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So far so good; now is the stability robust?

Consider disturbances to the process (d) and state measurement (e)

x+ = f (x , κN(x)) nominal system

x+ = f (x , κN(x + e)) + d nominal controller with disturbances

How does the perturbed system behave?

Study of inherent robustness motivated by Teel (2004) who showed
examples for which arbitrarily small perturbations can destabilize the
nominally stabilizing controller.

If we cannot ensure desirable behavior with small disturbances, the
control system will not be useful in practice.

Every control system fails with large disturbances (think Fukushima
nuclear reactor and a tsunami). But the inherent robustness of
feedback control must ensure tolerance to small disturbances.
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Desired behavior with and without disturbance

x0

Nominal System

x+ = f (x , u)

u = κN(x)

x̂0

System with Disturbance

x+ = f (x , u) + d

u = κN(x + e)

d is the process disturbance
e is the measurement disturbance
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How do we define this desired behavior?

Nominal controller with disturbances. Note xm = x + e

x+ ∈ f (x , κN(x + e)) + d

x+m ∈ f (xm − e, κN(xm)) + d + e+

x+ ∈ F (x ,w) w = (d , e) or w = (d , e, e+)

Inherent robustness: is the origin of the closed-loop system
x+ ∈ F (x ,w) input-to-state stable considering disturbance
w = (d , e) as the input?
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Input-to-state stability (ISS)

Why ISS?

Consider a system x+ = f (x ,w) with input w

Definition 1 (Input-to-state stable)

The system x+ = f (x ,w) is (globally) input-to-state stable (ISS) if there
exists a KL function β(·) and a K function σ(·) such that, for each
x0 ∈ Rn, and each bounded disturbance sequence w = (w(0),w(1), . . .)

|x(k ; x0,w)| ≤ β(|x0| , k) + σ(∥w∥0:k−1)

for all k ∈ I≥0, ∥w∥a:b := maxj∈I[a:b] |w(j)|

The main ingredient of robust stability is that the closed-loop system
is ISS considering the disturbance as the input
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Desired behavior with disturbance

x0

σ(∥w∥)

ISS in pictures

x+ ∈ f (x ,w)

|x(k ; x0,w)| ≤ β(|x0| , k) + σ(∥w∥0:k−1)

Note also that ISS implies the desirable behavior that if w(k) → 0 as
k → ∞, then x(k ; x0,w) → 0 also.
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Robust positive invariance

We also require that the system not leave an invariant set due to the
disturbance.

Definition 2 (Robust Positive Invariance)

A set X ⊆ Rn is robustly positive invariant with respect to a difference
inclusion x+ ∈ f (x ,w) if there exists some δ > 0 such that f (x ,w) ⊆ X
for all x ∈ X and all disturbance sequences w satisfying ∥w∥ ≤ δ.
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Robust asymptotic stability

So, we define robust asymptotic stability as input-to-state stability on a
robust positive invariant set.

Definition 3 (Robust Asymptotic Stability)

The origin of a perturbed difference inclusion x+ ∈ f (x ,w) is robustly
asymptotically stable in X if there exists functions β(·) ∈ KL and
γ(·) ∈ K and δ > 0 such that for all x ∈ X and ∥w∥ ≤ δ, X is robustly
positive invariant and all solutions ϕ(k ; x ,w) satisfy

|ϕ(k ; x ,w)| ≤ β(|x | , k) + γ(∥w∥) (1)

for all k ∈ I≥0.
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Input-to-state stability Lyapunov function

In order to establish ISS, we define an ISS Lyapunov function for a
difference inclusion, similar to ISS Lyapunov function defined in Jiang and
Wang (2001) and Lazar, Heemels, and Teel (2013).

Definition 4 (ISS Lyapunov Function)

V (·) is an ISS Lyapunov function in the robust positive invariant set X for
the difference inclusion x+ ∈ f (x ,w) if there exists some δ > 0, functions
α1(·), α2(·), α3(·) ∈ K∞, and function σ(·) ∈ K such that for all x ∈ X
and ∥w∥ ≤ δ

α1(|x |) ≤ V (x) ≤ α2(|x |) (2)

sup
x+∈f (x ,w)

V (x+) ≤ V (x)− α3(|x |) + σ(∥w∥) (3)
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ISS Lyapunov function implies ISS

Proposition 5 (ISS Lyapunov stability theorem)

If a difference inclusion x+ ∈ f (x ,w) admits an ISS Lyapunov function in
a robust positive invariant set X for all ∥w∥ ≤ δ for some δ > 0, then the
origin is robustly asymptotically stable in X for all ∥w∥ ≤ δ.

This is a valuable result to know when trying to establish robustness
of stability.

Let’s skip this proof (hooray!), but it’s not difficult (Jiang and Wang,
2001; Allan, Bates, Risbeck, and Rawlings, 2017).

Freiburg—2025 NMPC. Inherent robusntess 11 / 38



Inherent robustness of nominal MPC

Our strategy now is to establish that V 0
N(x) is an ISS Lyapunov

function for the perturbed closed-loop system.

We have already established the upper and lower bounding inequalities

α1(|x |) ≤ V 0
N(x) ≤ α2(|x |)

So we require only

sup
x+∈f (x ,w)

V 0
N(x

+) ≤ V 0
N(x)− α3(|x |) + σ(∥w∥)

That plus robust positive invariance, and we’ve established RAS of
the controlled system.
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Picture of the argument we are going to make

ũ

w

e+

f (x̂ , κN(x̂))

x+

x̂+

x̂
x

XN

Xf

XN+1

κf (·)

−e

ũ

We have that x̂+ = f (x̂ − e, κN(x̂)) + w + e+

We next compute difference in cost of red and green using ũ
Note that ũ is feasible also for green, i.e., terminates in Xf := levVf .
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A useful tool for invoking continuity

Continuity in the language of K -functions

The usual ϵ-δ definition of continuity is equivalent to the following
K -function definition (Rawlings and Risbeck, 2015).

Definition 6 (Continuity: K -function)

A function f : Rn → Rm is continuous at x if there exists a K -function
γ(·) (note that the function γ(·) may depend on x) such that

|f (x + p)− f (x)| ≤ γ(|p|) for all |p| ∈ Dom(γ) (4)
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OK, let’s jump in (Allan et al., 2017)

Since VN(x ,u) is a continuous function∣∣VN(x̂
+, ũ)− VN(f (x̂ , κN(x̂)), ũ)

∣∣ ≤ σV (
∣∣x̂+ − f (x̂ , κN(x̂))

∣∣)
with σV (·) ∈ K (note we are not using the possibly discontinuous V 0

N(x)
here). Since f (x , u) is also continuous∣∣x̂+ − f (x̂ , κN(x̂))

∣∣ = ∣∣f (x̂ + e, κN(x̂)) + w + e+ − f (x̂ , κN(x̂))
∣∣

≤ |f (x̂ + e, κN(x̂))− f (x̂ , κN(x̂))|+ |w |+
∣∣e+∣∣

≤ σf (|e|) + |w |+
∣∣e+∣∣

≤ σf (|d |) + 2 |d | ≤ σ̃f (|d |)

with d := (e,w , e+) and σ̃f (·) := σf (·) + 2(·) ∈ K. Therefore∣∣VN(x̂
+, ũ)− VN(f (x̂ , κN(x̂)), ũ)

∣∣ ≤ σV (σ̃f (|d |)) := σ(|d |)
VN(x̂

+, ũ) ≤ VN(f (x̂ , κN(x̂)), ũ) + σ(|d |)

with σ(·) ∈ K.
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Last steps

Note that for the candidate sequence
VN(f (x̂ , κN(x̂)), ũ) ≤ V 0

N(x̂)− ℓ(x̂ , κN(x̂)) so we have that

VN(f (x̂ , κN(x̂)), ũ) ≤ V 0
N(x̂)− α1(|x̂ |)

since α1(|x |) ≤ ℓ(x , κN(x)) for all x . Therefore, we finally have

VN(x̂
+, ũ) ≤ V 0

N(x̂)− α1(|x̂ |) + σ(|d |)
V 0
N(x̂

+) ≤ V 0
N(x̂)− α1(|x̂ |) + σ(∥d∥)

and we have established that V 0
N(·) is an ISS-Lyapunov function!

That plus robust invariance gives robust asymptotic stability of x̂ . Since
x = x̂ + e, that gives also RAS of x .
Notice that neither V 0

N(·) nor κN(·) need be continuous for MPC to be
inherently robust.
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Discrete actuators

In addition to continuous actuators, many process systems also have
discrete actuators that are constrained to be integers.

t

u1

u2

u3

u4

Processes with banks of
furnaces, heaters, chillers,
etc.

Scheduling models with
discrete decisions.

Switched systems with
input-dependent dynamics.

Semi-continuous variables
(e.g. u ∈ {0} ∪ [1, 2]).
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Continuous and mixed continuous-discrete actuators

u1

(a)

u2

u1

(b)

u2

Typical input constraint sets U for (a) continuous actuators and (b) mixed
continuous-discrete actuators; the origin (•) is the equilibrium of interest.
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Example: Driving a manual transmission

State: vehicle velocity v

Inputs: engine RPM ω ∈ [0, ωmax]
gear γ ∈ {1, 2, 3, 4, 5}

dv

dt
= amax(γ)σ (R(γ)ω − v)

z

σ(z)

1

Maximum acceleration amax(γ) decreases for higher gears

Final velocity v = R(γ)ω increases for higher gears

Choose setpoint vsp and use tracking stage cost

ℓ(v , ω, γ) = 20

(
v

vsp
− 1

)2

︸ ︷︷ ︸
Track vsp

+8max

(
0,

ω − ωss

ωmax

)
︸ ︷︷ ︸

Minimize excessive ω

+ (∆γ)2︸ ︷︷ ︸
Restrict
switching
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Example Simulation
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Figure 1: Closed-loop evolution of car system. Optimization performed using Bonmin.
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Inherent Robustness—Extension to discrete actuators

The extension to discrete actuators is immediate

The set U need not be convex, connected, etc.—it need only contain
the origin

However, design choices become more striking with discrete actuators:

Theory forbids “large” control action near the setpoint
▶ System must be locally stabilizable using only unsaturated actuators
▶ Discrete actuators are always saturated

Single setpoint stabilization may no longer be an appropriate goal
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Feasible Sets

MPC is stabilizing on XN but XN may not be what you expect

10 15 20 25 30
T1

10

15

20

25

30

T2

Continuous Actuator

10 15 20 25 30
T1

10

15

20

25

30
Discrete Actuator

Xf X1 X2 X3 X4 X5 X6
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Conclusion

We have extended standard MPC theory to handle discrete actuators
for robust stabilization of an equilibrium point

This theory extends to periodic trajectories and economic MPC

Based on these results we offer the following conjecture:

Theorem 7 (Folk theorem)

Any result that holds for standard MPC holds also for MPC with discrete
actuators. (Rawlings and Risbeck, 2017)

Applications include a rich class of commercial building energy
optimization problems

A current challenge is to develop better software tools for efficient,
reliable online solution of the mixed-integer optimal control problems.
See casadi.org
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2004.
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Nonlinear model predictive control – Regulation

Review
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Recommended exercises

Stability definitions. Exercise B.8.1

Lyapunov functions. Exercise B.2–B.3.1

Dynamic programming. Exercise C.1–C.2.1

MPC stability results. Exercises 2.12, 2.131

1Rawlings, Mayne, and Diehl (2020, Chapter 2, Appendices B and C). Downloadable
from engineering.ucsb.edu/~jbraw/mpc.
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Computational Exercise

Consider the following system:

d

dt
x = f (x) + g(x)u

d

dt

(
x1
x2

)
=

(
−1 −1
1 1

)(
x1
x2

)
+

(
−x2 0
x1 1

)(
u1
u2

)
(
−1
−1

)
≤

(
u1
u2

)
≤

(
1
1

)
For fixed u1, system is linear.

Far from the origin, system is difficult to stabilize along the x2-axis.
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Exercise

Design a nonlinear MPC controller to regulate the system to the origin.

Cost functions: ℓ(x , u) = 100x ′x + u′u, Pf (x) = 1000x ′x

State is measured.

No disturbances.

Compare results to linear MPC.

Why might linear MPC be a bad idea for this system?

Can linear MPC stabilize the system? Where?
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Hints

Start with the linearized problem.
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u1
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Time
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Time
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0
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Figure 2: Trajectory using linearized system and linear MPC.
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Hints

Adding nonlinearities, you should get something like this:

−2

0

2

x1

−1

0

1

u1

0 5 10
Time

0

2x2

0 5 10
Time

−1

0

1
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Figure 3: Trajectory using nonlinear MPC.
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Hints

Finally, you can compare both on the same axes:
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Figure 4: Comparison of linear and nonlinear MPC trajectories.
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Computational Exercise 2

Consider the CSTR Example from earlier

Nonlinear CSTR

An irreversible, first-order reaction A→B occurs in the liquid phase and
the reactor temperature is regulated with external cooling.

F0,T0, c0

Tc

r
F

h

T , c
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Computational Exercise 2

Simulation Parameters
1 Initial Condition and Sample Time

x0 =

0.05cs

0.75T s

0.5hs

 ∆ = 0.25min

2 Input Constraints [
0.975T s

c

0.75F s

]
≤ u ≤

[
1.025T s

c

1.25F s

]
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Computational Exercise 2

Reactor Startup

Using the model and parameters provided previously,

1 Simulate the performance of an uncontrolled startup by injecting the
steady-state input into the system. Does the system reach the desired
operating point?

2 Use linear MPC to simulate the same startup. Does the system reach
the desired operating point with a linear controller?

3 Repeat the startup, but with nonlinear MPC. Does the system reach
the desired operating point with a nonlinear controller? Comment on
the performance differences between the various approaches.
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Reactor Startup

The uncontrolled startup does not drive the reactor to the desired steady
state, however both the linear and nonlinear MPC controllers do.
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Figure 5: Solution for Reactor Startup Exercise.

Freiburg—2025 NMPC. Inherent robusntess 36 / 38



Ball Maze

0 1 2
x1

0.0

0.5

1.0

1.5
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x2

Figure 6: MPC navigating a ball maze. Although the constraints are nonconvex, we can
still find a local solution.
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Airplane Descent
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Figure 7: MPC for guiding a descending plane. While the goal is to reach a periodic
holding pattern, the optimizer does not find that solution due to nonconvexity.
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