprint-01-16.html)

Frey, J., Baumgärtner, K., Frison, G., & Diehl, M. (2025). Multi-phase optimal control
problems for efficient nonlinear model predictive control with acados. Optimal Control
Applications and Methods, 46(2), 827-845. Retrieved from
https://onlinelibrary.wiley.com/doi/abs/10.1002/oca.3234 doi:
https://doi.org/10.1002/oca.3234

Frey, J., Nurkanović, A., & Diehl, M. (2024). Advanced-step real-time iterations with four
levels – new error bounds and fast implementation in acados. IEEE Control Systems
Letters. doi: 10.1109/LCSYS.2024.3412007

33

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.8798
https://onlinelibrary.wiley.com/doi/abs/10.1002/oca.3234

References III

Frey, J., Quirynen, R., Kouzoupis, D., Frison, G., Geisler, J., Schild, A., & Diehl, M. (2019).
Detecting and exploiting Generalized Nonlinear Static Feedback structures in DAE
systems for MPC. In Proceedings of the european control conference (ecc).

Frison, G., & Diehl, M. (2020, July). HPIPM: a high-performance quadratic programming
framework for model predictive control. In Proceedings of the ifac world congress. Berlin,
Germany.

Frison, G., Kouzoupis, D., Jørgensen, J. B., & Diehl, M. (2016). An efficient implementation
of partial condensing for nonlinear model predictive control. In Proceedings of the ieee
conference on decision and control (cdc) (pp. 4457–4462).

Frison, G., Kouzoupis, D., Sartor, T., Zanelli, A., & Diehl, M. (2018). BLASFEO: Basic linear
algebra subroutines for embedded optimization. ACM Transactions on Mathematical
Software (TOMS), 44(4), 42:1–42:30. doi: 10.1145/3210754

Kiessling, D., Baumgärtner, K., Frey, J., Decré, W., Swevers, J., & Diehl, M. (2024). Fast
generation of feasible trajectories in direct optimal control. IEEE Control Systems
Letters.

34

References IV

Schaller, M., & Boyd, S. (2025). Code generation for solving and differentiating through
convex optimization problems. arXiv preprint arXiv:2504.14099. Retrieved from
https://arxiv.org/abs/2504.14099

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., & Boyd, S. (2020). OSQP: An operator
splitting solver for quadratic programs. Mathematical Programming Computation, 12(4),
637–672. Retrieved from https://doi.org/10.1007/s12532-020-00179-2 doi:
10.1007/s12532-020-00179-2

Verschueren, R., Zanon, M., Quirynen, R., & Diehl, M. (2017). A sparsity preserving
convexification procedure for indefinite quadratic programs arising in direct optimal
control. SIAM Journal of Optimization, 27(3), 2085–2109.

35

https://arxiv.org/abs/2504.14099
https://doi.org/10.1007/s12532-020-00179-2

acados – fast embedded solvers for nonlinear optimal control
An open-source software package mainly developed in Freiburg, Germany

Efficiency, usability, modularity, state-of-the-art optimization algorithms

Written in C using high-performance
linear algebra provided by BLASFEO
Fully exploits sparsity of optimal control
structured NLPs
Interfaces to Python, Matlab,
Simulink
nonlinear & symbolic models via CasADi
Flexible problem formulation:
multi-phase & MHE

Minimal dependencies =⇒ embeddable
Integrators for ODE & DAE: ERK & IRK,
efficient sensitivity propagation
QP solvers: full & partial condensing via HPIPM
HPIPM, DAQP, qpOASES, qpDUNES, OSQP
NLP solvers: SQP, DDP, RTI, AS-RTI
Robust & stochastic MPC via zoRO
Exploit convex-over-nonlinear structures

github.com/acados/acados docs.acados.org discourse.acados.org
36

github.com/acados/acados
docs.acados.org
discourse.acados.org

QP solver types and sparsity – an overview

Active-Set Interior-Point First-Order
dense qpOASES, DAQP HPIPM
sparse [PRESAS] CVXGEN, OOQP FiOrdOs, OSQP

OCP structure qpDUNES, [ASIPM] HPMPC, HPIPM, [ASIPM], [FORCES]

Table: Overview: QP solver types and their way to handle sparsity.
underline: available in acados + support in Simulink
gray: not interfaced in acados, [proprietary]

efficient condensing from HPIPM:
I condensing: OCP structured → dense, expand solution
I partial condensing: OCP structured with horizon N → OCP structured with horizon

N2 < N , expand solution, N2 =̂ qp_solver_cond_N

37

Forward and adjoint solution sensitivities

Implicit function theorem implies: ∂wsol
ipm

∂θ (w?; τ, θ) = M?(w?; τ, θ)91J?(w?; τ, θ),

with J?(·) := ∂r?
∂θ (·), residual function r?(·)

Structured linear system

Coeff. matrix M? =


Q? G>

? H>
? 0

G? 0 0 0
H? 0 0 1
0 0 S? M?

 reduces to M̃? =

[
Q? + H>

? S91
? M?H? G>

?

G? 0

]
.

Adjoint sensitivity for adjoint seed ν ∈ Rnw

sadj
> := ν>

∂wsol
ipm

∂θ (w?; τ, θ) = ν>M?(w?; τ, θ)91J?(w?; τ, θ).

Transposing both sides yields
sadj = J?(w?; τ, θ)>(M?(w?; τ, θ)9>ν).

=⇒ Adjoint sensitivity can be obtained with 1 backsolve instead of nθ many.

38

Forward and adjoint solution sensitivities

Implicit function theorem implies: ∂wsol
ipm

∂θ (w?; τ, θ) = M?(w?; τ, θ)91J?(w?; τ, θ),

with J?(·) := ∂r?
∂θ (·), residual function r?(·)

Structured linear system

Coeff. matrix M? =


Q? G>

? H>
? 0

G? 0 0 0
H? 0 0 1
0 0 S? M?

 reduces to M̃? =

[
Q? + H>

? S91
? M?H? G>

?

G? 0

]
.

Adjoint sensitivity for adjoint seed ν ∈ Rnw

sadj
> := ν>

∂wsol
ipm

∂θ (w?; τ, θ) = ν>M?(w?; τ, θ)91J?(w?; τ, θ).

Transposing both sides yields
sadj = J?(w?; τ, θ)>(M?(w?; τ, θ)9>ν).

=⇒ Adjoint sensitivity can be obtained with 1 backsolve instead of nθ many.

38

Forward and adjoint solution sensitivities

Implicit function theorem implies: ∂wsol
ipm

∂θ (w?; τ, θ) = M?(w?; τ, θ)91J?(w?; τ, θ),

with J?(·) := ∂r?
∂θ (·), residual function r?(·)

Structured linear system

Coeff. matrix M? =


Q? G>

? H>
? 0

G? 0 0 0
H? 0 0 1
0 0 S? M?

 reduces to M̃? =

[
Q? + H>

? S91
? M?H? G>

?

G? 0

]
.

Adjoint sensitivity for adjoint seed ν ∈ Rnw

sadj
> := ν>

∂wsol
ipm

∂θ (w?; τ, θ) = ν>M?(w?; τ, θ)91J?(w?; τ, θ).

Transposing both sides yields
sadj = J?(w?; τ, θ)>(M?(w?; τ, θ)9>ν).

=⇒ Adjoint sensitivity can be obtained with 1 backsolve instead of nθ many.

38

Forward and adjoint solution sensitivities

Implicit function theorem implies: ∂wsol
ipm

∂θ (w?; τ, θ) = M?(w?; τ, θ)91J?(w?; τ, θ),

with J?(·) := ∂r?
∂θ (·), residual function r?(·)

Structured linear system

Coeff. matrix M? =


Q? G>

? H>
? 0

G? 0 0 0
H? 0 0 1
0 0 S? M?

 reduces to M̃? =

[
Q? + H>

? S91
? M?H? G>

?

G? 0

]
.

Adjoint sensitivity for adjoint seed ν ∈ Rnw

sadj
> := ν>

∂wsol
ipm

∂θ (w?; τ, θ) = ν>M?(w?; τ, θ)91J?(w?; τ, θ).

Transposing both sides yields
sadj = J?(w?; τ, θ)>(M?(w?; τ, θ)9>ν).

=⇒ Adjoint sensitivity can be obtained with 1 backsolve instead of nθ many.

38

	Design Overview
	Introduction
	acados optimal control problem formulation
	References

