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What is an optimization problem?

Optimization is used in all quantitative sciences and engineering. Its aim is to minimize (or
maximize) an objective function F (w) depending on decision variables w = (w1, . . . , wn)
subject to constraints.

Optimization Problem

min
w∈Rn

F (w) (1a)

s.t. G(w) = 0 (1b)

H(w) ≥ 0 (1c)

Terminology

I w ∈ Rn - vector of decision variables

I F : Rn → R - objective function

I G : Rn → RnG - equality constraints

I H : Rn → RnH - inequality constraints

I only in a few special cases a closed form solution exists

I if F,G,H are nonlinear and smooth, we speak of a nonlinear programming problem (NLP)

I usually we need iterative algorithms to find an approximate solution

I in NMPC, the problem depends on parameters that change every sampling time
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*Basic definitions: the feasible set

Definition

The feasible set of the optimization problem (1) is defined as
Ω = {w ∈ Rn | G(w) = 0, H(w) ≥ 0}. A point w ∈ Ω is is called a feasible point.

In the example, the feasible set is the intersection of the two grey areas (halfspace and circle)
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*Basic definitions: global and local minimizer

Definition (Global Minimizer)

Point w∗ ∈ Ω is a global minimizer of the NLP (1)
if for all w ∈ Ω it holds that F (w) ≥ F (w∗).

Definition (Local Minimizer)

Point w∗ ∈ Ω is a local minimizer of the NLP (1) if
there exists a ball Bε(w∗) = {w|‖w − w∗‖ ≤ ε} with
ε > 0, such that for all w ∈ Bε(w∗) ∩ Ω it holds that
F (w) ≥ F (w∗)

The value F (w∗) at a local/global minimizer w∗ is
called local/global minimum, or minimum value.
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Convex sets
a key concept in optimization

A set Ω is said to be convex if for any w1, w2 and any θ ∈ [0, 1] it holds θw1 + (1− θ)w2 ∈ Ω
Figure inspired by Figure 2.2 in S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.
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*Convex functions

I A function F : Ω→ R is convex if for
every w1, w2 ∈ Ω ⊂ Rn and θ ∈ [0, 1] it
holds that

F (θw1+(1−θ)w2) ≤ θF (w1)+(1−θ)F (w2)

I F is concave if and only if −F is convex

I F is convex if and only if the epigraph

epiF = {(w, t) ∈ Rnw+1 | w ∈ Ω, F (w) ≤ t}

is a convex set
w

F
(w

)

(w1; F (w1))

(w2; F (w2))

3F (w1) + (1! 3)F (w2)

F (3w1 + (1! 3)w2)
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Convex optimization problems

A convex optimization problem

min
w

F (w)

s.t. G(w) = 0

H(w) ≥ 0

An optimization problem is convex if the
objective function F is convex and the
feasible set Ω is convex.

I For convex problems, every locally optimal solution is globally optimal

I First order conditions are necessary and sufficient

I ”...in fact, the great watershed in optimization isn’t between linearity and nonlinearity, but
convexity and nonconvexity.” R. T. Rockafellar, SIAM Review, 1993
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Some classification of optimization problems

Optimization problems can be:

I unconstrained (Ω = Rn) or constrained (Ω ⊂ Rn)

I convex or nonconvex

I linear or nonlinear

I differentiable or nonsmooth

I continuous or (mixed-)integer

I finite or infinite dimensional
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Class 1: Linear Programming (LP)

Linear program

min
w∈Rn

g>w

s.t. Aw − b = 0

Cw − d ≥ 0

I convex optimization problem

I 1947: simplex method by G. Dantzig

I a solution is always at a vertex of the feasible set (possibly a whole facet if nonunique)

I very mature and reliable
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Class 2: Quadratic Programming (QP)

Quadratic Program (QP)

min
w∈Rn

1

2
w>Qw + g>w

s.t. Aw − b = 0

Cw − d ≥ 0

I depending on Q, can be convex and nonconvex

I solved online in linear model predictive control

I many good solvers: Gurobi, OSQP, HPIPM, qpOASES, OOQP, DAQP...

I subsproblems in nonlinear optimization
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Class 3: Nonlinear Programming (NLP)

Nonlinear Rrogram (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0

I can be convex and nonconvex

I solved with iterative Newton-type algorithms

I solved in nonlinear model predictive control
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Class 4: Mathematical Programming with Complementarity Constraints
short: MPCC

MPCC

min
w0,w1,w2

F (w)

s.t. G(w) = 0

H(w) ≥ 0

0 ≤ w1 ⊥ w2 ≥ 0

w = [w>0 , w
>
1 , w

>
2 ]>, w1 ⊥ w1 ⇔ w>1 w2 = 0

I more difficult than standard nonlinear programming

I feasible set is inherently nonsmooth and nonconvex

I powerful modeling concept

I requires specialized theory and algorithms
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Class 5: Mixed-Integer Nonlinear Programming (MINLP)

Mixed-Integer Nonlinear Program (MINLP)

min
w0∈Rp,w1∈Zq

F (w)

s.t. G(w) = 0

H(w) ≥ 0

w = [w>0 , w
>
1 ]>, n = p+ q

I inherently nonconvex feasible set

I due to combinatorial nature, NP-hard even for linear F,G,H

I branch and bound, branch and cut algorithms based on iterative solution of relaxed
continuous problems
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Class 6: Continuous-Time Optimal Control

Optimal Control Problem (OCP)

min
x(·),u(·)

∫ T
0
Lc(x(t), u(t)) dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = fc(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

I decision variables x(·), u(·) in infinite
dimensional function space

I infinitely many constraints (t ∈ [0, T ])

I smooth ordinary differential equation
(ODE) ẋ(t) = fc(x(t), u(t))

I more generally, dynamic model can be
based on
I differential algebraic equations (DAE)
I partial differential equations (PDE)
I nonsmooth ODE
I stochastic ODE

I OCP can be convex or nonconvex

I all or some components of u(t) may take
integer values (mixed-integer OCP)
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Direct optimal control methods formulate Nonlinear Programs (NLP)
(applicable to smooth deterministic systems)

Continuous-time OCP

min
x(·),u(·)

∫ T
0
Lc(x(t), u(t)) dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t)= fc(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Direct methods like direct collocation,
multiple shooting first discretize, then
optimize.
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multiple shooting first discretize, then
optimize.

Discrete-time OCP (an NLP)

min
x,u

∑N−1
k=0 `(xk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk)

0 ≥ h(xk, uk), k = 0, . . . , N−1

0 ≥ r(xN )

Variables x = (x0, . . . , xN ) and
u = (u0, . . . , uN−1) can be summarized in
vector w = (x, u) ∈ Rn.

Nonlinear Optimization M. Diehl 15/42



Direct optimal control methods formulate Nonlinear Programs (NLP)
(applicable to smooth deterministic systems)

Discrete-time OCP (an NLP)

min
x,u

∑N−1
k=0 `(xk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk)

0 ≥ h(xk, uk), k = 0, . . . , N−1

0 ≥ r(xN )

Variables x = (x0, . . . , xN ) and
u = (u0, . . . , uN−1) can be summarized in
vector w = (x, u) ∈ Rn.

Nonlinear Optimization M. Diehl 15/42



Nonlinear MPC solves Nonlinear Programs (NLP)

Discrete time NMPC Problem (an NLP)

min
x,u
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s.t. x0 = x̄0

xk+1 = f(xk, uk)

0 ≥ h(xk, uk), k = 0, . . . , N−1

0 ≥ r(xN )

Variables x = (x0, . . . , xN ) and
u = (u0, . . . , uN−1) can be summarized in
vector w = (x, u) ∈ Rn.

Nonlinear Optimization M. Diehl 16/42



Nonlinear MPC solves Nonlinear Programs (NLP)

Discrete time NMPC Problem (an NLP)

min
x,u

∑N−1
k=0 `(xk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk)

0 ≥ h(xk, uk), k = 0, . . . , N−1

0 ≥ r(xN )

Variables x = (x0, . . . , xN ) and
u = (u0, . . . , uN−1) can be summarized in
vector w = (x, u) ∈ Rn.

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0

Nonlinear Optimization M. Diehl 16/42



Outline of the lecture

1 Basic definitions

2 Some classification of optimization problems

3 Optimality conditions

4 Nonlinear programming algorithms

Nonlinear Optimization M. Diehl 16/42



*Algebraic characterization of unconstrained local minimizers

Consider the unconstrained problem: minw∈Rn F (w)

First-Order Necessary Condition of Optimality (FONC) (in convex case also sufficient)

w∗ local optimizer ⇒ ∇F (w∗) = 0, w∗ stationary point

Second-Order Necessary Condition of Optimality (SONC)

w∗ local minimizer ⇒ ∇2F (w∗) � 0

Second-Order Sufficient Conditions of Optimality (SOSC)

∇F (w∗) = 0 and ∇2F (w∗) � 0 ⇒ x∗ strict local minimizer

∇F (w∗) = 0 and ∇2F (w∗) ≺ 0 ⇒ x∗ strict local maximizer

no conclusion can be drawn in the case ∇2F (w∗) is indefinite
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*Types of stationary points
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*Optimality conditions - unconstrained

I necessary conditions: find a candidate
point (or to exclude points)

I sufficient conditions: verify optimality
of a candidate point

I a minimizer must satisfy SONC, but
does not have to satisfy SOSC
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First order necessary conditions for equality constrained optimization

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

Lagrangian function L(w, λ) := F (w)− λ>G(w)

Definition (LICQ)

A point w satisfies Linear Independence
Constraint Qualification (LICQ) if and only
if ∇G (w) := ∂G

∂w (w)> is full column rank

First-Order Necessary Conditions (in convex case also sufficient)

Let F,G in C1. If w∗ is a (local) minimizer, and w∗ satisfies LICQ, then there is a unique
vector λ such that:

∇wL(w∗, λ∗) = ∇F (w∗)−∇G(w∗)λ = 0 dual feasibility

∇λL(w∗, λ∗) = G(w∗) = 0 primal feasibility
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Duality in a nutshell
for equality constrained optimization

Primal Problem

p∗ = min
w∈Rn

F (w) s.t. G(w) = 0

with Lagrangian L(w, λ) := F (w)− λ>G(w).

Lagrange dual function Q(λ) := infw∈Rn L(w, λ)

I Q(λ) - concave in λ by construction

I Q(λ) ≤ p∗ for all λ ∈ RnG

Dual Problem

d∗ = max
λ∈RnG

Q(λ)

I weak duality: d∗ ≤ p∗, always holds

I strong duality: d∗ = p∗, only holds for
some problems (e.g. convex ones)

Wolfe Dual (in convex case)

d∗ = max
w∈Rn,λ∈RnG

L(w, λ)

s.t. ∇wL(w, λ) = 0

(w constrained by lower level optimality)
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The Karush-Kuhn-Tucker (KKT) conditions

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0

L(w, λ) = F (w)− λ>G(w)− µ>H(w)

Definition (LICQ)

A point w satisfies LICQ if and only if

[∇G (w) , ∇HA (w)]

is full column rank

Active set A = {i | Hi(w) = 0}

Theorem (KKT conditions - FONC for constrained optimization)

Let F, G, H be C1. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique
vectors λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗ ) = 0, µ∗ ≥ 0, dual feasibility

G (w∗) = 0, H (w∗) ≥ 0 primal feasibility

µ∗iHi(w
∗) = 0, ∀ i complementary slackness
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*Complementarity Conditions

Complementarity conditions
0 ≥ µ ⊥ H(w) ≥ 0 form an L-shaped,
nonsmooth manifold.

I Hi(w
∗) > 0 then µ∗i = 0, and Hi is

inactive

I µ∗i > 0 and Hi(w) = 0 then Hi(w) is
strictly active

I µ∗i = 0 and Hi(w) = 0 then then Hi(w) is
weakly active

I We define the active set A as the set of
indices i of the active constraints

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

7
i

Nonlinear Optimization M. Diehl 23/42



*Complementarity Conditions

Complementarity conditions
0 ≥ µ ⊥ H(w) ≥ 0 form an L-shaped,
nonsmooth manifold.

I Hi(w
∗) > 0 then µ∗i = 0, and Hi is

inactive

I µ∗i > 0 and Hi(w) = 0 then Hi(w) is
strictly active

I µ∗i = 0 and Hi(w) = 0 then then Hi(w) is
weakly active

I We define the active set A as the set of
indices i of the active constraints
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Some intuition on the KKT conditions
Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

min
w∈R2

F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude

I weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

I inactive constraint H (w) > 0, µ = 0

H (w) > 0, µ = 0

!rF (w)

7rH(w)

7 =0.857

-4 -2 0 2 4

w1

-4

-3

-2

-1

0

1

2

3

4

w
2

Balance of the forces:

∇L(w, µ) = ∇F (w)− µ∇H(w) = 0

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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Some intuition on the KKT conditions
Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

min
w∈R2

F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude

I weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

I inactive constraint H (w) > 0, µ = 0

H (w) > 0, µ = 0
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Balance of the forces:

∇L(w, µ) = ∇F (w)− µ∇H(w) = 0

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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Some intuition on the KKT conditions
Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

min
w∈R2

F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude

I weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

I inactive constraint H (w) > 0, µ = 0

H (w) > 0, µ = 0
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Balance of the forces:

∇L(w, µ) = ∇F (w)− µ∇H(w) = 0

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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Some intuition on the KKT conditions
Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

min
w∈R2

F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude

I weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

I inactive constraint H (w) > 0, µ = 0
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Balance of the forces:

∇L(w, µ) = ∇F (w)− µ∇H(w) = 0

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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Some intuition on the KKT conditions
Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

min
w∈R2

F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude

I weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed

I inactive constraint H (w) > 0, µ = 0

H (w) > 0, µ = 0
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Balance of the forces:

∇L(w, µ) = ∇F (w)− µ∇H(w) = 0

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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Some intuition on the KKT conditions
Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

min
w∈R2

F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude

I weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed
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Balance of the forces:

∇L(w, µ) = ∇F (w)− µ∇H(w) = 0

Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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Some intuition on the KKT conditions
Ball rolling down a valley blocked by a fence - test problem with two variables and one inequality constraint

min
w∈R2

F (w)

s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude

I weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed
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Balance of the forces:

∇L(w, µ) = ∇F (w)− µ∇H(w) = 0
Animation inspired by Lecture 2 of the Winter School on Numerical Optimal Control with
Differential Algebraic Equations by S. Gros and M. Diehl, Freiburg, 2016.
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Some intuition on the KKT conditions
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min
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s.t. H(w) ≥ 0

I −∇F is the gravity

I µ∇H is the force of the fence. Sign µ ≥ 0
means the fence can only ”push” the ball

I ∇H gives the direction of the force and µ
adjusts the magnitude

I weakly active constraint:
H (w) = 0, µ = 0 the ball touches the
fence but no force is needed
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Outline of the lecture

1 Basic definitions

2 Some classification of optimization problems

3 Optimality conditions

4 Nonlinear programming algorithms
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Newton’s method
To solve a nonlinear system, solve a sequence of linear systems

Linearization of F at linearization point w̄

equals

First order Taylor series at w̄

equals

FL(w; w̄) := F (w̄) +
∂F

∂w
(w̄) (w − w̄)

(for continuously differentiable F : Rn → Rn)
-1 -0.5 0 0.5 1 1.5 2 2.5 3

w

-1

0

1

2

3

4

5

6

F
(w

)

Iteration 0

y = F (w)
y = F (wk) + rF (wk)>(w ! wk)
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Newton’s method
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General Nonlinear Program (NLP)

In direct methods, we have to solve the discretized optimal control problem, which is a
Nonlinear Program (NLP)

General Nonlinear Program (NLP)

min
w
F (w) s.t.

{
G(w) = 0
H(w) ≥ 0

We first treat the case without inequalities

NLP only with equality constraints

min
w
F (w) s.t. G(w) = 0

Nonlinear Optimization M. Diehl 26/42



Lagrange function and optimality conditions

Lagrange function

L(w, λ) = F (w)− λTG(w)

Then for an optimal solution w∗ exist multipliers λ∗ such that

Nonlinear root-finding problem

∇wL(w∗, λ∗) = 0
G(w∗) = 0
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*Newton’s Method on optimality conditions

Newton’s method to solve
∇wL(w∗, λ∗) = 0

G(w∗) = 0 ?

results, at iterate (wk, λk), in the following linear system:

∇wL(wk, λk) +∇2
wL(wk, λk)∆w −∇wG(wk)∆λ = 0

G(wk) +∇wG(wk)T∆w = 0

Due to ∇L(wk, λk) = ∇F (wk)−∇G(wk)λk this is equivalent to

∇wF (wk) +∇2
wL(wk, λk)∆w −∇wG(wk)λ+ = 0

G(wk) +∇wG(wk)T∆w = 0

with the shorthand λ+ = λk + ∆λ
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*Newton Step = Quadratic Program

Conditions
∇wF (wk) +∇2

wL(wk, λk)∆w −∇wG(wk)λ+ = 0
G(wk) +∇wG(wk)T∆w = 0

are optimality conditions of a quadratic program (QP), namely:

Quadratic program

min
∆w

∇F (wk)T∆w +
1

2
∆wTAk∆w

s.t. G(wk) +∇G(wk)T∆w = 0,

with Ak = ∇2
wL(wk, λk)
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Newton’s method for equality constrained optimization

The full step Newton’s Method iterates by solving in each iteration the Quadratic Progam

Quadratic Program in Sequential Quadratic Programming (SQP)

min
∆w

∇F (wk)T∆w +
1

2
∆wTAk∆w

s.t. G(wk) +∇G(wk)T∆w = 0,

with Ak = ∇2
wL(wk, λk).

This obtains as solution the step ∆wk and the new multiplier λ+
QP = λk + ∆λk

New iterate

wk+1 = wk + ∆wk

λk+1 = λk + ∆λk = λ+
QP

This is the ”full step, exact Hessian SQP method for equality constrained optimization”.
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NLP with Inequalities

Regard again NLP with both, equalities and inequalities:

NLP with equality and inequality constraints

min
w
F (w) s.t.

{
G(w) = 0
H(w) ≥ 0

Lagrangian function for NLP with equality and inequality constraints

L(w, λ, µ) = F (w)− λTG(w)− µTH(w)
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Recall necessary optimality conditions with inequalities

Theorem (Karush-Kuhn-Tucker (KKT) conditions)

Let F, G, H be C2. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique
vectors λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗ ) = 0

G (w∗) = 0

H(w∗) ≥ 0

µ∗ ≥ 0

H(w∗)>µ∗ = 0

I Last three ”complementarity conditions” are nonsmooth

I Thus, this system cannot be solved by Newton’s Method. But still with SQP...
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Sequential Quadratic Programming (SQP) with Inequalities

By linearizing all functions and setting λ+ = λk + ∆λ, µ+ = µk + ∆µ, we obtain the KKT
conditions of the following Quadratic Program (QP)

Inequality Constrained Quadratic Program within SQP method

min
∆w

∇F (wk)T∆w +
1

2
∆wTAk∆w

s.t.

{
G(wk) +∇G(wk)T∆w = 0
H(wk) +∇H(wk)T∆w ≥ 0

with
Ak = ∇2

wL(wk, λk, µk)

Its solution delivers the next SQP iterate

∆wk, λ+
QP, µ+

QP
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Constrained Gauss-Newton Method

In special case of least squares objectives

Least squares objective function

F (w) =
1

2
‖R(w)‖22

can approximate Hessian ∇2
wL(wk, λk, µk) by much cheaper

Ak = ∇R(w)∇R(w)>.

Need no multipliers to compute Ak.

Gauss-Newton QP = Constrained Linear Least Squares Problem

min
∆w

1

2
‖R(wk) +∇R(wk)T∆w‖22

s.t.
G(wk) +∇G(wk)T∆w = 0
H(wk) +∇H(wk)T∆w ≥ 0

Linear convergence. Fast, if objective value ‖R(w∗)‖ small or nonlinearity of R,G,H small
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Interior Point Methods
(without equalities for simplicity of exposition)

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

KKT conditions

∇F (w)−∇H(w)>µ = 0

0 ≤ µ ⊥ H(w) ≥ 0

Main difficulty: nonsmoothness of
complementarity conditions
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i

0 5 7i ? Hi(w) 6 0
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Barrier Problem in Interior Point Method

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Idea: put inequality constraint into objective

Barrier Problem

min
w

F (w)− τ
m∑
i=1

log(Hi(w)) =: Fτ (w)

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

@
(H

i(
w

))

= =5.000

@(Hi(w))
!= log(Hi(w))

approximate:

χ(Hi(w)) =

{
0 if Hi(w) ≥ 0

∞ if Hi(w) < 0

Nonlinear Optimization M. Diehl 36/42



Barrier Problem in Interior Point Method

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Idea: put inequality constraint into objective

Barrier Problem

min
w

F (w)− τ
m∑
i=1

log(Hi(w)) =: Fτ (w)

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

@
(H

i(
w

))

= =1.000

@(Hi(w))
!= log(Hi(w))

approximate:

χ(Hi(w)) =

{
0 if Hi(w) ≥ 0

∞ if Hi(w) < 0

Nonlinear Optimization M. Diehl 36/42
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Barrier Problem in Interior Point Method
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min
w

F (w)

s.t. H(w) ≥ 0

Idea: put inequality constraint into objective

Barrier Problem

min
w

F (w)− τ
m∑
i=1

log(Hi(w)) =: Fτ (w)

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

@
(H

i(
w

))

= =0.008

@(Hi(w))
!= log(Hi(w))

approximate:

χ(Hi(w)) =

{
0 if Hi(w) ≥ 0

∞ if Hi(w) < 0

Nonlinear Optimization M. Diehl 36/42



Barrier Problem in Interior Point Method

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Idea: put inequality constraint into objective

Barrier Problem

min
w

F (w)− τ
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Example Barrier Problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem

min
w

0.5w2 − 2− τ log(w + 1)− τ log(1− w) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w
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= =5.000
F (w)
F= (w)
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*Primal-dual interior point methods
Alternative interpretation

Barrier problem

min
w

F (w)− τ
m∑
i=1

log(Hi(w)) =: Fτ (w)

KKT conditions

∇F (w)− τ
m∑
i−1

1

Hi(w)
∇Hi(w) = 0

Introduce variable µi = τ
Hi(w)

Smoothed KKT conditions

∇F (w)−∇H(w)>µ = 0

Hi(w)µi = τ

(Hi(w) > 0, µi > 0)

Solve nonsmooth system with Newtons’
method
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i

= =1.000

0 5 7i ? Hi(w) 6 0
Hi(w)7i = =
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*Primal-dual interior point method

Nonlinear programming problem

min
w,s

F (w)

s.t. G(w) = 0

H(w)− s = 0

s ≥ 0

Smoothed KKT conditions

Rτ (w, s, λ, µ) =


∇wL(w, λ, µ)

G(w)
H(w)− s

diag(s)µ− τe

 = 0

(s, µ > 0)

e = (1, . . . , 1)

Fix τ , perform Newton iterations

Rτ (w, s, λ, µ) +∇Rτ (w, s, λ, µ)>∆z = 0

with z = (w, s, λ, µ)

Line-search

Find α ∈ (0, 1)

wk+1 = wk + α∆w

sk+1 = sk + α∆s

λk+1 = λk + α∆λ

µk+1 = µk + α∆µ

such that sk+1 > 0, µk+1 > 0

Reduce τ , and perform next Newton
iterations solve, etc
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Summary Nonlinear Optimization

I optimization problem come in many variants (LP, QP, NLP, MPCC, MINLP, OCP, ....)

I each problem class be addressed with suitable software

I nonlinear MPC needs to solve nonlinear programs (NLP)

I Lagrangian function, duality, and KKT conditions are important concepts

I for convex problems holds strong duality, KKT conditions sufficient for global optimality

I Newton-type optimization for NLP solves the nonsmooth KKT conditions via Sequential
Quadratic Programming (SQP, e.g. acados) or via Interior Point Method (e.g. ipopt)

I NLP solvers need to evaluate first and second order derivatives (e.g. via CasADi)
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Where is the great watershed in optimization ?

My personal opinion:

The great watershed in optimization isn’t between convexity and nonconvexity, but between
computer functions that do - or do not - provide derivatives.
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