# Nonlinear Optimization

#### Moritz Diehl

Systems Control and Optimization Laboratory, University of Freiburg, Germany

Summer School on Robust Model Predictive Control with CasADi, University of Freiburg September 15-19, 2025

(slides jointly developed with Armin Nurkanović, Florian Messerer, Katrin Baumgärtner)

(slides marked by an \*asterisk will be jumped over but are kept in case questions arise)

# universitätfreiburg

### Outline of the lecture



- 1 Basic definitions
- 2 Some classification of optimization problems
- 3 Optimality conditions
- 4 Nonlinear programming algorithms



Optimization is used in all quantitative sciences and engineering. Its aim is to minimize (or maximize) an objective function F(w) depending on decision variables  $w=(w_1,\ldots,w_n)$  subject to constraints.



Optimization is used in all quantitative sciences and engineering. Its aim is to minimize (or maximize) an objective function F(w) depending on decision variables  $w=(w_1,\ldots,w_n)$  subject to constraints.

### Optimization Problem

$$\min_{w \in \mathbb{R}^n} F(w) \tag{1a}$$

s.t. 
$$G(w) = 0$$
 (1b)

$$H(w) \ge 0 \tag{1c}$$



Optimization is used in all quantitative sciences and engineering. Its aim is to minimize (or maximize) an objective function F(w) depending on decision variables  $w=(w_1,\ldots,w_n)$  subject to constraints.

### Optimization Problem

$$\min_{w \in \mathbb{R}^n} F(w) \tag{1a}$$

s.t. 
$$G(w) = 0$$
 (1b)

$$H(w) \ge 0 \tag{1c}$$

### **Terminology**

- $w \in \mathbb{R}^n$  vector of decision variables
- $F: \mathbb{R}^n \to \mathbb{R}$  objective function
- $lackbox{ }G:\mathbb{R}^n
  ightarrow\mathbb{R}^{n_G}$  equality constraints
- $ightharpoonup H: \mathbb{R}^n 
  ightarrow \mathbb{R}^{n_H}$  inequality constraints



Optimization is used in all quantitative sciences and engineering. Its aim is to minimize (or maximize) an objective function F(w) depending on decision variables  $w=(w_1,\ldots,w_n)$  subject to constraints.

### Optimization Problem

$$\min_{w \in \mathbb{R}^n} F(w) \tag{1a}$$

s.t. 
$$G(w) = 0$$
 (1b)

$$H(w) \ge 0 \tag{1c}$$

### Terminology

- $w \in \mathbb{R}^n$  vector of decision variables
- $ightharpoonup F: \mathbb{R}^n 
  ightarrow \mathbb{R}$  objective function
- $G: \mathbb{R}^n \to \mathbb{R}^{n_G}$  equality constraints
- $ightharpoonup H: \mathbb{R}^n 
  ightarrow \mathbb{R}^{n_H}$  inequality constraints
- only in a few special cases a closed form solution exists
- ightharpoonup if F,G,H are nonlinear and smooth, we speak of a nonlinear programming problem (NLP)
- usually we need iterative algorithms to find an approximate solution
- ▶ in NMPC, the problem depends on parameters that change every sampling time



#### Definition

The feasible set of the optimization problem (1) is defined as  $\Omega = \{w \in \mathbb{R}^n \mid G(w) = 0, H(w) \geq 0\}$ . A point  $w \in \Omega$  is is called a feasible point.



In the example, the feasible set is the intersection of the two grey areas (halfspace and circle)

# \*Basic definitions: global and local minimizer



### Definition (Global Minimizer)

Point  $w^* \in \Omega$  is a **global minimizer** of the NLP (1) if for all  $w \in \Omega$  it holds that  $F(w) \geq F(w^*)$ .

#### Definition (Local Minimizer)

Point  $w^* \in \Omega$  is a **local minimizer** of the NLP (1) if there exists a ball  $\mathcal{B}_{\epsilon}(w^*) = \{w | \|w - w^*\| \leq \epsilon\}$  with  $\epsilon > 0$ , such that for all  $w \in \mathcal{B}_{\epsilon}(w^*) \cap \Omega$  it holds that  $F(w) \geq F(w^*)$ 

The value  $F(w^*)$  at a local/global minimizer  $w^*$  is called local/global minimum, or minimum value.



$$F(w) = \frac{1}{2}w^4 - 2w^3 - 3w^2 + 12w + 10$$

### Convex sets

a key concept in optimization





A set  $\Omega$  is said to be convex if for any  $w_1,w_2$  and any  $\theta\in[0,1]$  it holds  $\theta w_1+(1-\theta)w_2\in\Omega$  Figure inspired by Figure 2.2 in S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

### \*Convex functions



▶ A function  $F: \Omega \to \mathbb{R}$  is convex if for every  $w_1, w_2 \in \Omega \subset \mathbb{R}^n$  and  $\theta \in [0,1]$  it holds that

$$F(\theta w_1 + (1-\theta)w_2) \le \theta F(w_1) + (1-\theta)F(w_2)$$

- ightharpoonup F is concave if and only if -F is convex
- ► *F* is convex if and only if the epigraph

$$epiF = \{(w,t) \in \mathbb{R}^{n_w+1} \mid w \in \Omega, F(w) \le t\}$$

is a convex set



# Convex optimization problems



#### A convex optimization problem

$$\min_{w} F(w)$$
s.t.  $G(w) = 0$ 

$$H(w) \ge 0$$

An optimization problem is convex if the objective function F is convex and the feasible set  $\Omega$  is convex.

- ► For convex problems, every locally optimal solution is globally optimal
- First order conditions are necessary and sufficient
- "...in fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity." R. T. Rockafellar, SIAM Review, 1993

### Outline of the lecture



- 1 Basic definitions
- 2 Some classification of optimization problems
- 3 Optimality conditions
- 4 Nonlinear programming algorithms

# Some classification of optimization problems



#### Optimization problems can be:

- unconstrained  $(\Omega = \mathbb{R}^n)$  or constrained  $(\Omega \subset \mathbb{R}^n)$
- convex or nonconvex
- linear or nonlinear
- ▶ differentiable or nonsmooth
- continuous or (mixed-)integer
- finite or infinite dimensional

# Class 1: Linear Programming (LP)



#### Linear program

$$\min_{w \in \mathbb{R}^n} g^\top w$$
 s.t. 
$$Aw - b = 0$$
 
$$Cw - d \ge 0$$



- convex optimization problem
- ▶ 1947: simplex method by G. Dantzig
- ▶ a solution is always at a vertex of the feasible set (possibly a whole facet if nonunique)
- very mature and reliable

# Class 1: Linear Programming (LP)



#### Linear program

$$\min_{w \in \mathbb{R}^n} g^+ w$$
s.t.  $Aw - b = 0$   
 $Cw - d \ge 0$ 



- convex optimization problem
- ▶ 1947: simplex method by G. Dantzig
- ▶ a solution is always at a vertex of the feasible set (possibly a whole facet if nonunique)
- very mature and reliable

# Class 2: Quadratic Programming (QP)



### Quadratic Program (QP)

$$\min_{w \in \mathbb{R}^n} \frac{1}{2} w^\top Q w + g^\top w$$
  
s.t.  $Aw - b = 0$   
 $Cw - d \ge 0$ 



- $\triangleright$  depending on Q, can be convex and nonconvex
- solved online in linear model predictive control
- many good solvers: Gurobi, OSQP, HPIPM, qpOASES, OOQP, DAQP...
- subsproblems in nonlinear optimization

# Class 3: Nonlinear Programming (NLP)



### Nonlinear Rrogram (NLP)

$$\min_{w \in \mathbb{R}^n} F(w)$$
 s.t. 
$$G(w) = 0$$
 
$$H(w) \ge 0$$



- can be convex and nonconvex
- solved with iterative Newton-type algorithms
- solved in nonlinear model predictive control

# MPCC

short: MPCC

$$\min_{w_0, w_1, w_2} F(w)$$
s.t.  $G(w) = 0$ 

$$H(w) \ge 0$$

$$0 \le w_1 \perp w_2 \ge 0$$

$$w = [w_0^\top, w_1^\top, w_2^\top]^\top, w_1 \perp w_1 \Leftrightarrow w_1^\top w_2 = 0$$



- ▶ more difficult than standard nonlinear programming
- ▶ feasible set is inherently nonsmooth and nonconvex
- powerful modeling concept
- requires specialized theory and algorithms

# Class 5: Mixed-Integer Nonlinear Programming (MINLP)



#### Mixed-Integer Nonlinear Program (MINLP)

$$\min_{w_0 \in \mathbb{R}^p, w_1 \in \mathbb{Z}^q} F(w)$$
 s.t.  $G(w) = 0$  
$$H(w) \ge 0$$
 
$$w = [w_0^\top, w_1^\top]^\top, n = p + q$$



- ▶ inherently nonconvex feasible set
- lacktriangle due to combinatorial nature, NP-hard even for linear F,G,H
- branch and bound, branch and cut algorithms based on iterative solution of relaxed continuous problems

# Class 6: Continuous-Time Optimal Control

# Optimal Control Problem (OCP)

$$\begin{aligned} \min_{x(\cdot), u(\cdot)} & \int_0^T L_{\mathbf{c}}(x(t), u(t)) \, \mathrm{d}t + E(x(T)) \\ \text{s.t.} & x(0) = \bar{x}_0 \\ & \dot{x}(t) = f_{\mathbf{c}}(x(t), u(t)) \\ & 0 \geq h(x(t), u(t)), \ t \in [0, T] \\ & 0 \geq r(x(T)) \end{aligned}$$

- decision variables  $x(\cdot)$ ,  $u(\cdot)$  in infinite dimensional function space
- ▶ infinitely many constraints  $(t \in [0, T])$
- smooth ordinary differential equation (ODE)  $\dot{x}(t) = f_c(x(t), u(t))$
- more generally, dynamic model can be based on
  - differential algebraic equations (DAE)
  - partial differential equations (PDE)
  - nonsmooth ODE
  - stochastic ODE
- OCP can be convex or nonconvex
- ▶ all or some components of u(t) may take integer values (mixed-integer OCP)



#### Continuous-time OCP

(applicable to smooth deterministic systems)

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t),u(t)) dt + E(x(T))$$
s.t. 
$$x(0) = \bar{x}_0$$

$$\dot{x}(t) = f_c(x(t),u(t))$$

$$0 \ge h(x(t),u(t)), t \in [0,T]$$

$$0 \ge r(x(T))$$

Direct methods like direct collocation, multiple shooting first discretize, then optimize.

# Direct optimal control methods formulate Nonlinear Programs (NLP)

(applicable to smooth deterministic systems)



#### Continuous-time OCP

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t),u(t)) dt + E(x(T))$$
s.t. 
$$x(0) = \bar{x}_0$$

$$\dot{x}(t) = f_c(x(t),u(t))$$

$$0 \ge h(x(t),u(t)), t \in [0,T]$$

$$0 \ge r(x(T))$$

Direct methods like direct collocation, multiple shooting first discretize, then optimize.

### Discrete-time OCP (an NLP)

$$\min_{x,u} \sum_{k=0}^{N-1} \ell(x_k, u_k) + E(x_N)$$
s.t.  $x_0 = \bar{x}_0$ 

$$x_{k+1} = f(x_k, u_k)$$

$$0 \ge h(x_k, u_k), \ k = 0, \dots, N-1$$

$$0 \ge r(x_N)$$

Variables  $x=(x_0,\ldots,x_N)$  and  $u=(u_0,\ldots,u_{N-1})$  can be summarized in vector  $w=(x,u)\in\mathbb{R}^n$ .

# Direct optimal control methods formulate Nonlinear Programs (NLP)

(applicable to smooth deterministic systems)



### Discrete-time OCP (an NLP)

$$\min_{x,u} \sum_{k=0}^{N-1} \ell(x_k, u_k) + E(x_N)$$
s.t.  $x_0 = \bar{x}_0$ 

$$x_{k+1} = f(x_k, u_k)$$

$$0 \ge h(x_k, u_k), k = 0, \dots, N-1$$

$$0 \ge r(x_N)$$

Variables  $x=(x_0,\ldots,x_N)$  and  $u=(u_0,\ldots,u_{N-1})$  can be summarized in vector  $w=(x,u)\in\mathbb{R}^n$ .

# Nonlinear MPC solves Nonlinear Programs (NLP)



#### Discrete time NMPC Problem (an NLP)

$$\min_{x,u} \sum_{k=0}^{N-1} \ell(x_k, u_k) + E(x_N)$$
s.t.  $x_0 = \bar{x}_0$ 

$$x_{k+1} = f(x_k, u_k)$$

$$0 \ge h(x_k, u_k), k = 0, \dots, N-1$$

$$0 \ge r(x_N)$$

Variables  $x=(x_0,\ldots,x_N)$  and  $u=(u_0,\ldots,u_{N-1})$  can be summarized in vector  $w=(x,u)\in\mathbb{R}^n$ .

# Nonlinear MPC solves Nonlinear Programs (NLP)



#### Discrete time NMPC Problem (an NLP)

$$\min_{x,u} \sum_{k=0}^{N-1} \ell(x_k, u_k) + E(x_N)$$
s.t.  $x_0 = \bar{x}_0$ 

$$x_{k+1} = f(x_k, u_k)$$

$$0 \ge h(x_k, u_k), k = 0, \dots, N-1$$

$$0 \ge r(x_N)$$

Variables  $x=(x_0,\ldots,x_N)$  and  $u=(u_0,\ldots,u_{N-1})$  can be summarized in vector  $w=(x,u)\in\mathbb{R}^n$ .

### Nonlinear Program (NLP)

$$\min_{w \in \mathbb{R}^n} F(w)$$
s.t.  $G(w) = 0$ 

$$H(w) \ge 0$$

### Outline of the lecture



- 1 Basic definitions
- 2 Some classification of optimization problems
- 3 Optimality conditions
- 4 Nonlinear programming algorithms

### \*Algebraic characterization of unconstrained local minimizers



Consider the unconstrained problem:  $\min_{w \in \mathbb{R}^n} F(w)$ 

First-Order Necessary Condition of Optimality (FONC) (in convex case also sufficient)

 $w^*$  local optimizer  $\Rightarrow$   $\nabla F(w^*) = 0$ ,  $w^*$  stationary point

Second-Order Necessary Condition of Optimality (SONC)

 $w^*$  local minimizer  $\Rightarrow \nabla^2 F(w^*) \succeq 0$ 

### \*Algebraic characterization of unconstrained local minimizers



Consider the unconstrained problem:  $\min_{w \in \mathbb{R}^n} F(w)$ 

First-Order Necessary Condition of Optimality (FONC) (in convex case also sufficient)

$$w^*$$
 local optimizer  $\Rightarrow$   $\nabla F(w^*) = 0$ ,  $w^*$  stationary point

Second-Order Necessary Condition of Optimality (SONC)

$$w^*$$
 local minimizer  $\Rightarrow \nabla^2 F(w^*) \succeq 0$ 

### Second-Order Sufficient Conditions of Optimality (SOSC)

$$\nabla F(w^*) = 0$$
 and  $\nabla^2 F(w^*) \succ 0 \quad \Rightarrow \quad x^*$  strict local minimizer

$$\nabla F(w^*) = 0$$
 and  $\nabla^2 F(w^*) \prec 0 \quad \Rightarrow \quad x^*$  strict local maximizer

no conclusion can be drawn in the case  $\nabla^2 F(w^*)$  is indefinite

### \*Types of stationary points





a stationary point w with  $\nabla F(w)=0$  can be a minimizer, a maximizer, or a saddle point

# \*Optimality conditions - unconstrained

- necessary conditions: find a candidate point (or to exclude points)
- sufficient conditions: verify optimality of a candidate point



# \*Optimality conditions - unconstrained

- necessary conditions: find a candidate point (or to exclude points)
- sufficient conditions: verify optimality of a candidate point
- a minimizer must satisfy SONC, but does not have to satisfy SOSC



# First order necessary conditions for equality constrained optimization



### Nonlinear Program (NLP)

$$\min_{w \in \mathbb{R}^n} F(w)$$
 s.t.  $G(w) = 0$ 

Lagrangian function  $\mathcal{L}(w,\lambda) := F(w) - \lambda^{\top} G(w)$ 

# First order necessary conditions for equality constrained optimization



### Nonlinear Program (NLP)

$$\min_{w \in \mathbb{R}^n} F(w)$$
s.t.  $G(w) = 0$ 

Lagrangian function  $\mathcal{L}(w,\lambda) := F(w) - \lambda^{\top} G(w)$ 

### Definition (LICQ)

A point w satisfies  $\mathit{Linear\ Independence}$   $\mathit{Constraint\ Qualification\ (LICQ)}$  if and only if  $\nabla G\left(w\right) := \frac{\partial G}{\partial w}(w)^{\top}$  is full column rank

# First order necessary conditions for equality constrained optimization



### Nonlinear Program (NLP)

$$\min_{w \in \mathbb{R}^n} F(w)$$
  
s.t.  $G(w) = 0$ 

Lagrangian function  $\mathcal{L}(w,\lambda) := F(w) - \lambda^{\top} G(w)$ 

### Definition (LICQ)

A point w satisfies  $\mathit{Linear\ Independence}$   $\mathit{Constraint\ Qualification\ (LICQ)}$  if and only if  $\nabla G\left(w\right) := \frac{\partial G}{\partial w}(w)^{\top}$  is full column rank

### First-Order Necessary Conditions (in convex case also sufficient)

Let F, G in  $C^1$ . If  $w^*$  is a (local) minimizer, and  $w^*$  satisfies LICQ, then there is a unique vector  $\lambda$  such that:

$$\begin{split} \nabla_w \mathcal{L}(w^*, \lambda^*) &= \nabla F(w^*) - \nabla G(w^*) \lambda = 0 \\ \nabla_\lambda \mathcal{L}(w^*, \lambda^*) &= G(w^*) = 0 \end{split} \qquad \qquad \text{dual feasibility}$$

### Duality in a nutshell

for equality constrained optimization

# The state of the s

#### Primal Problem

$$p^* = \min_{w \in \mathbb{R}^n} F(w) \text{ s.t. } G(w) = 0$$

with Lagrangian  $\mathcal{L}(w,\lambda) := F(w) - \lambda^{\top} G(w)$ .

Lagrange dual function  $Q(\lambda) := \inf_{w \in \mathbb{R}^n} \mathcal{L}(w, \lambda)$ 

- $ightharpoonup \mathcal{Q}(\lambda)$  concave in  $\lambda$  by construction
- $ightharpoonup \mathcal{Q}(\lambda) \leq p^* \text{ for all } \lambda \in \mathbb{R}^{n_G}$



### Primal Problem

$$p^* = \min_{w \in \mathbb{R}^n} F(w) \text{ s.t. } G(w) = 0$$

with Lagrangian  $\mathcal{L}(w,\lambda) := F(w) - \lambda^{\top} G(w)$ .

Lagrange dual function  $\mathcal{Q}(\lambda) := \inf_{w \in \mathbb{R}^n} \mathcal{L}(w, \lambda)$ 

- $ightharpoonup \mathcal{Q}(\lambda)$  concave in  $\lambda$  by construction
- $ightharpoonup \mathcal{Q}(\lambda) \leq p^* \text{ for all } \lambda \in \mathbb{R}^{n_G}$

#### **Dual Problem**

$$d^* = \max_{\lambda \in \mathbb{R}^{n_G}} \mathcal{Q}(\lambda)$$

- weak duality:  $d^* \le p^*$ , always holds
- strong duality:  $d^* = p^*$ , only holds for some problems (e.g. convex ones)

# A LANGE TO SERVICE TO

## Primal Problem

$$p^* = \min_{w \in \mathbb{R}^n} F(w) \text{ s.t. } G(w) = 0$$

with Lagrangian  $\mathcal{L}(w,\lambda) := F(w) - \lambda^{\top} G(w)$ .

Lagrange dual function  $\mathcal{Q}(\lambda) := \inf_{w \in \mathbb{R}^n} \mathcal{L}(w, \lambda)$ 

- $ightharpoonup \mathcal{Q}(\lambda)$  concave in  $\lambda$  by construction
- $\triangleright \ \mathcal{Q}(\lambda) \leq p^* \text{ for all } \lambda \in \mathbb{R}^{n_G}$

#### **Dual Problem**

$$d^* = \max_{\lambda \in \mathbb{R}^{n_G}} \mathcal{Q}(\lambda)$$

- weak duality:  $d^* \le p^*$ , always holds
- strong duality:  $d^* = p^*$ , only holds for some problems (e.g. convex ones)

#### Wolfe Dual (in convex case)

$$d^* = \max_{w \in \mathbb{R}^n, \lambda \in \mathbb{R}^{n_G}} \mathcal{L}(w, \lambda)$$
  
s.t.  $\nabla_w \mathcal{L}(w, \lambda) = 0$ 

(w constrained by lower level optimality)

## The Karush-Kuhn-Tucker (KKT) conditions



## Nonlinear Program (NLP)

$$\min_{w \in \mathbb{R}^n} F(w)$$
s.t.  $G(w) = 0$ 

$$H(w) \ge 0$$

$$\mathcal{L}(w,\lambda) = F(w) - \lambda^{\top} G(w) - \mu^{\top} H(w)$$

## The Karush-Kuhn-Tucker (KKT) conditions



## Nonlinear Program (NLP)

$$\min_{w \in \mathbb{R}^n} F(w)$$
s.t.  $G(w) = 0$ 

$$H(w) \ge 0$$

$$\mathcal{L}(w,\lambda) = F(w) - \lambda^{\top} G(w) - \mu^{\top} H(w)$$

## Definition (LICQ)

A point  $\boldsymbol{w}$  satisfies LICQ if and only if

$$\left[ \nabla G\left( w\right) ,\quad \nabla H_{\mathbb{A}}\left( w\right) \right]$$

is full column rank

Active set 
$$\mathbb{A} = \{i \mid H_i(w) = 0\}$$

## The Karush-Kuhn-Tucker (KKT) conditions



## Nonlinear Program (NLP)

$$\min_{w \in \mathbb{R}^n} F(w)$$
s.t.  $G(w) = 0$ 

$$H(w) \ge 0$$

$$\mathcal{L}(w,\lambda) = F(w) - \lambda^{\top} G(w) - \mu^{\top} H(w)$$

## Definition (LICQ)

A point w satisfies LICQ if and only if

$$\left[ \nabla G\left( w\right) ,\quad \nabla H_{\mathbb{A}}\left( w\right) \right]$$

is full column rank

Active set 
$$\mathbb{A} = \{i \mid H_i(w) = 0\}$$

## Theorem (KKT conditions - FONC for constrained optimization)

Let F, G, H be  $C^1$ . If  $w^*$  is a (local) minimizer and satisfies LICQ, then there are unique vectors  $\lambda^*$  and  $\mu^*$  such that  $(w^*, \lambda^*, \mu^*)$  satisfies:

$$\nabla_{w} \mathcal{L}(w^{*}, \mu^{*}, \lambda^{*}) = 0, \quad \mu^{*} \geq 0,$$
 $G(w^{*}) = 0, \quad H(w^{*}) \geq 0$ 
 $\mu_{i}^{*} H_{i}(w^{*}) = 0, \quad \forall i$ 

dual feasibility primal feasibility complementary slackness



Complementarity conditions  $0 \geq \mu \perp H(w) \geq 0$  form an L-shaped, nonsmooth manifold.

•  $H_i(w^*) > 0$  then  $\mu_i^* = 0$ , and  $H_i$  is inactive





Complementarity conditions  $0 \ge \mu \perp H(w) \ge 0$  form an L-shaped, nonsmooth manifold.

- $H_i(w^*) > 0$  then  $\mu_i^* = 0$ , and  $H_i$  is inactive
- $\blacktriangleright \ \mu_i^* > 0 \ {\rm and} \ H_i(w) = 0 \ {\rm then} \ H_i(w) \ {\rm is} \ {\rm strictly} \ {\rm active}$





Complementarity conditions  $0 \ge \mu \perp H(w) \ge 0$  form an L-shaped, nonsmooth manifold.

- $H_i(w^*) > 0$  then  $\mu_i^* = 0$ , and  $H_i$  is inactive
- $\mu_i^* > 0$  and  $H_i(w) = 0$  then  $H_i(w)$  is strictly active
- $\mu_i^* = 0$  and  $H_i(w) = 0$  then then  $H_i(w)$  is weakly active





Complementarity conditions  $0 \ge \mu \perp H(w) \ge 0$  form an L-shaped, nonsmooth manifold.

- ▶  $H_i(w^*) > 0$  then  $\mu_i^* = 0$ , and  $H_i$  is inactive
- $\mu_i^* > 0$  and  $H_i(w) = 0$  then  $H_i(w)$  is strictly active
- $\blacktriangleright \mu_i^* = 0$  and  $H_i(w) = 0$  then then  $H_i(w)$  is weakly active
- We define the active set A as the set of indices i of the active constraints



Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint



$$\min_{w \in \mathbb{R}^2} \, F(w)$$

s.t. 
$$H(w) \geq 0$$



Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

A THE STATE OF THE

$$\min_{w \in \mathbb{R}^2} F(w)$$

s.t. 
$$H(w) \geq 0$$

ightharpoonup  $-\nabla F$  is the gravity



Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint



$$\min_{w \in \mathbb{R}^2} F(w)$$

s.t. 
$$H(w) \geq 0$$

ightharpoonup  $-\nabla F$  is the gravity



Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

$$\min_{w \in \mathbb{R}^2} \, F(w)$$

s.t. 
$$H(w) \geq 0$$

- $ightharpoonup -\nabla F$  is the gravity
- $\blacktriangleright \mu \nabla H$  is the force of the fence. Sign  $\mu \geq 0$  means the fence can only "push" the ball



Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

$$\min_{w \in \mathbb{R}^2} \, F(w)$$

s.t. 
$$H(w) \geq 0$$

- $ightharpoonup -\nabla F$  is the gravity
- ▶  $\mu \nabla H$  is the force of the fence. Sign  $\mu \geq 0$  means the fence can only "push" the ball
- ightharpoonup 
  abla H gives the direction of the force and  $\mu$  adjusts the magnitude



Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

$$\min_{w \in \mathbb{R}^2} \, F(w)$$

s.t. 
$$H(w) \geq 0$$

- $ightharpoonup -\nabla F$  is the gravity
- ▶  $\mu \nabla H$  is the force of the fence. Sign  $\mu \geq 0$  means the fence can only "push" the ball
- ightharpoonup 
  abla H gives the direction of the force and  $\mu$  adjusts the magnitude



Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

$$\min_{w \in \mathbb{R}^2} F(w)$$

s.t. 
$$H(w) \geq 0$$

- $ightharpoonup -\nabla F$  is the gravity
- ▶  $\mu \nabla H$  is the force of the fence. Sign  $\mu \geq 0$  means the fence can only "push" the ball
- ightharpoonup 
  abla H gives the direction of the force and  $\mu$  adjusts the magnitude
- weakly active constraint:  $H(w) = 0, \ \mu = 0$  the ball touches the fence but no force is needed



Balance of the forces:

$$\nabla \mathcal{L}(w, \mu) = \nabla F(w) - \mu \nabla H(w) = 0$$

Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

$$\min_{w \in \mathbb{R}^2} F(w)$$

s.t. 
$$H(w) \geq 0$$

- $ightharpoonup -\nabla F$  is the gravity
- ▶  $\mu \nabla H$  is the force of the fence. Sign  $\mu \geq 0$  means the fence can only "push" the ball
- ightharpoonup 
  abla H gives the direction of the force and  $\mu$  adjusts the magnitude
- weakly active constraint:  $H\left(w\right)=0,\;\mu=0$  the ball touches the fence but no force is needed
- ▶ inactive constraint  $H(w) > 0, \ \mu = 0$

$$H\left(w\right) > 0, \quad \mu = 0$$



Balance of the forces:

$$\nabla \mathcal{L}(w, \mu) = \nabla F(w) - \mu \nabla H(w) = 0$$

## Outline of the lecture



- 1 Basic definitions
- 2 Some classification of optimization problems
- 3 Optimality conditions
- 4 Nonlinear programming algorithms

To solve a nonlinear system, solve a sequence of linear systems



## **Linearization** of F at linearization point $\bar{w}$ equals

Ciust audau Tardau assisa at

First order Taylor series at  $\bar{w}$  equals

$$F_{\rm L}(w; \bar{w}) := F(\bar{w}) + \frac{\partial F}{\partial w}(\bar{w}) \quad (w - \bar{w})$$



To solve a nonlinear system, solve a sequence of linear systems



## **Linearization** of F at linearization point $\bar{w}$ equals

First order Taylor series at  $\bar{w}$  equals

$$F_{\mathrm{L}}(w; \bar{w}) := F(\bar{w}) + \nabla_w F(\bar{w})^{\top} (w - \bar{w})$$



To solve a nonlinear system, solve a sequence of linear systems



## **Linearization** of F at linearization point $\bar{w}$ equals

First order Taylor series at  $\bar{w}$  equals

$$F_{\mathbf{L}}(w; \bar{w}) := F(\bar{w}) + \nabla_w F(\bar{w})^{\top} (w - \bar{w})$$



To solve a nonlinear system, solve a sequence of linear systems



**Linearization** of F at linearization point  $\bar{w}$  equals

First order Taylor series at  $\bar{w}$  equals

$$F_{\mathbf{L}}(w; \bar{w}) := F(\bar{w}) + \nabla_w F(\bar{w})^{\top} (w - \bar{w})$$



To solve a nonlinear system, solve a sequence of linear systems



## **Linearization** of F at linearization point $\bar{w}$ equals

First order Taylor series at  $\bar{w}$  equals

$$F_{\mathbf{L}}(w; \bar{w}) := F(\bar{w}) + \nabla_w F(\bar{w})^{\top} (w - \bar{w})$$



## General Nonlinear Program (NLP)



In direct methods, we have to solve the discretized optimal control problem, which is a Nonlinear Program (NLP)

## General Nonlinear Program (NLP)

$$\min_{w} F(w) \text{ s.t. } \begin{cases} G(w) = 0 \\ H(w) \ge 0 \end{cases}$$

We first treat the case without inequalities

## NLP only with equality constraints

$$\min_w F(w) \ \text{ s.t. } \quad G(w) \ = \ 0$$

## Lagrange function and optimality conditions



## Lagrange function

$$\mathcal{L}(w,\lambda) = F(w) - \lambda^T G(w)$$

Then for an optimal solution  $w^*$  exist multipliers  $\lambda^*$  such that

### Nonlinear root-finding problem

$$\nabla_w \mathcal{L}(w^*, \lambda^*) = 0 
G(w^*) = 0$$

## \*Newton's Method on optimality conditions



Newton's method to solve

$$\nabla_w \mathcal{L}(w^*, \lambda^*) = 0$$

$$G(w^*) = 0 ?$$

results, at iterate  $(w^k, \lambda^k)$ , in the following linear system:

$$\begin{array}{cccc} \nabla_w \mathcal{L}(w^k,\lambda^k) & + \nabla_w^2 \mathcal{L}(w^k,\lambda^k) \Delta w & - \nabla_w G(w^k) \Delta \lambda & = & 0 \\ G(w^k) & + \nabla_w G(w^k)^T \Delta w & = & 0 \end{array}$$

Due to  $\nabla \mathcal{L}(w^k,\lambda^k) = \nabla F(w^k) - \nabla G(w^k)\lambda^k$  this is equivalent to

$$\begin{array}{cccc} \nabla_w F(w^k) & + \nabla_w^2 \mathcal{L}(w^k, \lambda^k) \Delta w & - \nabla_w G(w^k) \lambda^+ & = & 0 \\ G(w^k) & + \nabla_w G(w^k)^T \Delta w & = & 0 \end{array}$$

with the shorthand  $\lambda^+ = \lambda^k + \Delta\lambda$ 

## \*Newton Step = Quadratic Program



#### Conditions

$$\begin{array}{cccc} \nabla_w F(w^k) & + \nabla_w^2 \mathcal{L}(w^k, \lambda^k) \Delta w & - \nabla_w G(w^k) \lambda^+ & = & 0 \\ G(w^k) & + \nabla_w G(w^k)^T \Delta w & = & 0 \end{array}$$

are optimality conditions of a quadratic program (QP), namely:

### Quadratic program

$$\begin{aligned} & \underset{\Delta w}{\min} & & \nabla F(w^k)^T \Delta w + \frac{1}{2} \Delta w^T A^k \Delta w \\ & \text{s.t.} & & G(w^k) + \nabla G(w^k)^T \Delta w & = & 0, \end{aligned}$$

with 
$$A^k = \nabla^2_w \mathcal{L}(w^k, \lambda^k)$$

## Newton's method for equality constrained optimization



The full step Newton's Method iterates by solving in each iteration the Quadratic Progam

## Quadratic Program in Sequential Quadratic Programming (SQP)

$$\begin{aligned} & \min_{\Delta w} & \nabla F(w^k)^T \Delta w + \frac{1}{2} \Delta w^T A^k \Delta w \\ & \text{s.t.} & G(w^k) + \nabla G(w^k)^T \Delta w &= 0, \end{aligned}$$

with  $A^k = \nabla^2_w \mathcal{L}(w^k, \lambda^k)$ .

This obtains as solution the step  $\Delta w^k$  and the new multiplier  $\lambda_{\rm QP}^+ = \lambda^k + \Delta \lambda^k$ 

#### New iterate

$$\begin{array}{rcl} w^{k+1} & = & w^k + \Delta w^k \\ \lambda^{k+1} & = & \lambda^k + \Delta \lambda^k = \lambda_{\mathrm{QP}}^+ \end{array}$$

This is the "full step, exact Hessian SQP method for equality constrained optimization".

## NLP with Inequalities



Regard again NLP with both, equalities and inequalities:

NLP with equality and inequality constraints

$$\min_{w} F(w) \text{ s.t. } \begin{cases} G(w) = 0 \\ H(w) \ge 0 \end{cases}$$

Lagrangian function for NLP with equality and inequality constraints

$$\mathcal{L}(w, \lambda, \mu) = F(w) - \lambda^T G(w) - \mu^T H(w)$$

## Recall necessary optimality conditions with inequalities



#### Theorem (Karush-Kuhn-Tucker (KKT) conditions)

Let F, G, H be  $C^2$ . If  $w^*$  is a (local) minimizer and satisfies LICQ, then there are unique vectors  $\lambda^*$  and  $\mu^*$  such that  $(w^*, \lambda^*, \mu^*)$  satisfies:

$$\nabla_{w} \mathcal{L}(w^*, \mu^*, \lambda^*) = 0$$

$$G(w^*) = 0$$

$$H(w^*) \ge 0$$

$$\mu^* \ge 0$$

$$H(w^*)^{\top} \mu^* = 0$$

- ▶ Last three "complementarity conditions" are nonsmooth
- ▶ Thus, this system cannot be solved by Newton's Method. But still with SQP...

## Sequential Quadratic Programming (SQP) with Inequalities



By linearizing all functions and setting  $\lambda^+ = \lambda^k + \Delta\lambda$ ,  $\mu^+ = \mu^k + \Delta\mu$ , we obtain the KKT conditions of the following Quadratic Program (QP)

## Inequality Constrained Quadratic Program within SQP method

$$\begin{split} & \underset{\Delta w}{\min} & & \nabla F(w^k)^T \Delta w + \frac{1}{2} \Delta w^T A^k \Delta w \\ & \text{s.t.} & & \begin{cases} G(w^k) + \nabla G(w^k)^T \Delta w &= & 0 \\ H(w^k) + \nabla H(w^k)^T \Delta w &\geq & 0 \end{cases} \end{split}$$

with

$$A^k = \nabla_w^2 \mathcal{L}(w^k, \lambda^k, \mu^k)$$

Its solution delivers the next SQP iterate

$$\Delta w^k$$
,  $\lambda_{\mathrm{QP}}^+$ ,  $\mu_{\mathrm{QP}}^+$ 

## Constrained Gauss-Newton Method



In special case of least squares objectives

#### Least squares objective function

$$F(w) = \frac{1}{2} ||R(w)||_2^2$$

can approximate Hessian  $\nabla^2_w \mathcal{L}(w^k,\lambda^k,\mu^k)$  by much cheaper

$$A^k = \nabla R(w) \nabla R(w)^{\top}.$$

Need no multipliers to compute  $A^k$ .

## Gauss-Newton QP = Constrained Linear Least Squares Problem

$$\begin{aligned} & \min_{\Delta w} & & \frac{1}{2} \|R(w^k) + \nabla R(w^k)^T \Delta w\|_2^2 \\ & \text{s.t.} & & G(w^k) + \nabla G(w^k)^T \Delta w &= & 0 \\ & & H(w^k) + \nabla H(w^k)^T \Delta w &\geq & 0 \end{aligned}$$

Linear convergence. Fast, if objective value  $||R(w^*)||$  small or nonlinearity of R, G, H small

## Interior Point Methods

(without equalities for simplicity of exposition)



#### NLP with inequalites

$$\min_{w} F(w)$$

s.t. 
$$H(w) \ge 0$$

### KKT conditions

$$\nabla F(w) - \nabla H(w)^{\top} \mu = 0$$
$$0 \le \mu \perp H(w) \ge 0$$

Main difficulty: nonsmoothness of complementarity conditions





## NLP with inequalites

$$\min_{w} F(w)$$

s.t. 
$$H(w) \ge 0$$

Idea: put inequality constraint into objective



#### NLP with inequalites

$$\min_{w} F(w)$$

s.t. 
$$H(w) \ge 0$$

Idea: put inequality constraint into objective

#### Barrier Problem

$$\min_{w} F(w) - \tau \sum_{i=1}^{m} \log(H_i(w)) =: F_{\tau}(w)$$



#### NLP with inequalites

$$\min_{w} F(w)$$

s.t. 
$$H(w) \ge 0$$

Idea: put inequality constraint into objective

#### Barrier Problem

$$\min_{w} F(w) - \tau \sum_{i=1}^{m} \log(H_i(w)) =: F_{\tau}(w)$$



approximate:

$$\chi(H_i(w)) = \begin{cases} 0 & \text{if } H_i(w) \ge 0\\ \infty & \text{if } H_i(w) < 0 \end{cases}$$



#### NLP with inequalites

$$\min_{w} F(w)$$

s.t. 
$$H(w) \ge 0$$

Idea: put inequality constraint into objective

#### Barrier Problem

$$\min_{w} F(w) - \tau \sum_{i=1}^{m} \log(H_i(w)) =: F_{\tau}(w)$$



approximate:

$$\chi(H_i(w)) = \begin{cases} 0 & \text{if } H_i(w) \ge 0\\ \infty & \text{if } H_i(w) < 0 \end{cases}$$

## Barrier Problem in Interior Point Method



#### NLP with inequalites

$$\min_{w} F(w)$$

s.t. 
$$H(w) \ge 0$$

Idea: put inequality constraint into objective

#### Barrier Problem

$$\min_{w} F(w) - \tau \sum_{i=1}^{m} \log(H_i(w)) =: F_{\tau}(w)$$



approximate:

$$\chi(H_i(w)) = \begin{cases} 0 & \text{if } H_i(w) \ge 0\\ \infty & \text{if } H_i(w) < 0 \end{cases}$$

## Barrier Problem in Interior Point Method



#### NLP with inequalites

$$\min_{w} F(w)$$

s.t. 
$$H(w) \ge 0$$

Idea: put inequality constraint into objective

#### Barrier Problem

$$\min_{w} F(w) - \tau \sum_{i=1}^{m} \log(H_i(w)) =: F_{\tau}(w)$$



approximate:

$$\chi(H_i(w)) = \begin{cases} 0 & \text{if } H_i(w) \ge 0\\ \infty & \text{if } H_i(w) < 0 \end{cases}$$



$$\min_{w} \ 0.5w^2 - 2w$$
  
s.t.  $-1 \le w \le 1$ 

$$\min_{w} \ 0.5w^2 - 2 - \tau \log(w+1) - \tau \log(1-w)$$





$$\min_{w} \ 0.5w^2 - 2w$$
  
s.t.  $-1 \le w \le 1$ 

$$\min_{w} \ 0.5w^2 - 2 - \tau \log(w+1) - \tau \log(1-w)$$





$$\min_{w} 0.5w^2 - 2w$$
  
s.t.  $-1 \le w \le 1$ 

$$\min_{w} \ 0.5w^2 - 2 - \tau \log(w+1) - \tau \log(1-w)$$





$$\min_{w} 0.5w^2 - 2w$$
  
s.t.  $-1 \le w \le 1$ 

$$\min_{w} \ 0.5w^2 - 2 - \tau \log(w+1) - \tau \log(1-w)$$





$$\min_{w} 0.5w^2 - 2w$$
  
s.t.  $-1 \le w \le 1$ 

$$\min_{w} \ 0.5w^2 - 2 - \tau \log(w+1) - \tau \log(1-w)$$





$$\min_{w} 0.5w^2 - 2w$$
  
s.t.  $-1 \le w \le 1$ 

$$\min_{w} \ 0.5w^2 - 2 - \tau \log(w+1) - \tau \log(1-w)$$





$$\min_{w} 0.5w^2 - 2w$$
  
s.t.  $-1 \le w \le 1$ 

$$\min_{w} \ 0.5w^2 - 2 - \tau \log(w+1) - \tau \log(1-w)$$



Alternative interpretation



$$\min_{w} F(w) - \tau \sum_{i=1}^{m} \log(H_i(w)) =: F_{\tau}(w)$$

KKT conditions

$$\nabla F(w) - \tau \sum_{i=1}^{m} \frac{1}{H_i(w)} \nabla H_i(w) = 0$$

Introduce variable  $\mu_i = \frac{\tau}{H_i(w)}$ 

$$\nabla F(w) - \nabla H(w)^{\top} \mu = 0$$
  

$$H_i(w)\mu_i = \tau$$
  

$$(H_i(w) > 0, \mu_i > 0)$$



Alternative interpretation



$$\min_{w} F(w) - \tau \sum_{i=1}^{m} \log(H_i(w)) =: F_{\tau}(w)$$

KKT conditions

$$\nabla F(w) - \tau \sum_{i=1}^{m} \frac{1}{H_i(w)} \nabla H_i(w) = 0$$

Introduce variable  $\mu_i = \frac{\tau}{H_i(w)}$ 

$$\nabla F(w) - \nabla H(w)^{\top} \mu = 0$$
  

$$H_i(w)\mu_i = \tau$$
  

$$(H_i(w) > 0, \mu_i > 0)$$



Alternative interpretation



$$\min_{w} F(w) - \tau \sum_{i=1}^{m} \log(H_i(w)) =: F_{\tau}(w)$$

KKT conditions

$$\nabla F(w) - \tau \sum_{i=1}^{m} \frac{1}{H_i(w)} \nabla H_i(w) = 0$$

Introduce variable  $\mu_i = \frac{\tau}{H_i(w)}$ 

$$\nabla F(w) - \nabla H(w)^{\top} \mu = 0$$
  

$$H_i(w)\mu_i = \tau$$
  

$$(H_i(w) > 0, \mu_i > 0)$$



Alternative interpretation



$$\min_{w} F(w) - \tau \sum_{i=1}^{m} \log(H_i(w)) =: F_{\tau}(w)$$

KKT conditions

$$\nabla F(w) - \tau \sum_{i=1}^{m} \frac{1}{H_i(w)} \nabla H_i(w) = 0$$

Introduce variable  $\mu_i = \frac{\tau}{H_i(w)}$ 

$$\nabla F(w) - \nabla H(w)^{\top} \mu = 0$$
  

$$H_i(w)\mu_i = \tau$$
  

$$(H_i(w) > 0, \mu_i > 0)$$





#### Nonlinear programming problem

$$\min_{w,s} F(w)$$
  
s.t.  $G(w) = 0$   
 $H(w) - s = 0$   
 $s \ge 0$ 

#### Smoothed KKT conditions

$$R_{\tau}(w, s, \lambda, \mu) = \begin{bmatrix} \nabla_{w} \mathcal{L}(w, \lambda, \mu) \\ G(w) \\ H(w) - s \\ \operatorname{diag}(s)\mu - \tau e \end{bmatrix} = 0$$

$$(s, \mu > 0)$$

$$e = (1, \dots, 1)$$

Fix  $\tau$ , perform Newton iterations

$$R_{\tau}(w,s,\lambda,\mu) + \nabla R_{\tau}(w,s,\lambda,\mu)^{\top} \Delta z = 0$$
 with  $z = (w,s,\lambda,\mu)$ 

 $u^{k+1} = u^k + \alpha \Delta u$ 

#### Line-search

Find  $\alpha \in (0,1)$ 

$$w^{k+1} = w^k + \alpha \Delta w$$
$$s^{k+1} = s^k + \alpha \Delta s$$
$$\lambda^{k+1} = \lambda^k + \alpha \Delta \lambda$$

such that 
$$s^{k+1} > 0, \mu^{k+1} > 0$$

Reduce  $\tau$ , and perform next Newton iterations solve, etc

# Summary Nonlinear Optimization

A STATE OF THE STA

- optimization problem come in many variants (LP, QP, NLP, MPCC, MINLP, OCP, ....)
- each problem class be addressed with suitable software
- nonlinear MPC needs to solve nonlinear programs (NLP)
- Lagrangian function, duality, and KKT conditions are important concepts
- ▶ for convex problems holds strong duality, KKT conditions sufficient for global optimality
- Newton-type optimization for NLP solves the nonsmooth KKT conditions via Sequential Quadratic Programming (SQP, e.g. acados) or via Interior Point Method (e.g. ipopt)
- ▶ NLP solvers need to evaluate first and second order derivatives (e.g. via CasADi)

# Where is the great watershed in optimization?



# Where is the great watershed in optimization?



My personal opinion:

The great watershed in optimization isn't between convexity and nonconvexity, but between computer functions that do - or do not - provide derivatives.

## Some References



- J. Nocedal, S.J. Wright, Numerical optimization. Springer, 2006
- ▶ L.T. Biegler, Nonlinear programming: concepts, algorithms, and applications to chemical processes. SIAM, 2010
- ▶ M. Diehl Lecture Notes on Numerical Optimization (draft), 2024
- S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004
- ▶ D. Bertsekas. Convex optimization algorithms. Athena Scientific, 2015.
- S.J. Wright and B. Recht. Optimization for data analysis. Cambridge University Press, 2022
- ▶ A. Wächter and L.T. Biegler. "On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming." Mathematical programming 106.1 (2006): 25-57.
- M. Diehl, S. Gros, Numerical Optimal Control (draft), Chapters 2-5, 2024