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System model1

We consider systems of the form

x+ = f (x , u)

where the state x lies in X ⊆ Rn and the control (input) u lies in
U ⊆ Rm;

In this formulation x and u denote, respectively, the current state and
control, and x+ the successor state.

We assume in the sequel that the function f : X× U → X is
continuous, and the sets X and U are closed.

Let
ϕ(k ; x ,u)

denote the solution of x+ = f (x , u) at time k if the initial state is
x(0) = x and the control sequence is u = (u(0), u(1), u(2), . . .);

The solution exists and is unique.
1Most of this preliminary material is taken from Rawlings, Mayne, and Diehl (2020,

Appendix B). Downloadable from engineering.ucsb.edu/~jbraw/mpc.
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Existence of solutions to model

If a state-feedback control law u = κ(x) has been chosen, the
closed-loop system is described by x+ = f (x , κ(x)).

Let ϕ(k ; x , κ(·)) denote the solution of this difference equation at
time k if the initial state at time 0 is x(0) = x ; the solution exists and
is unique (even if κ(·) is discontinuous).
If κ(·) is not continuous, as may be the case when κ(·) is a model
predictive control (MPC) law, then f ((·), κ(·)) may not be continuous.

In this case we assume that f ((·), κ(·)) is locally bounded.

Definition 1 (Locally bounded)

A function f : X → X is locally bounded if, for any x ∈ X , there exists a
neighborhood N of x such that f (N ) is a bounded set, i.e., if there exists
a M > 0 such that |f (x)| ≤ M for all x ∈ N .
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Stability and equilibrium point

We would like to be sure that the controlled system is “stable”, i.e., that
small perturbations of the initial state do not cause large variations in the
subsequent behavior of the system, and that the state converges to a
desired state or, if this is impossible due to disturbances, to a desired set
of states.
If convergence to a specified state, x∗ say, is sought, it is desirable for this
state to be an equilibrium point:

Definition 2 (Equilibrium point)

A point x∗ is an equilibrium point of x+ = f (x) if x(0) = x∗ implies
x(k) = ϕ(k ; x∗) = x∗ for all k ≥ 0. Hence x∗ is an equilibrium point if it
satisfies

x∗ = f (x∗)
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Positive invariant set

In other situations, for example when studying the stability properties of
an oscillator, convergence to a specified closed set A ⊂ X is sought.
If convergence to a set A is sought, it is desirable for the set A to be
positive invariant:

Definition 3 (Positive invariant set)

A set A is positive invariant for the system x+ = f (x) if x ∈ A implies
f (x) ∈ A.

Clearly, any solution of x+ = f (x) with initial state in A, remains in A.
The (closed) set A = {x∗} consisting of a (single) equilibrium point is a
special case; x ∈ A (x = x∗) implies f (x) ∈ A (f (x) = x∗).

Freiburg—2025 NMPC. Closed-loop properties 6 / 48



Distance to a set; set addition

Define distance from point x to set A

|x |A := inf
z∈A

|x − z |

If A = {x∗}, then |x |A = |x − x∗| which reduces to |x | when x∗ = 0.

Set addition: A⊕ B := {a+ b | a ∈ A, b ∈ B}.
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K, K∞, KL functions

Definition 4

A function σ : R≥0 → R≥0 belongs to class K if it is continuous, zero
at zero, and strictly increasing;

σ : R≥0 → R≥0 belongs to class K∞ if it is a class K and unbounded
(σ(s) → ∞ as s → ∞).

A function β : R≥0 × I≥0 → R≥0 belongs to class KL if it is
continuous and if, for each t ≥ 0, β(·, t) is a class K function and for
each s ≥ 0, β(s, ·) is nonincreasing and satisfies limt→∞ β(s, t) = 0.
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Some useful properties of K functions

The following useful properties of these functions are established in Khalil
(2002, Lemma 4.2):

if α1(·) and α2(·) are K functions (K∞ functions), then α−1
1 (·) and

(α1 ◦ α2)(·) := α1(α2(·)) are K functions (K∞ functions).

Moreover, if α1(·) and α2(·) are K functions and β(·) is a KL
function, then σ(r , s) = α1(β(α2(r), s)) is a KL function.
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Stability—Definitions

Definition 5 ((Classic) Asymptotic stability (constrained))

Suppose X ⊂ Rn is positive invariant for x+ = f (x), that A ⊂ X is closed
and positive invariant for x+ = f (x). Then A is

1 locally stable in X if, for each ε > 0, there exists a δ = δ(ε) > 0 such
that x ∈ X ∩ (A⊕ δB), implies |ϕ(i ; x)|A < ε for all i ∈ I≥0.

a

2 locally attractive in X if there exists a η > 0 such that
x ∈ X ∩ (A⊕ ηB) implies |ϕ(i ; x)|A → 0 as i → ∞.

3 attractive in X if |ϕ(i ; x)|A → 0 as i → ∞ for all x ∈ X .

4 asymptotically stable with a region of attraction X if it is locally
stable in X and attractive in X .

aB denotes the unit ball in Rn.
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Asymptotic stability—stronger definition

Definition 6 (Asymptotic stability (constrained – KL version))

Suppose X ⊂ Rn is positive invariant for x+ = f (x), that the origin is an
equilibrium of x+ = f (x), and that the origin is in X . The origin is
asymptotically stable in X for x+ = f (x) if there exists a KL function β(·)
such that, for each x ∈ X

|ϕ(i ; x)| ≤ β(|x | , i) ∀i ≥ 0 (1)

See Teel and Zaccarian (2006) and the “Notes on Recent MPC
Literature” link on: engineering.ucsb.edu/~jbraw/mpc for further
discussion of the differences in the two definitions.
If f (·) is continuous, the two definitions are equivalent.

Freiburg—2025 NMPC. Closed-loop properties 11 / 48

engineering.ucsb.edu/~jbraw/mpc


Lyapunov function

Definition 7 (Lyapunov function (constrained))

Suppose that X is positive invariant and the origin is an equilibrium for
x+ = f (x). A function V : X → R≥0 is said to be a Lyapunov function in
X for the system x+ = f (x) if there exist functions α1, α2, α3 ∈ K∞ such
that for any x ∈ X

α1(|x |) ≤ V (x) ≤ α2(|x |)
V (f (x))− V (x) ≤ −α3(|x |)
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Lyapunov stability theorem

Theorem 8 (Lyapunov stability theorem—constrained case)

Suppose that X is positive invariant and the origin is an equilibrium for
x+ = f (x). If there exists a Lyapunov function in X for the system
x+ = f (x) then the origin is asymptotically stable in X for x+ = f (x).

In other words, we don’t have to analyze closed-loop stability of MPC on a
case-by-case basis.
We instead establish that the optimal MPC cost function is a Lyapunov
function for the closed-loop system!
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Converse theorem for exponential stability

Exercise B.3: A converse theorem for exponential stability
a Assume that the origin is globally exponentially stable (GES) for the

system
x+ = f (x)

in which f is Lipschitz continuous. Show that there exists a Lipschitz
continuous Lyapunov function V (·) for the system satisfying for all
x ∈ Rn

a1 |x |σ ≤ V (x) ≤ a2 |x |σ

V (f (x))− V (x) ≤ −a3 |x |σ

in which a1, a2, a3, σ > 0.
Hint: Consider summing the solution |ϕ(i ; x)| on i as a candidate
Lyapunov function V (x).

b Establish also that in the Lyapunov function defined above, any σ > 0
is valid, and the constant a3 can be chosen as large as one wishes.
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The basic nonlinear, constrained MPC problem

The system model is
x+ = f (x , u) (2)

Both state and input are subject to constraints

x(k) ∈ X , u(k) ∈ U for all k ∈ I≥0

Given an integer N (referred to as the finite horizon), and an input
sequence u of length N, u = (u(0), u(1), . . . , u(N − 1)), let ϕ(k ; x ,u)
denote the solution of (2) at time k for a given initial state x(0) = x .

Terminal constraint (and penalty)

ϕ(N; x ,u) ∈ Xf ⊆ X
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Feasible sets

For an initial x , the corresponding set of feasible inputsequences is

UN(x) = {u | u(k) ∈ U, ϕ(k; x ,u) ∈ X for all k ∈ I0:N−1,

and ϕ(N; x ,u) ∈ Xf }

The set of feasible initial states is

XN = {x ∈ X | UN(x) ̸= ∅} (3)

Freiburg—2025 NMPC. Closed-loop properties 16 / 48



Cost function and control problem

For any state x ∈ X and input sequence u ∈ UN , we define

VN(x ,u) =
N−1∑
k=0

ℓ(ϕ(k; x ,u), u(k)) + Vf (ϕ(N; x ,u))

ℓ(x , u) is the stage cost; Vf (x(N)) is the terminal cost

Consider the finite horizon optimal control problem

PN(x) : min
u∈UN

VN(x ,u)

Freiburg—2025 NMPC. Closed-loop properties 17 / 48



Control law and closed-loop system

The control law is
κN(x) = u0(0; x)

The optimum may not be unique; then κN(·) is a point-to-set map

Closed-loop system

x+ = f (x , κN(x)) difference equation

x+ ∈ f (x , κN(x)) difference inclusion

Nominal closed-loop stability question; is the origin stable?

If yes, what is the region of attraction? All of XN?
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Basic MPC assumptions

Assumption 9 (Continuity of system and cost)

The functions f : X× U → X, ℓ : X× U → R≥0 and Vf : Xf → R≥0 are
continuous, f (0, 0) = 0, ℓ(0, 0) = 0, and Vf (0) = 0.

Assumption 10 (Properties of constraint sets)

The set U is compact and contains the origin. The sets X and Xf are
closed and contain the origin in their interiors, Xf ⊆ X.

Note: origin can be on boundary of U, but origin cannot be on boundary
of Xf ,X.
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Basic MPC assumptions

Assumption 11 (Lower bound on stage cost)

The stage cost ℓ(·) satisfies

ℓ(x , u) ≥ α1(|x |) ∀x ∈ XN , ∀u ∈ U

in which α1(·) is a K∞ function.

Remark 12 (Upper bound on terminal cost)

Because Vf (·) is continuous and Vf (0) = 0, we also have that

Vf (x) ≤ α2(|x |) ∀x ∈ Xf

in which α2(·) is a K∞ function.
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Basic MPC assumptions

Assumption 13 (Basic stability assumption)

For any x ∈ Xf there exists u := κf (x) ∈ U such that f (x , u) ∈ Xf and
Vf (f (x , u)) ≤ Vf (x)− ℓ(x , u).

Note: understanding this requirement created a big research challenge for
the development of nonlinear MPC.
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The MPC problem in pictures

XN

x(0)
Xf

κf (·)

Assumption 13: Vf (f (x , κf (x))) ≤ Vf (x)− ℓ(x , κf (x))
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Optimal MPC cost function as Lyapunov function

We show that the optimal cost V 0
N(·) is a Lyapunov function for the

closed-loop system. We require three properties.
Lower bound.

V 0
N(x) ≥ α1(|x |) for all x ∈ XN

Given the definition of VN(x ,u) as a sum of stage costs, we have using
Assumption 11

VN(x ,u) ≥ ℓ(x , u(0; x)) ≥ α1(|x |) for all x ∈ XN ,u ∈ UN

so the first property is established.
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MPC cost function as Lyapunov function – cost decrease

Next we require the cost decrease

V 0
N(f (x , κN(x))) ≤ V 0

N(x)− α3(|x |) for all x ∈ XN

At state x ∈ XN , consider the optimal sequence
u0(x) = (u(0; x), u(1; x), . . . , u(N − 1; x)), and generate a candidate
sequence for the successor state, x+ := f (x , κN(x))

ũ = (u(1; x), u(2; x), . . . , u(N − 1; x), κf (x(N)))

with x(N) := ϕ(N; x ,u). This candidate is feasible for x+ because Xf is
control invariant under control law κf (·) (Assumption 13).
The cost is

VN(x
+, ũ) = V 0

N(x)− ℓ(x , u(0; x))

− Vf (x(N)) + ℓ(x(N), κf (x(N))) + Vf (f (x(N), κf (x(N))))︸ ︷︷ ︸
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Cost decrease (cont.)

But by Assumption 13

Vf (f (x , κf (x)))− Vf (x) + ℓ(x , κf (x)) ≤ 0 for all x ∈ Xf

so we have that

VN(x
+, ũ) ≤ V 0

N(x)− ℓ(x , u(0; x))

The optimal cost is certainly no worse, giving

V 0
N(x

+) ≤ V 0
N(x)− ℓ(x , u(0; x))

V 0
N(x

+) ≤ V 0
N(x)− α1(|x |) for all x ∈ XN

which is the desired cost decrease with the choice α3(·) = α1(·).
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Upper bound

Finally we require the upper bound.

V 0
N(x) ≤ α2(|x |) for all x ∈ XN

Surprisingly, this one turns out to be the most involved.
First, we have the bound from Assumption 9 (Remark 12)

Vf (x) ≤ α2(|x |) for all x ∈ Xf

Next we show that V 0
N(x) ≤ Vf (x) for x ∈ Xf , N ≥ 1.

Consider N = 1,

V 0
1 (x) = min

u∈U
{ℓ(x , u) + Vf (f (x , u)) | f (x , u) ∈ Xf }

= ℓ(x , κ1(x)) + Vf (f (x , κ1(x))) x ∈ X1

≤ ℓ(x , κf (x)) + Vf (f (x , κf (x))) x ∈ Xf

≤ Vf (x) x ∈ Xf (by Assumption 13)
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Dynamic programming recursion

Next consider N = 2, and optimal control law κ2(·)

V 0
2 (x) = min

u∈U
{ℓ(x , u) + V 0

1 (f (x , u)) | f (x , u) ∈ X1} x ∈ X2

= ℓ(x , κ2(x)) + V 0
1 (f (x , κ2(x))) x ∈ X2

≤ ℓ(x , κ1(x)) + V 0
1 ( f (x , κ1(x))︸ ︷︷ ︸

∈Xf

) x ∈ X1

≤ ℓ(x , κ1(x)) + Vf (f (x , κ1(x))) x ∈ X1

= V 0
1 (x) x ∈ X1

Therefore
V 0
2 (x) ≤ Vf (x) x ∈ Xf

Continuing this recursion gives for all N ≥ 1

V 0
N(x) ≤ Vf (x) ≤ α2(|x |) x ∈ Xf
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Extending the upper bound from Xf to XN

Question: When can we extend this bound from Xf to the (possibly
unbounded!) set XN? Recall that V 0

N(·) is not necessarily continuous.

Answer: The K∞ upper bound of a function valid near the origin can
be extended from Xf to the entire set XN if and only if the function
is locally bounded on XN .

2

We know from continuity of f (·) (Assumption 9) that VN(x ,u) is a
continuous function, hence locally bounded, and therefore so is
V 0
N(x).

Therefore, there exists β(·) ∈ K∞ such that

V 0
N(x) ≤ β(|x |) for all x ∈ XN

Be aware that the MPC literature has been confused about the
requirements for this last result.

2See Proposition 11 of “Notes on Recent MPC Literature” link on:
engineering.ucsb.edu/~jbraw/mpc. Thanks also to Andy Teel.
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Asymptotic stability of constrained nonlinear MPC

Why you want a Lyapunov function

We have established that the optimal cost V 0
N(·) is a Lyapunov

function on XN for the closed-loop system.

Therefore, the origin is asymptotically stable (KL version) with region
of attraction XN .

We can also establish robust stability, but we’ll do that later.

If we strengthen the properties of ℓ(·), we can strengthen the
conclusion to exponential stability.

Notice the essential role that V 0
N(·) plays in the stability analysis of

MPC.

In economic MPC we lose this Lyapunov function and have to do
some work to bring it back.
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A nice example (Example 2.6)

System is linear (unstable, scalar)

x+ = f (x , u) := x + u

The stage cost and terminal cost are

ℓ(x , u) := (1/2)(x2 + u2) Vf (x) := (1/2)x2

The control constraint is

u ∈ U = [−1, 1]

The horizon is N = 2. The feasible set is U2 = U× U.
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Nice example

The cost function

VN(x ,u) = (1/2)
(
x2 + (x + u(0))2 + (x + u(0) + u(1))2+

u(0)2 + u(1)2
)

= (3/2)x2 +
[
2x x

]
u + (1/2)u ′Hu

in which

H =

[
3 1
1 2

]
The optimal control problem

min
u∈U2

VN(x ,u)

The optimal control problem is a quadratic program

Freiburg—2025 NMPC. Closed-loop properties 31 / 48



The quadratic program as x varies

−5 −4 −3 −2 −1 0 1
u0

−3

−2

−1

0

1

u1

U

a(x)

x = 9/2
x = 3

x = 9/4

x = 5/3

x = 0

Figure 1: Feasible region U2, elliptical cost contours, and ellipse center, a(x), and
constrained minimizers for different values of x .
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The simplest possible constrained control law

The control law is piecewise affine (u = Kx + b) and continuous

There are three regions: x ≤ −5/3, −5/3 ≤ x ≤ 5/3, 5/3 ≤ x

−3 −2 −1 0 1 2 3
x

−1.0

−0.5

0.0

0.5

1.0

u κN(x)

Figure 2: The optimal control law for x+ = x + u, N = 2, Q = R = 1, u ∈ [−1, 1].
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The constrained control law can be complex

−3 −2 −1 0 1 2 3
x1

−2

−1

0

1

2

x2

Figure 3: Regions with
different linear (affine)
control laws for a
second-order example.
(Rawlings et al., 2020,
p.462)

The number of regions increases exponentially with system order n,
number of inputs, m, and horizon length N.

Another example of Bellman’s curse of dimensionality. It’s difficult to
store κN(x), x ∈ Rn, as n increases.
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A troublesome example (Example 2.8)

x+ = f (x , u)[
x1
x2

]+
=

[
x1
x2

]
+

[
u
u3

]
Two state, single input example. The origin is the desired steady
state: u = 0 at x = 0.

Cannot be stabilized with continuous feedback u = κ(x).

Because (u, u3) have the same sign, must use negative u to stabilize
first quadrant.

Must use positive u to stabilize third quadrant.

But u cannot pass through zero or that point is a closed-loop steady
state.

Therefore discontinuous feedback.
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And its troubled history

Introduced by Meadows, Henson, Eaton, and Rawlings (1995) to
show MPC control law and optimal cost can be discontinuous.

Based on a CT example by Coron (1990).

Grimm, Messina, Tuna, and Teel (2005) established robustness for
MPC with horizon N ≥ 4 with a terminal cost and no terminal region
constraint.
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MPC with terminal equality constraint

Because we do not know even a local controller, we try a terminal
constraint x(N) = 0 in the MPC controller.

For what initial x is this constraint feasible?

(x1(1), x2(1)) = (x1(0), x2(0)) + (u0, u
3
0)

(x1(2), x2(2)) = (x1(1), x2(1)) + (u1, u
3
1)

(x1(3), x2(3)) = (x1(2), x2(2)) + (u2, u
3
2)

For N = 1, the feasible set X1 is only the line x2 = x31 .

For N = 2, to have real roots u0, u1, we require −x41 + 4x1x2 ≥ 0
which defines X2

For N = 3, we have X3 is all of R2.

So the shortest horizon that can globally stabilize the system is N = 3.
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Feasibility sets X1, X2, and X3

−1.0 −0.5 0.0 0.5 1.0
x1

−0.2

−0.1

0.0

0.1

0.2

x2

X3

X2

X1

Figure 4: Feasibility sets XN for N = 1, 2, 3.
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Structure of Feasibility Sets

XN

XN−2 XN−1

Xf

The feasibility sets are nested: XN ⊇ XN−1 ⊇ XN−2 · · · ⊇ Xf

The set XN is forward invariant. Important for recursive feasibility of
controller.

The set XN−1 is also forward invariant!

The sets XN−2,XN−3, . . . ,Xf are not necessarily forward invariant.
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Optimal MPC with N = 3

−π −π/2 0 π/2 π

θ

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

u

Figure 5: The control constraint set UN(x) and optimal control κN(x) for x on the unit
circle (Rawlings et al., 2020, p. 106).
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Optimal cost function with N = 3

−π −π/2 0 π/2 π

θ

5

10

15

20

V 0

Figure 6: The discontinuity in the optimal cost for x on the unit circle
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Discontinuities in optimal solution and value function

Optimal solution and parameter dependence

Consider the general constrained optimization problem with
parameter x

min
u∈U(x)

V (u, x)

and optimal solution and value function

u0(x) V 0(x)

What does it take for u0(x) to be discontinuous?

What does it take for V 0(x) to be discontinuous?
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Discontinuous optimal solution u0(x)

It is easy to generate a smooth V (x , u) and continuous constraint set
U(x) that has a discontinuous solution u0(x) (but continuous optimal
value function V 0(x)). Consider the following nonconvex V (x , u) with the
constant constraint set U(x) = R.

−4 −3 −2 −1 0 1 2 3 4
u

0.0

2.5

5.0

7.5

10.0

12.5

15.0

V (x , u)

x = 0.20

x = 0.10

x = 0.00

x = −0.10

x = −0.20

Figure 7: Smooth, nonconvex value function V (x , u). There are two branches of local
solutions and the optimal solution changes branches at x = 0.
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Discontinuous optimal solution u0(x)

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20

0

2V 0

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20
x

−2

0

2

u0

Figure 8: Smooth example with discontinuous solution and continuous value function.
Note that the derivative of V 0(x) is discontinuous.
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Discontinuous optimal value function V 0(x)

To obtain a discontinuous optimal value function from a smooth V (x , u),
we have to make the constraint set U(x) discontinuous. The objective
function V (x , u) can be convex in this case. Consider

U(x) = {u | 1 ≤ u ≤ 3, or max(x ,−1) ≤ u ≤ min(−x , 1)}

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
x

−1

0

1

2

3

U(x)

Figure 9: Discontinuous constraint set U(x). Note that U(x) at x = 0+ contains no
value near the point 0 ∈ U(x) at x = 0.
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Discontinuous optimal value function V 0(x)
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Figure 10: Smooth, convex value function V (x , u) (left) and discontinuous optimal value
function V 0(x) and solution u0(x) (right).
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Further reading II

A. R. Teel and L. Zaccarian. On “uniformity” in definitions of global
asymptotic stability for time-varying nonlinear systems. Automatica, 42:
2219–2222, 2006.
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