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Continuous-Time Optimal Control Problems (OCP)

Continuous-Time OCP with Ordinary Differential Equation (ODE) Constraints




(More general optimal control problems)

Many features left out here for simplicity of presentation:
» multiple dynamic stages
» differential algebraic equations (DAE) instead of ODE
» explicit time dependence
» constant design parameters

» multipoint constraints r(xz(to), z(t1), ..., Z(tena)) =0



Continuous-Time Optimal Control Problems (OCP)

Continuous-Time OCP with Ordinary Differential Equation (ODE) Constraints

Can in most applications assume convexity of all "outer” problem functions: L., E, h,r.
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Three levels of difficulty:
(a) Linear ODE: f(x,u) = Ax+ Bu (—
) T convex optimization
:c(r-r)l,lun(-) Jo Le(a(t),u(t)) dt + B(z(T)) (b) Nonlinear smooth O)DE: fect (-
s.t. z(0) = Zo nonlinear optimization)
i(t) = f(z(t),u(t)) (c) Nonsmooth and Mixed-Integer Dynamics
0 > h(z(t),u(t)), t € [0,T] In this school, we focus on cases (a) and (b).
0> r(z(T))



Recall: Runge-Kutta Discretization for Smooth Systems

Ordinary Differential Equation (ODE
Y i ( ) Discretization: N Runge-Kutta steps of each n, stages
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Direct Methods Transform OCP into Nonlinear Program (NLP)

Continuous time OCP

» Direct methods " first discretize,
then optimize”

. Parameterize controls, e.g.

u(t) — unat € [tnatn—i—l]-

. Discretize cost and dynamics

La(z,, 2k, U,) & /t " L.(x(t),u(t))dt

n

Replace & = f(x,u) by
xn—|—1 — ¢f(xn7 2% un)

0= ¢int (xn7 Zns un)

. Also discretize path constraints

0> on(x,, 2p,upy), n=0,...N —1.



Continuous time OCP

s.t. 2(0) =
2(t) = f(2(t), u(?))
0> h(z(t),u(t)), t € 0,T]
0> r(2(T))

» Direct methods " first discretize,
then optimize”

Discrete time OCP (an NLP)

. N-1
min ) ;o Lq(Zg, 25, ug) + E(zy)

X,z,u
s.t. xy9 =X
Trny1 = Of(Tn, 2n, Up)
0 = Pint(Tns 2n, Un)
0> op(x,, 2n,Uy,), n=0,...,N—1
0>r(zy)

Variables x = (xg,...,zn), 2= (29,---,2N)
and u = (Uo, .o JuN—l)'

Here, z are the intermediate variables of the
integrator (e.g. Runge-Kutta)



Simplest Direct Transcription: Single Step Explicit Euler

(not recommended in practice, other Runge-Kutta methods are much more efficient)

i() = fa(t), u(t)) By = 2, + f(zy )AL
0> h(x(t),u(t)), t €[0,T] 0> h(z,,u,), n=0,...,N—1
0>r(x(T)) 0> r(zy)
» Direct methods: first discretize, Variables x = (xg,...,xy) and
then optimize u = (ug,-..,Un_1)-

(single step explicit Euler has no internal
integrator variables z)



Sparse NLP resulting from direct transcription

Discrete time OCP (an NLP) Nonlinear Program (NLP)
min 373" La (@, 20, ue) + E(aw) .
X,Z,u mug F(w)
s.t. xg =12 wek
s.t. G(w) =0
Lp4+1 = ¢f(xn7znaun) H(w) >0

0= ¢int($nazn7un)
0> on(xy, 2p,Up), n=0,...,N—1

0> r(zy) Large and sparse NLP

Variables w = (x,z,u)



Sparse NLP resulting from direct transcription

V2 L(w, X, 1)

Nonlinear Program (NLP)
20 |
0 VuG(w)
7Y 40 f
“.‘b. .
by, 60 ! min F'(w)
“‘u weR"™z
baa, 80}
50 . t. G(w) =
0 50 100 100 S.T. (w —
nz =196 '
120+ . . . H(w Z O
0 50 100
nz=611

Variables w = (x, z,u) Large and sparse NLP



lllustrative nonlinear optimal control problem (with one state and one control)

3
minimize / x(t)” + u(t)” dt
z(-),u(-) 0

subject to
z(0) =z (initial value, z, = 0.6)
t=(1+2x)x + u, (ODE model)
—1 <wu(t) <1, t €10,3] (bounds)
z(3) =0 (terminal constraint)

» choose N =9 equal intervals and Radau-IlA collocation with n, = 2 stages
» obtain nonlinear program with n_, + (2ng + 1)Nn,, + Nn,, variables

» initialize with zeros everywhere, solve with CasADi and Ipopt (interior point)

r/

lllustrative example of direct collocation with Newton-type optimization: .



lllustrative example: Initialization




lllustrative example: First lterate




lllustrative example: Second lterate




lllustrative example: Third lterate




lllustrative example: Fourth lterate




lllustrative example: Fifth lterate




Illustrative example: Sixth lterate




lllustrative example: Seventh Iterate




lllustrative example: Eighth lterate







More Complex Example: Power Optimal Trajectories in Airborne Wind Energy (AWE)

formulated and solved daily by practitioners using open-source python package “AWEBox” [De Schutter et al. 2023]

For simple plane attached to a tether:

- 20 differential states (3+3 trans, 9+3 rotation, 1+1 tether)
- 1 algebraic state (tether force)

- 8 invariants (6 rotation, 2 due to tether constraint)

- 3 control inputs (aileron, elevator, tether length)

m 0 0 = 3 F,+m 52rA+52x+25y+5y
Translational: 0 m 0y Yil=| Fy+m 952 — 206 — 8(7’14 + )
0 0 m =z Z F. — gm
z y =z 0 A ] j:2z g2 — 32 |
' 0
Rotational: R=Rwy —RT| 0 , Ju=T—wx Jw, R = [ E, B, E, }
0
& — by ETy ETg
: = - z
Aero. coefficients: U= y+ 5(7"'A +x2) | —u(z,y,246,1), o= ~ B = P
z x T

Aero. forces/torques: Fp = 5pA||17H(CL17 x E, — Cpv), Ta= épAH'ﬁ’HZ

Cr
Cp



Newton-Type Optimization lterations for Power Optimal Flight
(video by Greg Horn, using CasADi and Ipopt as optimization engine)

w0: 10.0

iter: 1

endTime: 25.3343874701

average power: 540.342156108 W




Nonlinear Optimal Control often used for Model Predictive Control (MPC

One widely used nonlinear MPC package is acados [Verscheuren et al. 2021]

Example 1: Autonomous Driving (in Freiburg) Example 2: Quadrotor Racing (U Zurich, Scaramuzza)

Paper: https://ieeexplore.ieee.org/abstract/document/9805699

Video: https://www.youtube.com/watch?v=zBVpx3bgl6E
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Time-Optimal Online Replanning for Agile
Quadrotor Flight

Angel Romero ™, Robert Penicka”, and Davide Scaramuzza

e problem of flying a quadro-
s that can be replanned online

problem is challenging as the time-optimal trajec-
tories that consider the full quadrotor dynamics are computation-
ally expensive to generate, on the order of minutes or even hours.
We introduce a sampling-based method for efficient generation of
time-optimal paths of a point-mass model. These paths are then
tracked using a Model Predictive Contouring Control approach
that considers the full quadrotor dynamics and the single rotor
thrust limits. Our combined approach is able to run in real-time,
being the first time-optimal method that is able to adapt to changes
on-the-fly. We showcase our approach’s adaption capabilities by
flying a quadrotor at more than 60 km/h in a racing track where
gates are moving. Additionally, we show that our online replanning
approach can cope with strong disturbances caused by winds of up
to 68 knv/h,

A. Implementation Details

In order to deploy our MPCC controller, (4) needs to be solved
in real-time. To this end, we have implemented our optimization
problem using acados [24] as a code generation tool, in contrast
to [6], where its previous version, ACADO [25] was used. It is
important to note that for consistency, the optimization problem
that is solved online is written in (4) and is exactly the same as

Index Terms—Aerial systems:

tions, integrated planning

and control, motion and path planning. Fig. 1. The proposed algorithm is able to adapt on-the-fly when encountering in [6]. The main benefit of using acados is that it provides an
unknown disturbances. In the figure we show a quadrotor platform flying at interface to HPIPM (High Performance Interior Point Method)
speeds of more than 60 kmv/h. Thanks to our online replanning method, the N N o o
‘SUPPLEMENTARY MATERIAL drone can adap 10 wind disturbances of up to 68 km/h while fying as fast as solver [26]. HPIPM solves optimization problems using BLAS-
possible. FEO [27], a linear algebra library specifically designed for

Video of the experiments: hitps://youtu.be/zBVpx3bgl6E

Latest acados development:
differentiable nonlinear MPC via adjoint approach [Frey et al. 2025, subm.]
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Direct Methods

» “first discretize, then optimize”

> transcribe infinite problem into finite Nonlinear Programming Problem (NLP)

» Pros and Cons:

+ can use state-of-the-art methods for NLP solution
+ can treat inequality constraints and multipoint constraints much easier
- obtains only suboptimal / approximate solution

» nowadays most commonly used methods due to their easy applicability and robustness

Numerical Optimal Control M. Diehl 9/46



Classification of Direct Optimal Control Methods

Direct methods transform continuous time problem into a nonlinear program (NLP):

» Direct Transcription: all internal integrator variables are kept exposed as NLP variables.
Special cases: direct collocation and pseudospectral methods. (called "simultaneous
approach”, as simulation and optimization are tackled simultaneously by NLP solver)

» Direct Multiple Shooting: for every control interval, all internal integration steps are
hidden to the NLP. Integration routine is complicated but differentiable function (also
called " simultaneous approach™)

» Direct Single Shooting: all state variables are eliminated by forward simulation, only the
control parameters are kept as NLP variables. NLP objective and constraints are very long
functions. (called "sequential approach”, as simulation and optimization proceed
sequentially)

» Flatness-based optimal control: in "flat” systems, the states and control inputs can be
obtained from derivatives of a "flat output”. One can then parameterize the flat output as
superposition of smooth basis functions, and formulate an NLP in the space of the basis
coefficients. Similar in performance to simultaneous approaches but limited to flat systems.
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Direct Methods: Comparison of Sequential and Simultaneous Approach

We compare two direct methods:
» Direct Single Shooting (sequential simulation and optimization)

» Direct Multiple Shooting (simultaneous simulation and optimization)



Now change to Part Il of this talk



