The acados software

An Introduction & Research Spotlights

Jonathan Frey

Systems Control and Optimization Laboratory (syscop)

September 18, 2025

universität freiburg

Me: Jonathan Frey

PhD student in Freiburg with Moritz Diehl

Me: Jonathan Frey

PhD student in Freiburg with Moritz Diehl

Studied mathematics

Bachelor: TU Ilmeanu

Master: Uni Freiburg

universität freiburg

Me: Jonathan Frey

PhD student in Freiburg with Moritz Diehl

Studied mathematics

Bachelor: TU Ilmeanu

Master: Uni Freiburg

Fast MPC implementations acados

Advanced OCP discretizations

Talk structure

- 1. Overview on acados
- 2. Differentiable Nonlinear Model Predictive Control

An open-source software package mainly developed in Freiburg, Germany

Efficiency, usability, modularity, state-of-the-art optimization algorithms

- Written in C using high-performance linear algebra provided by BLASFEO
- Fully exploits sparsity of optimal control structured NLPs

An open-source software package mainly developed in Freiburg, Germany

Efficiency, usability, modularity, state-of-the-art optimization algorithms

- Written in C using high-performance linear algebra provided by BLASFEO
- Fully exploits sparsity of optimal control structured NLPs
- Interfaces to Python, MATLAB, Simulink
- nonlinear & symbolic models via CasADi
- ★ Flexible problem formulation: multi-phase & MHE

, Minimal dependencies \implies embeddable

An open-source software package mainly developed in Freiburg, Germany

Efficiency, usability, modularity, state-of-the-art optimization algorithms

- Written in C using high-performance linear algebra provided by BLASFEO
- Fully exploits sparsity of optimal control structured NLPs
- Interfaces to Python, MATLAB, Simulink
- ononlinear & symbolic models via CasADi nonlinear & symbolic models via CasADi
- ★ Flexible problem formulation:
 multi-phase & MHE

- Minimal dependencies \implies embeddable
- Integrators for ODE & DAE: ERK & IRK, efficient sensitivity propagation
- QP solvers: full & partial condensing via HPIPM HPIPM, DAQP, qpOASES, qpDUNES, OSQP

An open-source software package mainly developed in Freiburg, Germany

Efficiency, usability, modularity, state-of-the-art optimization algorithms

- Written in C using high-performance linear algebra provided by BLASFEO
- Fully exploits sparsity of optimal control structured NLPs
- Interfaces to Python, MATLAB, Simulink
- ononlinear & symbolic models via CasADi 🗠
- Flexible problem formulation: multi-phase & MHE

- Minimal dependencies ⇒ embeddable
- Integrators for ODE & DAE: ERK & IRK, efficient sensitivity propagation
- QP solvers: full & partial condensing via HPIPM HPIPM, DAQP, qpOASES, qpDUNES, OSQP
- ⊚ NLP solvers: SQP, DDP, RTI, AS-RTI
- Robust & stochastic MPC via zoRO
- Exploit convex-over-nonlinear structures

An open-source software package mainly developed in Freiburg, Germany

Efficiency, usability, modularity, state-of-the-art optimization algorithms

- Written in C using high-performance linear algebra provided by BLASFEO
- Fully exploits sparsity of optimal control structured NLPs
- Interfaces to Python, MATLAB, Simulink
- nonlinear & symbolic models via CasADi
- Flexible problem formulation: multi-phase & MHE

- Minimal dependencies ⇒ embeddable
- Integrators for ODE & DAE: ERK & IRK, efficient sensitivity propagation
- QP solvers: full & partial condensing via HPIPM HPIPM, DAQP, qpOASES, qpDUNES, OSQP
- NLP solvers: SQP, DDP, RTI, AS-RTI
- Robust & stochastic MPC via zoRO
- Exploit convex-over-nonlinear structures

github.com/acados/acados

docs.acados.org

Structure of the acados software

The interplay between the acados dependencies, the 'core' C library and its interfaces.

- ▶ BLASFEO: Basic Linear Algebra for Embedded Optimization (Frison et al., 2018)
- ► HPIPM: High-Performance Interior Point Method (Frison & Diehl, 2020)

Intro

- Real-world control applications
 - fast dynamics,
 - nonlinear optimal control problem formulations,
 - strict hardware limitations

require tailored high-performance algorithms.

- acados implements such algorithms
- Application projects include
 - Wind turbines
 - Drones
 - Race cars
 - Driving assistance systems
 - Electric drives
 - Vessels
 - .

Intro – Model Predictive Control

Continuous-time optimal control problem (OCP):

- ▶ State x, control u, (algebraic variables z)
- ightharpoonup Cost l, M
- ightharpoonup Dynamics f
- Constraints g

In MPC, instances of these problems are solved repeatedly, with current state \bar{x}_0 .

OCP structured NLP handled in acados

$$\sum_{k=0}^{N-1} l_k(x_k, u_k, z_k) + M(x_N) + \sum_{k=0}^{N} \rho_k(s_k)$$
 (2a)

subject to
$$\begin{bmatrix} x_{k+1} \\ z_k \end{bmatrix} = \phi_k(x_k, u_k), \qquad k = 0, \dots, N-1,$$
 (2b)

$$0 \ge g_k(x_k, z_k, u_k) - J_{s,k} s_k \quad k = 0, \dots, N - 1,$$
 (2c)

$$0 \ge g_N(x_N) - J_{s,N} s_N, \tag{2d}$$

$$0 \le s_k \tag{2e}$$

- lacktriangledown ϕ_k discrete time dynamics on $[t_k,t_{k+1}]$ typically acados integrator from ODE or DAE
- ▶ l_k approximation of Lagrange cost term ℓ on $[t_k, t_{k+1}]$
- lacktriangle efficient treatment of slack variables s_k , with linear-quadratic penalties $ho_k(\cdot)$
- ightharpoonup inequality constraints g_k
- general formulation: problem functions can vary stage wise

Ingredients of SQP-type methods and acados modules

SQP-type algorithm:

- ► NLP solver
- ► Linearization
- ► Regularization
- ► QP solution
- Globalization

Ingredients of SQP-type methods and acados modules

SQP-type algorithm:

NLP solver – Linearization – Regularization – QP solution – Globalization

acados module	Variants
OCP-NLP solver Nonlinear functions	SQP, RTI, AS-RTI 1, DDP2, SQP_WITH_FEASIBLE_QP CasADi8 generated, generic C functions
Dynamics Hessian approximation	ERK, IRK, GNSF-IRK ⁷ , Discrete dynamics Exact, Gauss-Newton, Convex-over-nonlinear, custom
Regularization	Mirror, Project, Convexify ³
Condensing	Full condensing, Partial condensing 4
OCP QP	HPIPM ⁵ , OSQP ⁹ , qpDUNES, HPMPC
Dense QP	HPIPM, qpOASES, DAQP ⁶
Globalization	Merit function, Funnel

 $^{^{1}}$ (Frey et al., 2024), 2 (Kiessling et al., 2024), 3 (Verschueren et al., 2017) 4 (Frison et al., 2016) 5 (Frison & Diehl, 2020), 6 (Arnstrom et al., 2022), 7 (Frey et al., 2019) 8 (Andersson et al., 2019), 9 (Stellato et al., 2020)

Important Ressources: Documentation page

docs.acados.org/

Home

Real-world examples

Citing

Installation

Related Projects

Interfaces

Interfaces Overview

Python Interface

MATLAB + Simulink and Octave Interface

User Guide

Problem Formulation

Troubleshooting

acados

Fast and embedded solvers for real-world applications of nonlinear optimal control.

Important links

- Get inspired by real-world applications using acados *
- ★ The acados source code is hosted on Github. Contributions via pull requests are welcome!
- acados has a discourse-based forum.
- name acados is mainly developed by the syscop group around Prof. Moritz Diehl, at the University of Freiburg.

About acados

acados is a modular and efficient software package for solving nonlinear programs (NLP) with an optimal control problem (OCP) structure. Such problems have to be solved repeatedly in model predictive control

Important Ressources: acados forum

https://discourse.acados.org/

Research spotlight 1

Multi-Phase Optimal Control Problems for Efficient Nonlinear Model Predictive Control with acados

Jonathan Frey, Katrin Baumgärtner, Gianluca Frison, Moritz Diehl
 Optimal Control Applications and Methods, 2025

Classic approach: for continuous-time, inifinite horizon problem

- ightharpoonup Choose time horizon T, discretize with N stages
- ► Capture remaining infinite horizon in terminal cost

Classic approach: for continuous-time, inifinite horizon problem

- ightharpoonup Choose time horizon T, discretize with N stages
- Capture remaining infinite horizon in terminal cost

Multi-phase approach: allow more flexible treatment

- lacktriangle Conceptionally: OCP is initial stage u_0 and cost-to-go approximation
- ▶ Allows successively coarser formulation and models over the horizon

Classic approach: for continuous-time, inifinite horizon problem

- ightharpoonup Choose time horizon T, discretize with N stages
- ► Capture remaining infinite horizon in terminal cost

Multi-phase approach: allow more flexible treatment

- ightharpoonup Conceptionally: OCP is initial stage u_0 and cost-to-go approximation
- ▶ Allows successively coarser formulation and models over the horizon
 - Phase 1: x = [p, v], u = a
 - Phase 2: x = p, u = v

Classic approach: for continuous-time, inifinite horizon problem

- ightharpoonup Choose time horizon T, discretize with N stages
- Capture remaining infinite horizon in terminal cost

Multi-phase approach: allow more flexible treatment

- ightharpoonup Conceptionally: OCP is initial stage u_0 and cost-to-go approximation
- ► Allows successively coarser formulation and models over the horizon
- Variety of control parameterizations, e.g. piecewise polynomial, closed-loop costing, ...

Classic approach: for continuous-time, inifinite horizon problem

- ightharpoonup Choose time horizon T, discretize with N stages
- ► Capture remaining infinite horizon in terminal cost

Multi-phase approach: allow more flexible treatment

- ightharpoonup Conceptionally: OCP is initial stage u_0 and cost-to-go approximation
- ▶ Allows successively coarser formulation and models over the horizon
- Variety of control parameterizations, e.g. piecewise polynomial, closed-loop costing, ...

Summary (Frey et al., 2025): MOCP based NMPC controllers can trade off computation time and performance more efficiently than standard OCPs.

Research spotlight 2

Advanced-Step Real-Time Iterations with Four Levels – New Error Bounds and Fast Implementation in acados

– Jonathan Frey, Armin Nurkanović, Moritz Diehl

IEEE Control Systems Letters, 2024

Real-time algorithms

- ► The Real-Time Iteration (RTI) performs only one SQP iteration in each sampling interval, (Dlehl et al., 2001)
- ▶ Idea: give fast feedback and "converge over time" examples follow

Real-time algorithms

- ► The Real-Time Iteration (RTI) performs only one SQP iteration in each sampling interval, (Dlehl et al., 2001)
- ▶ Idea: give fast feedback and "converge over time" examples follow
- Additionally: \bar{x}_0 enters only constraints linearly
 - ⇒ allows to split SQP iteration into a feedback and a preparation phase.

Real-time NMPC algorithms

$$\begin{array}{lll} \underset{w \in \mathbb{R}^{n_w}}{\text{minimize}} & f(w) & \text{(3a)} & \underset{\Delta w}{\text{minimize}} & (a^{k,j})^\top \Delta w + \frac{1}{2} \Delta w^\top A^{k,j} \Delta w \\ \text{subject to} & 0 = g(w) + Mx, & \text{(3b)} \\ & 0 \leq h(w), & \text{(3c)} & \\ & & & \\ &$$

Real-time NMPC algorithms

AS-RTI steps

- (S1) At time $t=t^k$: Predict the initial state x_{pred}^{k+1} at t^{k+1}
- (S2) At $t \in [t^k, t^{k+1})$: Starting with z^k , iterate on (3) with $x = x_{\text{pred}}^{k+1}$ to obtain z_{lin}^k "the inner iterations". Use MLI variant (next slide)

Real-time NMPC algorithms

minimize
$$f(w)$$
 (3a) minimize $(a^{k,j})^{\top} \Delta w + \frac{1}{2} \Delta w^{\top} A^{k,j} \Delta w$ (4a) subject to $0 = g(w) + Mx$, (3b) $0 \le h(w)$, (3c) subject to $g^{k,j} + Mx^k + G^{k,j} \Delta w = 0$, (4b) $h^{k,j} + H^{k,j} \Delta w > 0$, (4c)

AS-RTI steps

- (S1) At time $t = t^k$: Predict the initial state x_{pred}^{k+1} at t^{k+1}
- (S2) At $t \in [t^k, t^{k+1})$: Starting with z^k , iterate on (3) with $x = x_{\text{pred}}^{k+1}$ to obtain z_{lin}^k - "the inner iterations". Use MLI variant (next slide)
- (S3) At $t \in [t^k, t^{k+1})$: Construct QP (4) on the linearization point z_{lin}^k .
- (S4) At time t^{k+1} , solve (4) with $x = x^{k+1}$. "feedback phase"

(4c)

Real-time NMPC algorithms

AS-RTI steps

- (S1) At time $t=t^k$: Predict the initial state x_{pred}^{k+1} at t^{k+1}
- (S2) At $t \in [t^k, t^{k+1})$: Starting with z^k , iterate on (3) with $x = x_{\text{pred}}^{k+1}$ to obtain z_{lin}^k "the inner iterations". Use MLI variant (next slide)
- (S3) At $t \in [t^k, t^{k+1})$: Construct QP (4) on the linearization point z_{lin}^k .
- (S4) At time t^{k+1} , solve (4) with $x=x^{k+1}$. "feedback phase"

Remarks

- ▶ RTI: 2 simplifies to setting $z_{\text{lin}}^k = z^k$ or shifted variant
- Advanced-step controller (ASC): z_{lin}^k is a local minimizer of (3) with $x = x_{\text{pred}}^{k+1}$
- Denote AS-RTI with level X iteration as AS-RTI-X;

16

Schematic overview of the real-time iterations for NMPC

Preparation phase:

lacktriangledown at $t\in [t^k,t^{k+1})$: eval. derivatives at w^k , construct QP

Feedback phase:

- ▶ at t^{k+1} , solve QP with $x = \hat{x}^{k+1}$ for $w^{k+1} = w^k + \Delta w^k$
- lacktriangledown at $t^{k+1}+\delta t_{
 m qp}$ pass $u_0(\hat{x}^{k+1})=\Pi w^{k+1}$ to the plant

Evaluate derivatives and functions at \boldsymbol{w}^k before $\hat{\boldsymbol{x}}^{k+1}$ known

Research spotlight 3

Differentiable Nonlinear Model Predictive Control

– Jonathan Frey, Katrin Baumgärtner, Gianluca Frison, Dirk Reinhardt, Jasper Hoffmann, Leonard Fichtner, Sebastien Gros, Moritz Diehl

https://arxiv.org/abs/2505.01353

Solution sensitivities - Intro

Motivation

- ▶ Embedding optimization solvers in neural networks requires solution sensitivities
- ► Learning-enhanced MPC schemes, MPC-RL

Solution sensitivities – Intro

Motivation

- ▶ Embedding optimization solvers in neural networks requires solution sensitivities
- ► Learning-enhanced MPC schemes, MPC-RL

Related works

■ "Differentiable MPC" – flaws in nonlinear case, implementation fails with constraints, (Amos et al., 2018)

Solution sensitivities – Intro

Motivation

- ▶ Embedding optimization solvers in neural networks requires solution sensitivities
- ► Learning-enhanced MPC schemes, MPC-RL

Related works

- → "Differentiable MPC" flaws in nonlinear case, implementation fails with constraints, (Amos et al., 2018)
- cvxpylayers, cvxpygen, limitation to convex problems, no OCP structure exploitation, (Agrawal et al., 2019; Schaller & Boyd, 2025)

Solution sensitivities - Intro

Motivation

- ▶ Embedding optimization solvers in neural networks requires solution sensitivities
- ► Learning-enhanced MPC schemes, MPC-RL

Related works

- ► "Differentiable MPC" flaws in nonlinear case, implementation fails with constraints, (Amos et al., 2018)
- cvxpylayers, cvxpygen, limitation to convex problems, no OCP structure exploitation, (Agrawal et al., 2019; Schaller & Boyd, 2025)

Approach

- Implicit function theorem on smoothed interior-point KKT system
- → Efficient Riccati factorization based on HPIPM
- Adjoint sensitivities for efficient backward pass

$$\begin{split} z^{\mathrm{sol}}(\theta) \coloneqq & \underset{z \in \mathbb{R}^{n_z}}{\min} \quad f(z;\theta) \\ & \text{subject to} \quad g(z;\theta) = 0, \\ & \quad h(z;\theta) \leq 0 \end{split}$$

$$\begin{split} z^{\mathrm{sol}}(\theta) \coloneqq & \underset{z \in \mathbb{R}^{n_z}}{\arg\min} \quad f(z;\theta) \\ & \text{subject to} \quad g(z;\theta) = 0, \\ & \quad h(z;\theta) \leq 0 \end{split}$$

Simple dense NLP example

minimize
$$(x - \theta^2)^2$$

subject to $-1 \le x \le 1$,

Nondifferentiable solution map

$$x^{\star}(\theta) = \begin{cases} \theta^2, & \text{if } \theta \in [-1, 1] \\ 1, & \text{otherwise} \end{cases}$$

Derivative

$$\partial_{\theta} x^{\star}(\theta) = \begin{cases} 2 \cdot \theta, & \text{if } \theta \in (-1, 1) \\ 0, & \text{if } |\theta| > 1 \\ \text{not defined, for } \theta \in -1, 1 \end{cases}$$

Simple dense NLP example

minimize
$$(x - \theta^2)^2$$

subject to $-1 \le x \le 1$,

Nondifferentiable solution map

$$x^{\star}(\theta) = \begin{cases} \theta^2, & \text{if } \theta \in [-1, 1] \\ 1, & \text{otherwise} \end{cases}$$

Derivative

$$\partial_{\theta} x^{\star}(\theta) = \begin{cases} 2 \cdot \theta, & \text{if } \theta \in (-1, 1) \\ 0, & \text{if } |\theta| > 1 \\ \text{not defined, for } \theta \in -1, 1 \end{cases}$$

$$\begin{split} z^{\mathrm{sol}}(\theta) \coloneqq & \underset{z \in \mathbb{R}^{n_z}}{\arg\min} \quad f(z;\theta) \\ & \text{subject to} \quad g(z;\theta) = 0, \\ & \quad h(z;\theta) \leq 0 \end{split}$$

$$\begin{split} z^{\mathrm{sol}}(\theta) &\coloneqq \underset{z \in \mathbb{R}^{n_z}}{\mathrm{arg \; min}} \quad f(z;\theta) \\ & \mathrm{subject \; to} \quad g(z;\theta) = 0, \\ & \quad h(z;\theta) \leq 0 \end{split}$$

Wanted: $\frac{\partial z^{\mathrm{sol}}}{\partial \theta}(\theta)$ $\boxed{\psi}$

Lagrangian function

$$\mathcal{L}(z, \lambda, \mu; \theta) = f(z; \theta) + \lambda^{\top} g(z; \theta) + \mu^{\top} h(z; \theta).$$

$$z^{\text{sol}}(\theta) \coloneqq \underset{z \in \mathbb{R}^{n_z}}{\arg \min} \quad f(z; \theta)$$

subject to $g(z; \theta) = 0$,
 $h(z; \theta) \le 0$

Wanted: $\frac{\partial z^{\text{sol}}}{\partial a}(\theta)$

Lagrangian function

$$\mathcal{L}(z,\lambda,\mu;\theta) = f(z;\theta) + \lambda^{\top} g(z;\theta) + \mu^{\top} h(z;\theta).$$

KKT conditions

$$\nabla_z f(z;\theta) + \nabla_z g(z;\theta)\lambda + \nabla_z h(z;\theta)\mu = 0,$$

$$g(z;\theta) = 0,$$

$$h(z;\theta) \le 0,$$

$$\mu \ge 0,$$

$$\mu_i h_i(z;\theta) = 0, i = 1, \dots, n_h.$$

$$z^{\text{sol}}(\theta) \coloneqq \underset{z \in \mathbb{R}^{n_z}}{\text{arg min}} \quad f(z; \theta)$$

subject to $g(z; \theta) = 0$,
 $h(z; \theta) \le 0$

Wanted: $\frac{\partial z^{\text{sol}}}{\partial a}(\theta)$ \boxed{v}

Lagrangian function

$$\mathcal{L}(z, \lambda, \mu; \theta) = f(z; \theta) + \lambda^{\top} g(z; \theta) + \mu^{\top} h(z; \theta).$$

Interior-point smoothed KKT conditions

$$\nabla_z f(z;\theta) + \nabla_z g(z;\theta)\lambda + \nabla_z h(z;\theta)\mu = 0,$$

$$g(z;\theta) = 0,$$

$$h(z;\theta) \le 0,$$

$$\mu \ge 0,$$

$$\mu_i h_i(z;\theta) = \frac{\tau}{\tau}, i = 1, \dots, n_h.$$

Interior-point methods (IPM) solve this for $\tau \to 0$, e.g. IPOPT, HPIPM, FORCES, Clarabel, fmincon, ...

Simple dense NLP example

$$\begin{aligned} & \underset{x}{\text{minimize}} & & (x - \theta^2)^2 \\ & \text{subject to} & & -1 \le x \le 1, \end{aligned}$$

Nondifferentiable solution map

$$x^{\star}(\theta) = \begin{cases} \theta^2, & \text{if } \theta \in [-1, 1] \\ 1, & \text{otherwise} \end{cases}$$

Derivative

$$\partial_{\theta} x^{\star}(\theta) = \begin{cases} 2 \cdot \theta, & \text{if } \theta \in (-1, 1) \\ 0, & \text{if } |\theta| > 1 \\ \text{not defined, for } \theta \in -1, 1 \end{cases}$$

Simple dense NLP example

minimize
$$(x - \theta^2)^2$$

subject to $-1 \le x \le 1$,

Nondifferentiable solution map

$$x^{\star}(\theta) = \begin{cases} \theta^2, & \text{if } \theta \in [-1, 1] \\ 1, & \text{otherwise} \end{cases}$$

Derivative

$$\partial_{\theta} x^{\star}(\theta) = \begin{cases} 2 \cdot \theta, & \text{if } \theta \in (-1, 1) \\ 0, & \text{if } |\theta| > 1 \\ \text{not defined, for } \theta \in -1, 1 \end{cases}$$

 ${\sf Code\ acados/examples/acados_python/solution_sensitivities_convex_example/non_ocp_example.py}$

Theory: Solution map & IP Smoothing

Assumptions

- ▶ Problem functions f, g, h, twice differentiable in z, once in θ .
- $lackbox{}(z^\star,\lambda^\star,\mu^\star)$ KKT point of the NLP with LICQ, SOSC and strict complementarity for $ar{ heta}$

Theory: Solution map & IP Smoothing

Assumptions

- ▶ Problem functions f, g, h, twice differentiable in z, once in θ .
- \blacktriangleright $(z^{\star}, \lambda^{\star}, \mu^{\star})$ KKT point of the NLP with LICQ, SOSC and strict complementarity for $\bar{\theta}$

Theoretical results

▶ In a neighborhood of $\bar{\theta}$, there exists a differentiable function $z^{\rm sol}(\theta)$ with $z^{\rm sol}(\bar{\theta}) = z^{\star}$ that corresponds to a locally unique solution.

Theory: Solution map & IP Smoothing

Assumptions

- ▶ Problem functions f, g, h, twice differentiable in z, once in θ .
- \blacktriangleright $(z^{\star}, \lambda^{\star}, \mu^{\star})$ KKT point of the NLP with LICQ, SOSC and strict complementarity for $\bar{\theta}$

Theoretical results

▶ In a neighborhood of $\bar{\theta}$, there exists a differentiable function $z^{\rm sol}(\theta)$ with $z^{\rm sol}(\bar{\theta}) = z^{\star}$ that corresponds to a locally unique solution.

For small positive values of au

- ► The solution of the smoothed IP KKT system $z_{\mathrm{IPM}}^{\mathrm{sol}}(\tau;\bar{\theta})$ is a continuously differentiable function with $\lim_{\tau \to 0^+} z_{\mathrm{IPM}}^{\mathrm{sol}}(\tau,\bar{\theta}) = z^{\mathrm{sol}}(\bar{\theta})$ and $\left\|z_{\mathrm{IPM}}^{\mathrm{sol}}(\tau;\bar{\theta}) z^{\star}\right\| \in \mathcal{O}(\tau)$
- In a neighborhood of $\bar{\theta}$, there exists a differentiable function $v(\tau;\theta)=(z(\tau;\theta),\lambda(\tau;\theta),\mu(\tau;\theta))$ that corresponds to a locally unique solution of the smoothed interior-point KKT system and $v(0;\bar{\theta})\coloneqq \lim_{\tau\to 0^+}v(\tau;\bar{\theta})=(z^\star,\lambda^\star,\mu^\star)$ holds.

SQP and IPM

Setting: solve NLP with acados SQP

 \wedge SQP solves QP in \triangle space of primal variables

SQP and IPM

Setting: solve NLP with acados SQP

 \triangle SQP solves QP in \triangle space of primal variables

Theorem: Denote QP solution map at NLP solution $\Delta z_{\mathrm{QP}}^{\mathrm{sol}}(\theta, v^{\star})$. For exact Hessian QP, the solution maps $z^{\rm sol}(\theta)$ and $z^\star + \Delta z_{\rm QP}^{\rm sol}(\theta,v^\star)$, and their sensitivities, $\frac{\partial z^{\rm sol}}{\partial \theta}(\theta)$ and $\frac{\partial \Delta z_{\rm QP}^{\rm sol}}{\partial \theta}(\theta,v^\star)$ coincide.

SQP and I<u>PM</u>

Setting: solve NLP with acados SQP

 \triangle SQP solves QP in \triangle space of primal variables

Theorem: Denote QP solution map at NLP solution $\Delta z_{\mathrm{OP}}^{\mathrm{sol}}(\theta, v^{\star})$. For exact Hessian QP, the solution maps $z^{\rm sol}(\theta)$ and $z^{\star} + \Delta z_{\rm OP}^{\rm sol}(\theta, v^{\star})$, and their sensitivities, $\frac{\partial z^{\rm sol}}{\partial \theta}(\theta)$ and $\frac{\partial \Delta z_{\rm OP}^{\rm sol}}{\partial \theta}(\theta, v^{\star})$ coincide.

Blending SQP with IP QP solver (HPIPM): Shrink τ in QP solver to $\tau_{\min} > 0$ instead of 0.

SQP and IPM

Setting: solve NLP with acados SQP

 \triangle SQP solves QP in \triangle space of primal variables

Theorem: Denote QP solution map at NLP solution $\Delta z_{\mathrm{QP}}^{\mathrm{sol}}(\theta, v^{\star})$. For exact Hessian QP, the solution maps $z^{\rm sol}(\theta)$ and $z^{\star} + \Delta z_{\rm OP}^{\rm sol}(\theta, v^{\star})$, and their sensitivities, $\frac{\partial z^{\rm sol}}{\partial \theta}(\theta)$ and $\frac{\partial \Delta z_{\rm OP}^{\rm sol}}{\partial \theta}(\theta, v^{\star})$ coincide.

Blending SQP with IP QP solver (HPIPM): Shrink τ in QP solver to $\tau_{\min} > 0$ instead of 0.

 Λ Not an SQP method for $\tau_{\rm min} > 0$

Convergence to IP-smoothed KKT solution

SQP and IPM

Setting: solve NLP with acados SQP

 \triangle SQP solves QP in \triangle space of primal variables

Theorem: Denote QP solution map at NLP solution $\Delta z_{\mathrm{OP}}^{\mathrm{sol}}(\theta, v^{\star})$. For exact Hessian QP, the solution maps $z^{\rm sol}(\theta)$ and $z^{\star} + \Delta z_{\rm OP}^{\rm sol}(\theta, v^{\star})$, and their sensitivities, $\frac{\partial z^{\rm sol}}{\partial \theta}(\theta)$ and $\frac{\partial \Delta z_{\rm OP}^{\rm sol}}{\partial \theta}(\theta, v^{\star})$ coincide.

Blending SQP with IP QP solver (HPIPM): Shrink τ in QP solver to $\tau_{\min} > 0$ instead of 0.

 Λ Not an SQP method for $\tau_{\rm min} > 0$

Convergence to IP-smoothed KKT solution

Highly-parametric optimal control example

1.4

-50

1.1

1.2

1.3

► Pendulum on cart inspired

1.1

 \triangleright θ in cost, dynamics, constraints

1.2

1.3

 $\triangleright \theta$ mass of cart

Highly-parametric optimal control example

- ► Pendulum on cart inspired
- \triangleright θ in cost, dynamics, constraints
- \triangleright θ mass of cart

Wrong results!

A Gauss-Newton Hessian approx. in IFT

Hessian approximations & Two-solver approach

- ► Hessian approximations often beneficial in SQP
 - convergence
 - computational complexity
 - regularity
- ▶ Regularization needed when dealing with indefinite Hessians

🚺 IFT requires **exact** Hessian 🛝

Hessian approximations & Two-solver approach

- Hessian approximations often beneficial in SQP
 - convergence
 - computational complexity
 - regularity
- Regularization needed when dealing with indefinite Hessians

🚺 IFT requires exact Hessian 🛝

Two-solver approach

- 1. Nominal solver: can use approximate Hessian, regularization etc.
- 2. Sensitivity solver
 - load solution
 - evaluate exact Hessian
 - ightharpoonup evaluate partial derivatives w.r.t. heta
 - solve linear system efficitly with HPIPM Riccati

Hessian approximations & Two-solver approach

- Hessian approximations often beneficial in SQP
 - convergence
 - computational complexity
 - regularity
- Regularization needed when dealing with indefinite Hessians

🚺 IFT requires exact Hessian 🛝

Two-solver approach

- 1. Nominal solver: can use approximate Hessian, regularization etc.
- 2. Sensitivity solver
 - load solution
 - evaluate exact Hessian
 - ightharpoonup evaluate partial derivatives w.r.t. heta
 - solve linear system efficitly with HPIPM Riccati

Hessian approximations & Two-solver approach

- Hessian approximations often beneficial in SQP
 - convergence
 - computational complexity
 - regularity
- Regularization needed when dealing with indefinite Hessians

🚺 IFT requires exact Hessian 🛝

Two-solver approach

- 1. Nominal solver: can use approximate Hessian, regularization etc.
- 2. Sensitivity solver
 - load solution
 - evaluate exact Hessian
 - ightharpoonup evaluate partial derivatives w.r.t. heta
 - solve linear system efficitly with HPIPM Riccati

Benchmark: bounded LQR problems

A STATE OF THE STA

Table: Timings in [ms] for solving $n_{\rm batch} = 128$ instances with N = 20, $n_x = 8$, $n_u = 4$, $n_\theta = 248$. In parentheses are multiples of the acados runtime.

Nominal solution				Solution + adjoint sens.		
u_{max}	acados	mpc.pytorch	cvxpygen	acados	mpc.pytorch	cvxpygen
-10^{4}	8.5	78 (×9.2)	262 (×31)	34.5	125 (×3.6)	658 (×19)
1.0	17.6	21024 (×1200)	6402 (×360)	42.0	21899 (×520)	6845 (×160)

Benchmark: details

$$\underset{\substack{x_0, \dots, x_N, \\ u_0, \dots, u_{N-1}}}{\text{minimize}} \quad \sum_{n=0}^{N-1} \begin{bmatrix} x_n \\ u_n \end{bmatrix}^\top H \begin{bmatrix} x_n \\ u_n \end{bmatrix} + x_N^\top H_x x_N \tag{5a}$$

subject to
$$x_0 = \bar{x}_0,$$
 (5b)

$$x_{n+1} = Ax_n + Bu_n + b, \quad n = 0, \dots, N-1,$$
 (5c)

$$-u_{\max} \le u_n \le u_{\max}, \qquad n = 0, \dots, N-1, \tag{5d}$$

- $ightharpoonup A = \mathbb{1} + 0.2 \cdot M$ and B, b and M sampled from standard normal distribution.
- ightharpoonup H = 1 identity
- $ightharpoonup H_x$ submatrix with first n_x rows and columns of H.
- The problem data A, B, b, H is regarded as parameter θ , such that $n_{\theta} = n_x^2 + n_x n_u + n_x + (n_x + n_u)^2$.

Summary

Smoothed interior-point KKT conditions to differentiate across active-set changes

Summary

Smoothed interior-point KKT conditions to differentiate across active-set changes

In mature software acados

Summary

Smoothed interior-point KKT conditions to differentiate across active-set changes

Fast implementation

In mature software acados

Adjoint solution sensitivities for efficient backward pass

Summary

Fast implementation

In mature software acados

Adjoint solution sensitivities for efficient backward pass

🕯 Wrapped in pytorch layer in leap-c

Summary

- → Fast implementation
- In mature software acados
- Adjoint solution sensitivities for efficient backward pass
- 🕯 Wrapped in pytorch layer in leap-c

Ongoing research

Incorporation in MPC-RL schemes and method comparison

Summary

- → Fast implementation
- In mature software acados
- Adjoint solution sensitivities for efficient backward pass
- 🕯 Wrapped in pytorch layer in leap-c

Ongoing research

Incorporation in MPC-RL schemes and method comparison

Thanks for your attention! 🙏

I look forward to questions, discussions and collaborations!

References I

- - Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., & Kolter, J. Z. (2019). Differentiable convex optimization layers. *Advances in neural information processing systems*, 32.
 - Amos, B., Jimenez, I., Sacks, J., Boots, B., & Kolter, J. Z. (2018). Differentiable MPC for end-to-end planning and control. *Advances in neural information processing systems*, 31.
 - Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., & Diehl, M. (2019). CasADi a software framework for nonlinear optimization and optimal control. *Mathematical Programming Computation*, 11(1), 1–36. doi: 10.1007/s12532-018-0139-4
 - Arnstrom, D., Bemporad, A., & Axehill, D. (2022). A dual active-set solver for embedded quadratic programming using recursive LDL T updates. *IEEE Transactions on Automatic Control.* doi: 10.1109/TAC.2022.3176430

References II

- The state of the s
- Dlehl, M., Uslu, I., Findeisen, R., Schwarzkopf, S., Allgöwer, F., Bock, H. G., ... Stein, E. (2001). Real-time optimization for large scale processes: Nonlinear model predictive control of a high purity distillation column. In M. Grötschel, S. O. Krumke, & J. Rambau (Eds.), Online optimization of large scale systems: State of the art (pp. 363–384). Springer. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.8798 (download at: http://www.zib.de/dfg-echtzeit/Publikationen/Preprints/Preprint-01-16.html)
- Frey, J., Baumgärtner, K., Frison, G., & Diehl, M. (2025). Multi-phase optimal control problems for efficient nonlinear model predictive control with acados. *Optimal Control Applications and Methods*, 46(2), 827-845. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/oca.3234 doi: https://doi.org/10.1002/oca.3234
- Frey, J., Nurkanović, A., & Diehl, M. (2024). Advanced-step real-time iterations with four levels new error bounds and fast implementation in acados. *IEEE Control Systems Letters*. doi: 10.1109/LCSYS.2024.3412007

References III

- A THE PROPERTY OF THE PARTY OF
- Frey, J., Quirynen, R., Kouzoupis, D., Frison, G., Geisler, J., Schild, A., & Diehl, M. (2019). Detecting and exploiting Generalized Nonlinear Static Feedback structures in DAE systems for MPC. In *Proceedings of the european control conference (ecc)*.
- Frison, G., & Diehl, M. (2020, July). HPIPM: a high-performance quadratic programming framework for model predictive control. In *Proceedings of the ifac world congress.* Berlin, Germany.
- Frison, G., Kouzoupis, D., Jørgensen, J. B., & Diehl, M. (2016). An efficient implementation of partial condensing for nonlinear model predictive control. In *Proceedings of the ieee conference on decision and control (cdc)* (pp. 4457–4462).
- Frison, G., Kouzoupis, D., Sartor, T., Zanelli, A., & Diehl, M. (2018). BLASFEO: Basic linear algebra subroutines for embedded optimization. *ACM Transactions on Mathematical Software (TOMS)*, 44(4), 42:1–42:30. doi: 10.1145/3210754
- Kiessling, D., Baumgärtner, K., Frey, J., Decré, W., Swevers, J., & Diehl, M. (2024). Fast generation of feasible trajectories in direct optimal control. *IEEE Control Systems Letters*.

References IV

A THE STATE OF THE

- Schaller, M., & Boyd, S. (2025). Code generation for solving and differentiating through convex optimization problems. *arXiv preprint arXiv:2504.14099*. Retrieved from https://arxiv.org/abs/2504.14099
- Stellato, B., Banjac, G., Goulart, P., Bemporad, A., & Boyd, S. (2020). OSQP: An operator splitting solver for quadratic programs. *Mathematical Programming Computation*, 12(4), 637–672. Retrieved from https://doi.org/10.1007/s12532-020-00179-2 doi: 10.1007/s12532-020-00179-2
- Verschueren, R., Zanon, M., Quirynen, R., & Diehl, M. (2017). A sparsity preserving convexification procedure for indefinite quadratic programs arising in direct optimal control. *SIAM Journal of Optimization*, *27*(3), 2085–2109.

acados – fast embedded solvers for nonlinear optimal control

An open-source software package mainly developed in Freiburg, Germany

Efficiency, usability, modularity, state-of-the-art optimization algorithms

- Written in C using high-performance linear algebra provided by BLASFEO
- Fully exploits sparsity of optimal control structured NLPs
- Interfaces to Python, MATLAB, Simulink
- unonlinear & symbolic models via CasADi 🗠
- → Flexible problem formulation: multi-phase & MHE

- ightharpoonup Minimal dependencies \implies embeddable
- Integrators for ODE & DAE: ERK & IRK, efficient sensitivity propagation
- QP solvers: full & partial condensing via HPIPM HPIPM, DAQP, qpOASES, qpDUNES, OSQP
- Robust & stochastic MPC via zoRO
- Exploit convex-over-nonlinear structures

🐈 github.com/acados/acados

♥ discourse.acados.org

QP solver types and sparsity – an overview

	 Native Cat	Intoviou Doint	First Ondon	
				18
~ .	 			

	Active-Set	Interior-Point	First-Order	
dense	qpOASES, DAQP	<u>HPIPM</u>		
sparse	[PRESAS]	CVXGEN, OOQP	FiOrdOs, OSQP	
OCP structure	qpDUNES, [ASIPM]	HPMPC, <u>HPIPM</u> , [ASIPM], [FORCES]		

Table: Overview: QP solver types and their way to handle sparsity. <u>underline:</u> available in acados + support in Simulink gray: not interfaced in acados, [proprietary]

efficient condensing from HPIPM:

- ightharpoonup condensing: OCP structured ightharpoonup dense, expand solution
- partial condensing: OCP structured with horizon $N \to \text{OCP}$ structured with horizon $N_2 < N$, expand solution, $N_2 = \text{qp_solver_cond_N}$

Implicit function theorem implies: $\frac{\partial w_{\mathrm{pol}}^{\mathrm{pol}}}{\partial \theta}(w^{\star};\tau,\theta) = \mathcal{M}_{\star}(w^{\star};\tau,\theta)^{-1}J_{\star}(w^{\star};\tau,\theta),$ with $J_{\star}(\cdot) \coloneqq \frac{\partial r_{\star}}{\partial \theta}(\cdot)$, residual function $r_{\star}(\cdot)$

Implicit function theorem implies:
$$\frac{\partial w_{\mathrm{pM}}^{\mathrm{sol}}}{\partial \theta}(w^{\star}; \tau, \theta) = \mathcal{M}_{\star}(w^{\star}; \tau, \theta)^{-1}J_{\star}(w^{\star}; \tau, \theta),$$
 with $J_{\star}(\cdot) \coloneqq \frac{\partial r_{\star}}{\partial \theta}(\cdot)$, residual function $r_{\star}(\cdot)$

Structured linear system

$$\text{Coeff. matrix } \mathcal{M}_{\star} = \begin{bmatrix} Q_{\star} & G_{\star}^{\intercal} & H_{\star}^{\intercal} & 0 \\ G_{\star} & 0 & 0 & 0 \\ H_{\star} & 0 & 0 & 1 \\ 0 & 0 & S_{\star} & M_{\star} \end{bmatrix} \text{ reduces to } \widetilde{\mathcal{M}}_{\star} = \begin{bmatrix} Q_{\star} + H_{\star}^{\intercal} S_{\star}^{-1} M_{\star} H_{\star} & G_{\star}^{\intercal} \\ G_{\star} & 0 \end{bmatrix}.$$

Implicit function theorem implies: $\frac{\partial w_{\text{pos}}^{\text{loss}}}{\partial \theta}(w^{\star};\tau,\theta) = \mathcal{M}_{\star}(w^{\star};\tau,\theta)^{-1}J_{\star}(w^{\star};\tau,\theta),$ with $J_{\star}(\cdot) \coloneqq \frac{\partial r_{\star}}{\partial \theta}(\cdot)$, residual function $r_{\star}(\cdot)$

Structured linear system

Coeff. matrix
$$\mathcal{M}_{\star} = \begin{bmatrix} Q_{\star} & G_{\star}^{\intercal} & H_{\star}^{\intercal} & 0 \\ G_{\star} & 0 & 0 & 0 \\ H_{\star} & 0 & 0 & 1 \\ 0 & 0 & S_{\star} & M_{\star} \end{bmatrix}$$
 reduces to $\widetilde{\mathcal{M}}_{\star} = \begin{bmatrix} Q_{\star} + H_{\star}^{\intercal} S_{\star}^{-1} M_{\star} H_{\star} & G_{\star}^{\intercal} \\ G_{\star} & 0 \end{bmatrix}$.

Adjoint sensitivity for adjoint seed $\nu \in \mathbb{R}^{n_w}$

$$s_{\text{adj}}^{\top} := \nu^{\top} \frac{\partial w_{\text{\tiny IPM}}^{\text{sol}}}{\partial \theta} (w^{\star}; \tau, \theta) = \nu^{\top} \mathcal{M}_{\star} (w^{\star}; \tau, \theta)^{-1} J_{\star} (w^{\star}; \tau, \theta).$$

Transposing both sides yields

$$s_{\text{adj}} = J_{\star}(w^{\star}; \tau, \theta)^{\top} (\mathcal{M}_{\star}(w^{\star}; \tau, \theta)^{-\top} \nu).$$

Implicit function theorem implies: $\frac{\partial w_{\text{\tiny DM}}^{\text{\tiny BM}}}{\partial \theta}(w^{\star};\tau,\theta) = \mathcal{M}_{\star}(w^{\star};\tau,\theta)^{-1}J_{\star}(w^{\star};\tau,\theta),$ with $J_{\star}(\cdot) \coloneqq \frac{\partial r_{\star}}{\partial \theta}(\cdot)$, residual function $r_{\star}(\cdot)$

Structured linear system

$$\text{Coeff. matrix } \mathcal{M}_{\star} = \begin{bmatrix} Q_{\star} & G_{\star}^{\intercal} & H_{\star}^{\intercal} & 0 \\ G_{\star} & 0 & 0 & 0 \\ H_{\star} & 0 & 0 & 1 \\ 0 & 0 & S_{\star} & M_{\star} \end{bmatrix} \text{ reduces to } \widetilde{\mathcal{M}}_{\star} = \begin{bmatrix} Q_{\star} + H_{\star}^{\intercal} S_{\star}^{-1} M_{\star} H_{\star} & G_{\star}^{\intercal} \\ G_{\star} & 0 \end{bmatrix}.$$

Adjoint sensitivity for adjoint seed $\nu \in \mathbb{R}^{n_w}$

$$s_{\text{adj}}^{\top} := \nu^{\top} \frac{\partial w_{\text{\tiny IPM}}^{\text{sol}}}{\partial \theta} (w^{\star}; \tau, \theta) = \nu^{\top} \mathcal{M}_{\star} (w^{\star}; \tau, \theta)^{-1} J_{\star} (w^{\star}; \tau, \theta).$$

Transposing both sides yields

$$s_{\text{adj}} = J_{\star}(w^{\star}; \tau, \theta)^{\top} (\mathcal{M}_{\star}(w^{\star}; \tau, \theta)^{-\top} \nu).$$

 \implies Adjoint sensitivity can be obtained with 1 backsolve instead of $n_{ heta}$ many.