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Numerical Optimal Control

8.1 Introduction

Numerical optimal control methods are at the core of every model pre-
dictive control implementation, and algorithmic choices strongly affect
the reliability and performance of the resulting MPC controller. The
aim of this chapter is to explain some of the most widely used algo-
rithms for the numerical solution of optimal control problems. Before
we start, recall that the ultimate aim of the computations in MPC is to
find a numerical approximation of the optimal feedback controlu0(x0)
for a given current state x0. This state x0 serves as initial condition for
an optimal control problem, and u0(x0) is obtained as the first control
of the trajectory that results from the numerical solution of the optimal
control problem. Due to a multitude of approximations, the feedback
law usually is not exact. Some of the reasons are the following.

• The system model is only an approximation of the real plant.

• The horizon length is finite instead of infinite.

• The system’s differential equation is discretized.

• The optimization problem is not solved exactly.

While the first two of the above are discussed in Chapters 2 and 3 of
this book, the last two are due to the numerical solution of the opti-
mal control problems arising in model predictive control and are the
focus of this chapter. We argue throughout the chapter that it is not a
good idea to insist that the finite horizon MPC problem shall be solved
exactly. First, it usually is impossible to solve a simulation or opti-
mization problem without any numerical errors, due to finite precision
arithmetic and finite computation time. Second, it might not even be
desirable to solve the problem as exactly as possible, because the neces-
sary computations might lead to large feedback delays or an excessive
use of CPU resources. Third, in view of the other errors that are nec-
essarily introduced in the modeling process and in the MPC problem
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formulation, errors due to an inexact numerical solution do not sig-
nificantly change the closed-loop performance, at least as long as they
are smaller than the other error sources. Thus, the optimal choice of a
numerical method for MPC should be based on a trade-off between ac-
curacy and computation time. There are, however, tremendous differ-
ences between different numerical choices, and it turns out that some
methods, compared to others, can have significantly lower computa-
tional cost for achieving the same accuracy. Also, reliability is an issue,
as some methods might more often fail to find an approximate solu-
tion than other methods. Thus, the aim of this chapter is to give an
overview of the necessary steps toward the numerical solution of the
MPC problem, and to discuss the properties of the different choices
that can be made in each step.

8.1.1 Discrete Time Optimal Control Problem

When working in a discrete time setting, the MPC optimization problem
that needs to be solved numerically in each time step, for a given system
state x0, can be stated as follows. For ease of notation, we introduce
the sequence of future control inputs on the prediction horizon, u :=
(u(0),u(1), . . . , u(N � 1)), as well as the predicted state trajectories
x := (x(0), x(1), . . . , x(N)).

minimize
x,u

N�1X

k=0

`(x(k),u(k))+ Vf (x(N)) (8.1a)

subject to x(0) = x0 (8.1b)

x(k+ 1) = f(x(k),u(k)), k = 0,1, . . . ,N � 1 (8.1c)

(x(k),u(k)) 2 Z, k = 0,1, . . . ,N � 1 (8.1d)

x(N) 2 Xf (8.1e)

We call the above optimization problem PN(x0) to indicate its depen-
dence on the parameter x0, and denote the resulting optimal value
function by VN(x0). The value function VN(x0) is mostly of theoret-
ical interest, and is in practice computed only for those values of x0

that actually arise in the MPC context. In this chapter, we are mostly
interested in fast and efficient ways to find an optimal solution, which
we denote by (x0(x0),u0(x0)). The solution need not be unique for a
given problem PN(x0), and in a mathematically correct notation one
could only define the set S0(x0) of all solutions to PN(x0). Usually
one tries to ensure by a proper formulation that the MPC optimization
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problems have unique solutions, however, so that the set of solutions
is a singleton, S0(x0) = {(x0(x0),u0(x0))}.

A few remarks are in order regarding the statement of the optimiza-
tion problem (8.1a)-(8.1e). First, as usual in the field of optimization, we
list the optimization variables of problem PN(x0) below the word “min-
imize.” Here, they are given by the sequences x and u. The constraints
of the problem appear after the keywords “subject to” and restrict the
search for the optimal solution. Let us discuss each of them briefly:
constraint (8.1b) ensures that the trajectory x = (x(0), . . .) starts at x0,
and uniquely determines x(0). Constraints (8.1c) ensure that the state
and control trajectories obey the system dynamics for all time steps
k = 0, . . . ,N � 1. If in addition to x(0) one would also fix the controls
u, the whole state trajectory x would be uniquely determined by these
constraints. Constraints (8.1d) shall ensure that the state control pairs
(x(k),u(k)) are contained in the set Z at each time step k. Finally,
the terminal state constraint (8.1e) requires the final state to be in a
given terminal set Xf . The set of all variables (x,u) that satisfy all
constraints (8.1b)-(8.1e) is called the feasible set. Note that the feasible
set is the intersection of all constraint sets defined by the individual
constraints.

8.1.2 Convex Versus Nonconvex Optimization

The most important dividing line in the field of optimization is between
convex and nonconvex optimization problems. If an optimization prob-
lem is convex, every local minimum is also a global one. One can reli-
ably solve most convex optimization problems of interest, finding the
globally optimal solution in polynomial time. On the other hand, if a
problem is not convex, one can usually not find the global minimum.
Even if one has accidentally found the global minimum, one usually
cannot certify that it is the global minimum. Thus, in nonconvex opti-
mization, one has usually to accept that one is only able to find feasible
or locally optimal points. Fortunately, if one has found such a point,
one usually is also able to certify that it is a feasible or locally opti-
mal point. But in the worst case, one might not be able to find even a
feasible point, without knowing if this is due to the problem being in-
feasible, or the optimization algorithm being just unable to find points
in the feasible set. Thus, the difference between convex and nonconvex
has significant implications in practice. To say it in the words of the
famous mathematical optimizer R. Tyrrell Rockafellar, “The great wa-
tershed in optimization is not between linearity and nonlinearity, but
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convexity and nonconvexity.”

When is a given optimization problem a convex optimization prob-
lem? By definition, an optimization problem is convex if its feasible
set is a convex set and if its objective function is a convex function. In
MPC, we usually have freedom in choosing the objective function, and
in most cases one chooses a convex objective function. For example,
the sum of quadratic functions of the form `(x,u) = x0Qx + u0Ru
with positive semidefinite matrices Q and R is a convex function. Usu-
ally, one also chooses the terminal cost Vf to be a convex function, so
that the objective function is a convex function.

Likewise, one usually chooses the terminal set Xf to be a convex
set. For example, one might choose an ellipsoid Xf = {x | x0Px  1}
with a positive definite matrix P , which is a convex set. Very often, one
is lucky and also has convex constraint sets Z, for example box con-
straints on x(k) and u(k). The initial-value constraint (8.1b) restricts
the variable x(0) to be in the point set {x0}, which is convex. Thus,
most of the constraints in the MPC optimization problem usually can
be chosen to be convex. On the other hand, the constraints (8.1c) re-
flect the system dynamics x(k+1) = f(x(k),u(k)) for all k, and these
might or might not describe a convex set. Interestingly, it turns out that
they describe a convex set if the system model is linear or affine, i.e., if
f(x(k),u(k)) = Ax(k)+ Bu(k)+ c with matrices A,B and vector c of
appropriate dimensions. This follows because the solution set of linear
equalities is an affine set, which is convex. Conversely, if the system
model is nonlinear, the solution set of the dynamic constraints (8.1c) is
most likely not a convex set. Thus, we can formulate a modification of
Rockafellar’s statement above: in MPC practice, the great watershed be-
tween convex and nonconvex optimization problems usually coincides
with the division line between linear and nonlinear system models.

One speaks of linear MPC if a linear or affine simulation model is
used, and of nonlinear MPC otherwise. When speaking of linear MPC,
one implicitly assumes that all other constraints and the objective func-
tion are chosen to be convex, but not necessarily linear. In particular, in
linear MPC, the objective function usually is chosen to be convex quad-
ratic. Thus, in the MPC literature, the term linear MPC is used as if
it coincides with “convex linear MPC.” Theoretically possible “noncon-
vex linear MPC” methods, where the system model is linear but where
the cost or constraint sets are not convex, are not of great practical
interest. On the other hand, for nonlinear MPC, i.e., when a nonlin-
ear model is used, convexity usually is lost anyway, and there are no
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implicit convexity assumptions on the objective and constraints, such
that the term nonlinear MPC nearly always coincides with “nonconvex
nonlinear MPC.”

Example 8.1: Nonlinear MPC

We regard a simple MPC optimization problem of the form (8.1) with
one dimensional state x and control u, system dynamics f(x,u) =
x +u� 2u2, initial value x0 = 1, and horizon length N = 1, as follows

minimize
x(0),x(1),u(0)

x(0)2 +u(0)2 + 10x(1)2 (8.2a)

subject to x(0) = x0 (8.2b)

x(1) = x(0)+u(0)� 2u(0)2 (8.2c)

� 1  u(0)  1 (8.2d)

First, we observe that the optimization problem has a three-dimensional
space of optimization variables. To check convexity of the problem,
we first regard the objective, which is a sum of positive quadratic func-
tions, thus a convex function. On the other hand, we need to check
convexity of the feasible set. The initial-value constraint (8.2b) fixes
one of the three variables, thus selects a two-dimensional affine subset
in the three-dimensional space. This subset is described by x(0) = 1
while u(0) and x(1) remain free. Likewise, the control bounds in (8.2d)
cut away all values for u(0) that are less than �1 or more than +1,
thus, there remains only a straight stripe of width 2 in the affine sub-
set, still extending to infinity in the x(1) direction. This straight two-
dimensional stripe still is a convex set. The system equation (8.2c) is a
nonlinear constraint that selects a curve out of the stripe, which is visu-
alized on the left of Figure 8.1. This curve is not a convex set, because
the connecting lines between two points on the curve are not always
contained in the curve. In a formula, the feasible set is given by {(x(0),
x(1),u(0)) | x(0) = 1, u(0) 2 [�1,1], x(1) = 1+u(0)� 2u(0)2}.

Even though the objective function is convex, the fact that the op-
timization problem has a nonconvex feasible set can lead to different
local minima. This is indeed the case in our example. To see this, let
us evaluate the objective function on all feasible points and plot it as a
function of u(0). This reduced objective function  (u) can be obtained
by insertingx(0) = 1 andx(1) = x(0)+u(0)�2u(0)2 into the objective
x(0)2+u(0)2+10x(1)2, which yields (u) = 1+u2+10(1+u�2u2)2 =
11 + 20u � 29u2 � 40u3 + 40u4. This reduced objective is visualized
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Figure 8.1: Feasible set and reduced objective  (u(0)) of the non-
linear MPC Example 8.1.

on the right of Figure 8.1 and it can clearly be seen that two different
locally optimal solutions exist, only one of which is the globally optimal
choice. ⇥

8.1.3 Simultaneous Versus Sequential Optimal Control

The optimal control problem (OCP) (8.1) can be passed to an appro-
priate optimization routine without any modification. In this case, the
optimization variables are given by both, the state trajectory x as well
as the control trajectory u. The pair (x,u) is consistent with the initial
value x0 and the simulation model if and only if the constraints (8.1b)
and (8.1c) are satisfied, which is the case for any feasible solution of
the problem. During the optimization calculations, however, these con-
straints might be violated, and the state trajectory x might not be a valid
simulation corresponding to the controls u. Since the optimization rou-
tine has to simultaneously solve the simulation and the optimization
problem, one calls this approach the simultaneous approach to optimal
control.

On the other hand, one could use the constraints (8.1b)-(8.1c) to find
the unique feasible state trajectory x for any given control trajectory
u. We denote, as before in Chapter 2, the state x(k) that results from
a given initial condition x0 and a given control trajectory u = (u(0),
u(1), . . . , u(N � 1)) by �(k;x0,u). Using this expression, that can be
computed by a simple forward simulation routine, we can replace the
equalities (8.1b)-(8.1c) by the trivial equalities x(k) = �(k;x0,u) for
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k = 0,1, . . . ,N. And these constraints can be used to eliminate the com-
plete state trajectory x = (x(0), x(1), . . . , x(N)) from the optimization
problem. The optimization problem in this reduced variable space is
given by

minimize
u

N�1X

k=0

`(�(k;x0,u),u(k))+ Vf (�(N;x0,u)) (8.3a)

subject to (�(k;x0,u),u(k)) 2 Z, k = 0,1, . . . ,N � 1 (8.3b)

�(N;x0,u) 2 Xf (8.3c)

If this reduced optimization problem is solved by an iterative optimiza-
tion routine, in each iteration, one performs a sequence of two steps.
First, for given u, the simulation routine computes the state trajectory
x, and second, the optimization routine updates the control variables
u to iterate toward an optimal solution. Due to this sequential evalu-
ation of simulation and optimization routines, one calls this approach
the sequential approach to optimal control. Though the simultaneous
and the sequential approach solve equivalent optimization problems,
their approach toward finding the solutions is different.

For linear MPC problems, where the system model is linear, the dif-
ference between the two approaches regards mostly the sparsity struc-
ture of the optimization problem, as discussed in Chapter 6 and in
Section 8.8.4. In this case, one usually calls the reduced optimization
problem (8.3) the condensed problem, and the computational process
to generate the data for the condensed problem (8.3) from the data of
the original problem (8.1) is called condensing. Though the condensed
problem has fewer variables, the matrices defining it may have more
nonzero entries than the original problem. Which of the two formula-
tions leads to shorter computation times for a given problem depends
on the number of states, controls and constraints, the specific sparsity
structures, and on the horizon length N. For small N, condensing is
typically preferable, while for large N, it is advisable to apply a sparse
convex solver to the original problem in the full variable space. Despite
the different sparsity structure, and different cost per iteration, many
widely used convex optimization algorithms perform identical iterates
on both problems, because the eliminated constraints are linear and
are exactly respected in each iteration in both the condensed as well as
the original problem formulation.

For nonlinear MPC problems, the sequential and simultaneous ap-
proach can lead to significantly different optimization iterations. Even
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if both problems are addressed with the same optimization algorithm
and are initialized with the same initial guess, i.e., the same u for both,
together with the corresponding simulation result x, the optimization
iterations typically differ after the first iteration, such that the two for-
mulations can need a significantly different number of iterations to
converge; they might even converge to different local solutions or one
formulation might converge while the other does not. As a rule of
thumb, the sequential approach is preferable if the optimization solver
cannot exploit sparsity and the system is stable, while the simultaneous
approach is preferable for unstable nonlinear systems, for problems
with state constraints, and for systems which need implicit simulation
routines.

Example 8.2: Sequential approach

We regard again the simple MPC optimization problem (8.2a), but elim-
inate the states as a function of u = (u(0)) by x(0) = �(0;x0,u) = x0

and x(1) = �(1;x0,u) = x0+u(0)�2u(0)2. The reduced optimization
problem in the sequential approach is then given by

minimize
u(0)

x2
0 +u(0)2 + 10

⇣
x0 +u(0)� 2u(0)2

⌘2
(8.4a)

subject to � 1  u(0)  1 (8.4b)

⇥

8.1.4 Continuous Time Optimal Control Problem

In most nonlinear MPC applications and many linear MPC applications,
the system dynamics are not given in discrete time but in continuous
time, in form of differential equations

dx
dt

= fc(x,u)

For notational convenience, we usually denote differentiation with re-
spect to time by a dot above the quantity, i.e., we can abbreviate the
above equations by ẋ = fc(x,u). Both the state and control trajecto-
ries are functions of continuous time, and we denote them by x(t) and
u(t). The trajectories need only to be defined on the time horizon of
interest, i.e., for all t 2 [0, T ], where T is the horizon length. If we do
not assume any discretization, and if we use the shorthand symbols
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x(·) and u(·) to denote the state and control trajectories, the continu-
ous time optimal control problem (OCP) can be formulated as follows

minimize
x(·),u(·)

Z T

0
`c(x(t),u(t)) dt + Vf (x(T)) (8.5a)

subject to x(0) = x0 (8.5b)

ẋ(t) = fc(x(t),u(t)), t 2 [0, T ] (8.5c)

(x(t),u(t)) 2 Z, t 2 [0, T ] (8.5d)

x(T) 2 Xf (8.5e)

It is important to note that the continuous time optimal control
problem is an infinite-dimensional optimization problem with infinite-
dimensional decision variables and an infinite number of constraints,
because the time index t runs through infinitely many values t 2 [0, T ].
This is in contrast to discrete time, where the finite number of time in-
dices k 2 I0:N leads to finitely many decision variables and constraints.

There exists a variety of methods to numerically solve continuous
time OCPs. What all approaches have in common is that at one point,
the infinite-dimensional problem needs to be discretized. One fam-
ily of methods first formulates what is known as the Hamilton-Jacobi-
Bellman (HJB) equation, a partial differential equation for the value
function, which depends on both state space and time, and then dis-
cretizes and solves it. Unfortunately, due to the “curse of dimensional-
ity,” this approach is only practically applicable to systems with small
state dimensions, say less than five, or to the special case of uncon-
strained linear systems with quadratic costs.

A second family of methods, the indirect methods, first derive opti-
mality conditions in continuous time by algebraic manipulations that
use similar expressions as the HJB equation; they typically result in the
formulation of a boundary-value problem (BVP), and only discretize the
resulting continuous time BVP at the very end of the procedure. One
characterizes the indirect methods often as “first optimize, then dis-
cretize.” A third class of methods, the direct methods, first discretizes
the continuous time OCP, to convert it into a finite-dimensional opti-
mization problem. The finite-dimensional optimization problem can
then be solved by tailored algorithms from the field of numerical op-
timization. The direct methods are often characterized as “first dis-
cretize, then optimize.” These methods are most widely used in MPC
applications and are therefore the focus of this chapter.
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To sketch the discretization methods, we look at the continuous
time optimal control problem (8.5). In a direct method, we replace
the continuous index t 2 [0, T ] by a discrete integer index. For this
aim, we can divide the time horizon T into N intervals, each of length
h = T

N , and evaluate the quantities of interest only for the discrete time
points t = hk with k 2 I0:N . We use the notation hI0:N = {0, h,2h, . . . ,
Nh}, such that we can use the expression “t 2 hI0:N” to indicate that
t is only considered at these discrete time points. To discretize the
OCP, the objective integral is replaced by a Riemann sum, and the time
derivative by a finite difference approximation: ẋ(t) ⇡ x(t+h)�x(t)

h . As
before in discrete time, we denote the sequence of discrete states by
x = (x(0), x(h),x(2h), . . . , x(Nh)) and the sequence of controls by
u = (u(0),u(h), . . . , u(Nh� h)).

minimize
x,u

X

t2hI0:N�1

h`c(x(t),u(t)) + Vf (x(Nh)) (8.6a)

subject to x(0) = x0 (8.6b)

x(t+h)�x(t)
h

= fc(x(t),u(t)), t 2 hI0:N�1 (8.6c)

(x(t),u(t)) 2 Z, t 2 hI0:N�1 (8.6d)

x(Nh) 2 Xf (8.6e)

It is easily checked that the constraints (8.6b)-(8.6c) uniquely determine
all states x if the control sequence u is given. The above problem is ex-
actly in the form of the discrete time optimization problem (8.1), if one
uses the definitions `(x,u) := h`c(x,u) and f(x,u) := x + hfc(x,u).
This simple way to go from continuous to discrete time, in particular
the idea to solve a differential equation ẋ = fc(x,u) by the simple
difference method x+ = x + hfc(x,u), is originally due to Leonhard
Euler (1707–1783), and is therefore called the Euler integration method.
The Euler method is not the only possible integration method, and in
fact, not the most efficient one. Numerical analysts have investigated
the simulation of differential equations for more than two centuries,
and discovered powerful discretization methods that have much lower
computational cost and higher accuracy than the Euler method and are
therefore more widely used in practice. These are the topic of the next
section.
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8.2 Numerical Simulation

The classical task of numerical simulation is the solution of initial-value
problems. An initial-value problem is characterized by an initial state
value x0 at time 0, and a differential equation ẋ = f(t, x) that the
solution x(t) should satisfy on the time interval of interest, i.e., for all
t 2 [0, T ] with T > 0. In particular, we are interested in computing
an approximation of the final state x(T). In this section, we allow an
explicit dependence of the right-hand-side function f(t, x) on time. To
be consistent with the literature in the field of numerical simulation—
and deviating from the notation in other chapters of this book—we use
t here as the first input argument of f(t, x). The time dependence
might in particular be due to a fixed control trajectory u(t), and if a
given system is described by the continuous time ODE ẋ = fc(x,u), the
time dependent right-hand-side function is defined by f(t, x) := fc(x,
u(t)). The choice of the control trajectory u(t) is not the focus in
this section, but becomes important later when we treat the solution
of optimal control problems. Instead, in this section, we just review
results from the field of numerical simulation of ordinary differential
equations—which is sometimes also called numerical integration—that
are most relevant to continuous time optimal control computations.

Throughout this section we consider the following initial-value
problem

x(0) = x0, ẋ(t) = f(t, x(t)) for t 2 [0, T ] (8.7)

with a given right-hand-side function f : [0, T ]⇥Rn ! Rn. We denote
the exact solution, if it exists, by x(t). Existence of a unique solution of
the initial-value problem is guaranteed by a classical theorem by Émile
Picard (1856–1941) and Ernst Lindelöf (1870–1946), which requires the
function f to be continuous with respect to time t and Lipschitz contin-
uous with respect to the state x. Lipschitz continuity is stronger than
continuity and requires the existence of a constant L > 0 such that the
following inequality

��f(t, x)� f(t,y)
��  L

��x �y
�� (8.8)

holds for all t 2 [0, T ] and all x,y 2 Rn. In many cases of interest,
the function f is not defined on the whole state space, or there might
exist no global Lipschitz constant L for all states x and y . Fortunately,
a local version of the Picard-Lindelöf Theorem exists that only needs
Lipschitz continuity in a neighborhood of the point (0, x0) and still
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ensures the existence of a unique solution x(t) for sufficiently small
T . Local Lipschitz continuity is implied by continuous differentiabil-
ity, which is easy to verify and holds for most functions f arising in
practice. In fact, the function f usually is many times differentiable in
both its arguments, and often even infinitely many times—for example,
in the case of polynomials or other analytic functions. The higher dif-
ferentiability of f also leads to higher differentiability of the solution
trajectory x(t) with respect to t, and is at the basis of the higher-order
integration methods that are widely used in practice.

Because all numerical integration methods produce only approxi-
mations to the true solution x(t), we use a different symbol for these
approximations, namely xe(t). The numerical approximation is usu-
ally only exact for the initial value, where we simply set xe(0) := x0.
For the final state at time T , we aim to have a small error E(T) :=��xe(T)� x(T)

��, at low computational cost. All integration methods di-
vide the time horizon of interest into smaller intervals, and proceed by
making a sequence of integration steps, one per interval. For simplic-
ity, assume that the steps are equidistant, and that in total N steps of
size h = T/N are taken. In each step, the integration method makes a
local error, and the combined effect of the accumulated local errors at
time t, i.e., the distance E(t) =

��xe(t)� x(t)
��, is called the global error.

After the first integrator step, local and global error coincide because
the integration starts on the exact trajectory, but in subsequent steps,
the global error typically grows while the local errors remain of similar
size.

8.2.1 Explicit Runge-Kutta Methods

Let us first investigate the Euler integrator, that iterates according to
the update rule

xe(t + h) = xe(t)+ hf(t, xe(t))

starting withxe(0) = x0. Which local error do we make in each step? For
local error analysis, we assume that the starting point xe(t) was on an
exact trajectory, i.e., equal tox(t), while the result of the integrator step
xe(t+h) is different from x(t+h). For the analysis, we assume that the
true trajectory x(t) is twice continuously differentiable with bounded
second derivatives, which implies that its first-order Taylor series satis-
fies x(t+h) = x(t)+hẋ(t)+O(h2), where O(h2) denotes an arbitrary
function whose size shrinks faster than h2 for h ! 0. Since the first
derivative is known exactly, ẋ(t) = f(t, x(t)), and was used in the Euler
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integrator, we immediately obtain that
��xe(t + h)� x(t + h)

�� = O(h2).
Because the global error is the accumulated and propagated effect of
the local errors, and because the total number of integrator steps grows
linearly with 1/h, one can show that the global error at the end of the
interval of interest is of size 1/h O(h2) = O(h), i.e., of first order. For
this reason one says that the Euler method is a first-order integration
method. The Euler integrator is easy to remember and easy to imple-
ment, but the number of time steps that are needed to obtain even a
moderate accuracy can be reduced significantly if higher-order meth-
ods are used.

Like the Euler integrator, all one-step integration methods create a
discrete time system of the form

xe(t + h) = xe(t)+ �(t, xe(t), h)

Here, the map � approximates the integral
R t+h
t f (⌧, x(⌧)) d⌧ . If �

would be equal to this integral, the integration method would be exact,
due to the identity

x(t + h)� x(t) =
Z t+h

t
ẋ(⌧) d⌧ =

Z t+h

t
f (⌧, x(⌧)) d⌧

While the Euler integrator approximates the integral by the expression
�(t, x,h) = hf(t, x(t)) that has an error of O(h2) and needs only
one evaluation of the function f per step, one can find more accurate
approximations by allowing more than one function evaluation per in-
tegration step. This idea leads directly to the Runge-Kutta (RK) integra-
tion methods, that are named after Carl Runge (1856–1927) and Martin
Wilhelm Kutta (1867–1944).

The classical Runge-Kutta method (RK4). One of the most widely
used methods invented by Runge and Kutta performs four function
evaluations, as follows.

k1 = f(t, x)
k2 = f(t + h/2, x + (h/2)k1)
k3 = f(t + h/2, x + (h/2)k2)
k4 = f(t + h,x + hk3)
� = (h/6)k1 + (h/3)k2 + (h/3)k3 + (h/6)k4

It is a fourth-order method, and therefore often abbreviated RK4. Since
it is one of the most competitive methods for the accuracies that are
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typically needed in applications, the RK4 integrator is one of the most
widely used integration methods for simulation of ordinary differential
equations. A comparison of the RK4 method with Euler’s first-order
method and a second-order method named after Karl Heun (1859–
1929) is shown in Figure 8.2.

Example 8.3: Integration methods of different order

We regard the simulation of the linear ordinary differential equation
(ODE)

ẋ = Ax with A =
"

0 1
�1 0

#

over the interval T = 2⇡ , starting at x0 = [1,0]0. The analytic solution
of this system is known to be x(t) = exp(At)x0 = [cos(t),� sin(t)]0,
such that the final state is given by x(2⇡) = [1,0]0. To investigate
the performance of different methods, we divide the time horizon into
N equal integration intervals of length h = 2⇡/N. Note that a Runge-
Kutta method with s stages needs in totalM := Ns function evaluations.
We compare the Euler (s = 1), Heun (s = 2), and RK4 method (s = 4).
For each integration method we evaluate the global error at the end
of the integration interval, E(2⇡) =

��xe(2⇡)� x(2⇡)
��, and plot it as

a function of the number of function evaluations, M , in Figure 8.2.
We use a doubly logarithmic scale, i.e., plot log(✏) versus log(M), to
show the effect of the order. Note that the slope of the higher-order
methods is an integer multiple of the slope of the Euler method. Also
note that the accuracy for each investigated method cannot exceed a
certain base value due to the finite precision arithmetic, and that this
limit is reached for the RK4 integrator at approximatelyM = 105. After
this point, increasing the number of integration steps does not further
improve the accuracy. ⇥

The Butcher tableau. A general explicit Runge-Kutta method with s
stages performs the following computations in each integration step

k1 = f(t+c1h, x )
k2 = f(t+c2h, x + h (a21k1) )
k3 = f(t+c3h, x + h (a31k1 + a32k2) )

...
. . .

ks = f(t+csh, x + h (as1k1 + . . . + as,s�1ks�1) )

� = h (b1 k1 + . . . + bs�1 ks�1 + bs ks)
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(b) Simulation results for M = 32.

Figure 8.2: Performance of different integration methods.

It is important to note that on the right-hand side of each row, only
those ki values are used that are already computed. This property
holds for every explicit integration method, and makes it possible to
explicitly evaluate the first s equations one after the other to obtain
all values k1, . . . , ks for the summation in the last line. One usually
summarizes the coefficients of a Runge-Kutta method in what is known
as a Butcher tableau (after John C. Butcher, born 1933) given by

c1

c2 a21

c3 a31 a32
...

. . .
. . .

cs as1 · · · as,s�1

b1 b2 · · · bs

The Butcher tableau of three popular RK methods is stated below

Euler

0
1

Heun

0
1 1

1/2 1/2

RK4

0
1/2 1/2
1/2 0 1/2

1 0 0 1
1/6 2/6 2/6 1/6

Note that the bi coefficients on the bottom always add to one. An
interesting fact is that an s-stage explicit Runge-Kutta method can never
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have a higher order than s. And only for orders equal or less than four
exist explicit Runge-Kutta methods for which the order and the number
of stages coincide.

8.2.2 Stiff Equations and Implicit Integrators

Unfortunately, some differential equations cannot reliably be solved by
explicit integration methods; it can occur that even if the underlying
ODE is stable, the integration method is not. Let us regard the scalar
linear ODE

ẋ = �x

with initial condition x0 as a test case. The exact solution is known to
be x(t) = e�tx0. When this ODE is solved by an explicit Euler method,
it iterates like x+ = x + h�x and it is easy to see that the explicit so-
lution is given by xe(kh) = (1 + h�)kx0. For positive �, this leads to
exponential growth, which is not surprising given that the exact ODE
solution grows exponentially. If � is a large negative number, how-
ever, the exact solution x(t) would decay very fast to zero, while the
Euler integrator is unstable and oscillates with exponentially growing
amplitude if h is larger than 2/(��). A similar observation holds for
all explicit integration methods.

The most perturbing fact is that the explicit integration methods
are extremely unstable exactly because of the fact that the system is
extremely stable. Extremely stable ODEs are called stiff equations. For
stiff ODE ẋ = f(t, x), some of the eigenvalues of the Jacobian fx have
extremely large negative real parts, which lead to extremely stable sub-
dynamics. Exactly these extremely stable subdynamics let the explicit
integrators fail; even for relatively short stepsizes h, they overshoot
the true solution and exhibit unstable oscillations. These oscillations
do not just lead to inaccurate solutions, but in fact they quickly ex-
ceed the range of computer representable numbers (10308 for double
precision), such that the explicit integrator just outputs “NaN” (“not a
number”) most of the time.

Fortunately, there exist integration methods that remain stable even
for stiff ODE. Their only drawback is that they are implicit, i.e., they re-
quire the solution of an equation system to compute the next step. The
simplest of these implicit methods is called the implicit Euler method
and it iterates according to

x+ = x + hf(t + h,x+)
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Note that the desired output value x+ appears also on the right side of
the equation. For the scalar linear ODE ẋ = �x, the implicit Euler step
is determined by x+ = x+h�x+, which can explicitly be solved to give
x+ = x/(1 � h�). For any negative �, the denominator is larger than
one, and the numerical approximation xe(kh) = x0/(1 � h�)k there-
fore decays exponentially, similar to the exact solution. An integration
method which has the desirable property that it remains stable for the
test ODE ẋ = �x whenever Re(�) < 0 is called A-stable. While none of
the explicit Runge-Kutta methods is A-stable, the implicit Euler method
is A-stable. But it has a low order. Can we devise A-stable methods that
have a higher order?

8.2.3 Implicit Runge-Kutta and Collocation Methods

Once we accept that we need to solve a nonlinear equation system in or-
der to compute an integration step, we can extend the family of Runge-
Kutta methods by allowing diagonal and upper-triangular entries in the
Butcher tableau. Our hope is to find integration methods that are both
A-stable and have a high order. A general implicit Runge-Kutta method
with s stages solves the following nonlinear system in each integration
step

k1 = f(t + c1h , x + h ( a11k1 + a12k2 + . . . + a1,sks) )
k2 = f(t + c2h , x + h ( a21k1 + a22k2 + . . . + a2,sks) )

...
...

...
ks = f(t + csh , x + h ( as1k1 + as,2k2 + . . . + as,sks) )

� = h ( b1 k1 + b2 k2 + . . . + bs ks )

Note that the upper s equations are implicit and form a root-finding
problem with sn nonlinear equations in sn unknowns, where s is the
number of RK stages and n is the state dimension of the differen-
tial equation ẋ = f(t, x). Nonlinear root-finding problems are usually
solved by Newton’s method, which is treated in the next section. For
Newton’s method to work, one has to assume that the Jacobian of the
residual function is invertible. For the RK equations above, this can be
shown to always hold if the time step h is sufficiently small, depending
on the right-hand-side function f . After the values k1, . . . , ks have been
computed, the last line can be executed and yields the resulting map
�(t, x,h). The integrator then uses the map � to proceed to the next
integration step exactly as the other one-step methods, according to
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the update equation

xe(t + h) = xe(t)+ �(t, xe(t), h)

For implicit integrators, contrary to the explicit ones, the map � cannot
easily be written down as a series of function evaluations. Evaluation of
�(t, x,h) includes the root-finding procedure and typically needs sev-
eral evaluations of the root-finding equations and of their derivatives.
Thus, an s-stage implicit Runge-Kutta method is significantly more ex-
pensive per step compared to an s-stage explicit Runge-Kutta method.
Implicit integrators are usually preferable for stiff ordinary differential
equations, however, due to their better stability properties.

Many different implicit Runge-Kutta methods exist, and each of
them can be defined by its Butcher tableau. For an implicit RK method,
at least one of the diagonal and upper-triangular entries (aij with j � i)
is nonzero. Some methods try to limit the implicit part for easier com-
putations. For example, the diagonally implicit Runge-Kutta methods
have only the diagonal entries nonzero while the upper-triangular part
remains zero.

Collocation methods. One particularly popular subclass of implicit
Runge-Kutta methods is formed by the collocation methods. An s-stage
collocation method first fixes the values ci of the Butcher tableau, and
chooses them so that they are all different and in the unit interval,
i.e., 0  c1 < c2 < . . . < cs  1. The resulting time points (t + hci)
are called the collocation points, and their choice uniquely determines
all other entries in the Butcher tableau. The idea of collocation is to
approximate the trajectory on the collocation interval by a polynomial
xe(⌧) for ⌧ 2 [t, t+h], and to require satisfaction of the ODE ẋ = f(t, x)
only on the collocation points, i.e., impose the conditions ẋe(t +hci) =
f(t+hci, xe(t+hci)) for i = 1, . . . , s. Together with the requirement that
the approximating polynomial xe(⌧) should start at the initial value, i.e.,
xe(t) = x, we have (s + 1) conditions such that the polynomial needs
to have (s+1) coefficients, i.e., have the degree s, to yield a well-posed
root-finding problem.

The polynomial xe(⌧) can be represented in different ways, which
are related via linear basis changes and therefore lead to numerically
equivalent root-finding problems. One popular way is to parameterize
xe(⌧) as the interpolating polynomial through the initial value x and the
state values at the collocation points. This only gives a unique param-
eterization if c1 î 0. To have a more generally applicable derivation
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of collocation, we use instead the value x together with the s deriva-
tive values k1, . . . , ks at the collocation time points to parameterize
xe(⌧). More precisely, we use the identity xe(⌧) = x +

R ⌧
t ẋe(⌧1;k1, k2,

. . . , ks) d⌧1, where ẋe(·) is the time derivative of xe(⌧), and therefore a
polynomial of degree (s � 1) that can be represented by s coefficients.
Fortunately, due to the fact that all collocation points are different, the
interpolating polynomial through the s vectors k1, . . . , ks is well defined
and can easily be represented in a Lagrange basis, with basis functions
Li
⇣
⌧�t
h

⌘
that are one on the i-th collocation point and zero on all oth-

ers.1 Collocation thus approximates ẋ(⌧) by the polynomial

ẋe(⌧ ;k1, k2, . . . , ks) := k1L1

✓⌧ � t
h

◆
+k2L2

✓⌧ � t
h

◆
+ . . .+ksLs

✓⌧ � t
h

◆

and x(⌧) by its integral

xe(⌧ ;x,k1, k2, . . . , ks) := x +
Z ⌧

t
ẋe(⌧1;k1, k2, . . . , ks) d⌧1

To obtain the state at the collocation point (t + cih), we just need to
evaluate xe(t + cih;x,k1, k2, . . . , ks), which is given by the following in-
tegral

x +
Z t+cih

t
ẋe(⌧1;k1, k2, . . . , ks) d⌧1 = x +

sX

j=1

kjh
Z ci

0
Lj(�) d�

| {z }
=:aij

Note that the integrals over the Lagrange basis polynomials depend
only on the relative positions of the collocation time points, and directly
yield the coefficients aij . Likewise, to obtain the coefficients bi, we
evaluate xe(t + h;x,k1, k2, . . . , ks), which is given by

x +
Z t+h

t
ẋe(⌧ ;k1, k2, . . . , ks) d⌧ = x +

sX

i=1

kih
Z 1

0
Li(�) d�

| {z }
=:bi

In Figure 8.3, the difference between the exact solution x(⌧) and the
collocation polynomial xe(⌧) as well as the difference between their

1The Lagrange basis polynomials are defined by

Li(�) :=
Y

1js, jîi

(� � cj)
(ci � cj)
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ẋ1

k1

k2
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Figure 8.3: Polynomial approximation xe1(t) and true trajectory
x1(t) of the first state and its derivative, computed at
the first integration step of the GL4 collocation method
applied to the stiff ODE from Example 8.4. Note that the
accuracy of the polynomial at the end of the interval is
significantly higher than in the interior. The result of this
first GL4 step can also be seen on the right side of Fig-
ure 8.4.

time derivatives is visualized, for a collocation method with s = 2 col-
location points (GL4) applied to the ODE from Example 8.4. Note that
in this example, ẋe(⌧ ;k1, k2, . . . , ks) is a polynomial of order one, i.e., an
affine function, and its integral, xe(⌧ ;x,k1, k2, . . . , ks), is a polynomial
of order two.

The Butcher tableau of three popular collocation methods is

Implicit
Euler

1 1
1

Midpoint
rule (GL2)

1/2 1/2
1

Gauss-Legendre
of order 4 (GL4)

1/2�
p

3/6 1/4 1/4�
p

3/6
1/2+

p
3/6 1/4+

p
3/6 1/4

1/2 1/2
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An interesting remark is that the highest order that an s-stage implicit
Runge-Kutta method can achieve is given by 2s, and that the Gauss-
Legendre collocation methods achieve this order, due to a particularly
smart choice of collocation points (namely as roots of the orthogonal
Legendre polynomials, following the idea of Gaussian quadrature). The
midpoint rule is a Gauss-Legendre method of second order (GL2). The
Gauss-Legendre methods, like many other popular collocation meth-
ods, are A-stable. Some methods, such as the Radau IIA collocation
methods, have even stronger stability properties (they are also L-stable),
and are often preferable for stiff problems. All collocation methods
need to solve a nonlinear system of equations in ns dimensions in each
step, which can become costly for large state dimensions and many
stages.

Example 8.4: Implicit integrators for a stiff ODE system

We consider the following ODE

ẋ = Ax � 500x (|x|2 � 1)

with A and initial conditions as before in Example 8.3. In contrast to
the previous example, this ODE is nonlinear and stiff, due to the ad-
ditive nonlinear term �500x (|x|2 � 1). This term is zero only if the
norm of x is one, i.e., if the state lies on the unit circle. If not, the
state is strongly pushed toward the unit circle. This makes the system
a stiff ODE. As we start at [1,0]0, the exact solution lies again on the
unit circle, and also ends at [1,0]0. For comparison, we solve the initial
value problem with three implicit integration methods, all of colloca-
tion type (implicit Euler, GL2, GL4). To have an approximate measure of
the computational costs of the different methods, we denote by M the
total number of collocation points on the time horizon. The results are
shown in Figure 8.4. On the left-hand side, the different order behav-
ior is observed. On the right-hand side, the trajectories resulting from
a total of M = 10 collocation points are shown for the three different
methods. In Figure 8.3, the first step of the GL4 method is visualized in
detail, showing both the trajectory of the first state as well as its time
derivative, together with their polynomial approximations. ⇥

8.2.4 Differential Algebraic Equations

Some system models do not only contain differential, but also algebraic
equations, and therefore belong to the class of differential algebraic
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Figure 8.4: Performance of implicit integration methods on a stiff
ODE.

equations (DAEs). The algebraic equations might, for example, reflect
conservation laws in chemical reaction models or kinematic constraints
in robot models. DAE models come in many different forms, some
of which are easier to treat numerically than others. One particularly
favorable class of DAE are the semiexplicit DAE of index one, which can
be written as

ẋ = f(t, x, z) (8.9a)

0 = g(t, x, z) (8.9b)

Here, the differential states x 2 Rn are accompanied by algebraic states
z 2 Rnz , and the algebraic states are implicitly determined by the alge-
braic equations (8.9b). Here, the number of algebraic equations is equal
to the number of algebraic states, i.e., g : R ⇥ Rn ⇥ Rnz ! Rnz , such
that for fixed t and x, the algebraic equation (8.9b) forms a nonlinear
system of nz equations for nz unknowns.

The assumption of index one requires the Jacobian matrix of g with
respect to z to be invertible at all points of interest. The fact that ẋ
appears alone on the left side of the differential equation (8.9a) makes
the DAE semiexplicit. An interesting observation is that it is possible to
reduce a semiexplicit DAE of index one to an ODE if one finds an explicit
symbolic expression z⇤(t, x) for the implicit function defined by g(t, x,
z⇤(t, x)) = 0. The resulting ODE that is equivalent to the original DAE
is given by ẋ = f(t, x, z⇤(t, x)). Usually, this reduction from an index-
one DAE to an ordinary differential equation is not possible analytically.
A numerical computation of z⇤(t, x) is always possible in principle, but
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requires the use of an underlying root-finding method. This way it is
possible to solve a DAE with explicit integration methods. For implicit
integration methods, however, one can simply augment the nonlinear
equation system by the algebraic equations g at all evaluation points
of the right-hand-side of the differential function f , and then rely on
the root-finding method of the integrator. For this reason, and because
they are often stiff, DAE are usually addressed with implicit integrators.

8.2.5 Integrator Adaptivity

Many practical integration methods use an adaptive stepsize selection
to attain a good trade-off between numerical accuracy and computa-
tional effort. Instead of performing steps of equal length h, adaptive
methods vary h in each step. Usually, they try to keep an estimate of
the local error constant. The details are beyond our interest here, but
we note that integrator adaptivity can be a crucial feature for the ef-
ficiency of nonlinear MPC implementations, in particular for the long
simulation intervals which appear when one appends a prediction hori-
zon at the end of the control horizon. On the other hand, integrator
adaptivity needs to be treated with care when numerical derivatives of
the simulation result are computed, as discussed in Section 8.4.6.

8.3 Solving Nonlinear Equation Systems

We have seen that an important subtask within numerical simulation—
as well as in numerical optimization—is the solution of nonlinear equa-
tion systems. In this section, we therefore discuss the basic technolo-
gies that make it possible to solve implicit equation systems with thou-
sands of unknowns within a few milliseconds. We start with linear
equations, and then proceed to nonlinear equations and their solution
with Newton-type methods.

8.3.1 Linear Systems

Solving a linear system of equations Az = b with a square invert-
ible matrix A 2 Rnz⇥nz is an easy task in the age of digital comput-
ers. The direct solution of the system requires only two computational
steps: first, a factorization of the matrix A, for example, a lower-upper-
factorization (LU-factorization) that yields a lower-triangular matrix L
and an upper-triangular matrix U such that LU = A. Second, one



508 Numerical Optimal Control

needs to perform a forward and a back substitution, yielding the so-
lution as z = U�1(L�1b). The computation of the LU-factorization, or
LU-decomposition, requires (2/3)n3

z floating-point operations (FLOPs),
while the forward and back substitution require togethern2

z operations.
Additional row or column permutations—in a process called pivoting—
usually need to be employed and improve numerical stability, but only
add little extra computational cost. The LU-decomposition algorithm
was introduced by Alan Turing (1912–1954), and can be traced back to
Gaussian elimination, after Carl Friedrich Gauss (1777–1855). Solving
a dense linear system with nz = 3000 variables needs about 18 · 109

FLOPs, which on a current quadcore processor (2.9 GHz Intel Core i5)
need only 600 ms.

The runtime of the LU-decomposition and the substitutions can sig-
nificantly be reduced if the matrix A is sparse, i.e., if it has many more
zero than nonzero entries. Sparsity is particularly simple to exploit
in case of banded matrices, which have their nonzero entries only in
a band around the diagonal. Tailored direct methods also can exploit
other structures, like block sparsity, or symmetry of the matrix A. For
symmetric A, one usually performs a lower-diagonal-lower-transpose-
factorization (LDLT-factorization) of the form LDL0 = A (with lower-
triangular L and diagonal D), which reduces the computational cost by
a factor of two compared to an LU-factorization. For symmetric and
positive definite matrices A, one can even apply a Cholesky decomposi-
tion of the form LL0 = A, with similar costs as the LDLT-factorization.

For huge linear systems that cannot be addressed by direct factor-
ization approaches, there exist a variety of indirect or iterative solvers.
Linear system solving is one of the most widely used numerical tech-
niques in science and engineering, and the field of computational lin-
ear algebra is investigated by a vibrant and active research community.
Contrary to only a century ago, when linear system solving was a te-
dious and error-prone task, today we rarely notice when we solve a
linear equation, e.g., by using the backslash operator in MATLAB in the
expression A\b, because computational linear algebra is such a reliable
and mature technology.

8.3.2 Nonlinear Root-Finding Problems

A more difficult situation occurs when a nonlinear equation system
R(z) = 0 needs to be solved, for example, in each step of an im-
plicit Runge-Kutta method, or in nonlinear optimization. Depending



8.3 Solving Nonlinear Equation Systems 509

on the problem, one can usually not even be sure that a solution z0

with R(z0) = 0 exists. And if one has found a solution, one usually
cannot be sure that it is the only one. Despite these theoretical diffi-
culties with nonlinear root-finding problems, they are nearly as widely
formulated and solved in science and engineering as linear equation
systems.

In this section we therefore consider a continuously differentiable
function R : Rnz ! Rnz , z , R(z), where our aim is to solve the non-
linear equation

R(z) = 0

Nearly all algorithms to solve this system derive from an algorithm
called Newton’s method or Newton-Raphson method that is accredited
to Isaac Newton (1643–1727) and Joseph Raphson (about 1648–1715),
but which was first described in its current form by Thomas Simpson
(1710–1761). The idea is to start with an initial guess z0, and to gener-
ate a sequence of iterates (zk)1k=0 by linearizing the nonlinear equation
at the current iterate

R(zk)+
@R
@z
(zk)(z � zk) = 0

This equation is a linear system in the variable z, and if the Jacobian
J(zk) := @R

@z (zk) is invertible, we can explicitly compute the next iterate
as

zk+1 = zk � J(zk)�1R(zk)

Here, we use the notation J(zk)�1R(zk) as a shorthand for the algo-
rithm that solves the linear system J(zk)�z = R(zk). In the actual
computation of a Newton step, the inverse J(zk)�1 is never computed,
but only a LU-decomposition of J(zk), and a forward and a back sub-
stitution, as described in the previous subsection.

More generally, we can use an invertible approximationMk of the Ja-
cobian J(zk), leading to the Newton-type methods. The general Newton-
type method iterates according to

zk+1 = zk �M�1
k R(zk)

Depending on how closely Mk approximates J(zk), the local conver-
gence can be fast or slow, or the sequence may even not converge. The
advantages of using an Mk that is different from J(zk) could be that it
can be chosen to be invertible even if J(zk) is not, or that computation
of Mk, or of its factorization, can be cheaper. For example, one could
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Figure 8.5: Newton-type iterations for solution of R(z) = 0 from Ex-
ample 8.5. Left: exact Newton method. Right: constant
Jacobian approximation.

reuse one matrix and its factorization throughout several Newton-type
iterations.

Example 8.5: Finding a fifth root with Newton-type iterations

We find the zero of R(z) = z5 � 2 for z 2 R. Here, the derivative is
@R
@z (z) = 5z4, such that the Newton method iterates

zk+1 = zk � (5z4
k)
�1(z5

k � 2)

When starting at z0 = 2, the first step is given by z1 = 2� (80)�1(32�
2) = 13/8, and the following iterates quickly converge to the solution
z⇤ with R(z⇤) = 0, as visualized in Figure 8.5 on the left side.

Alternatively, we could use a Jacobian approximation Mk î J(zk),
e.g., the constant value Mk = 80 corresponding to the true Jacobian at
z = 2. The resulting iteration would be

zk+1 = zk � (80)�1(z5
k � 2)

When started at z0 = 2 the first iteration would be the same as for New-
ton’s method, but then the Newton-type method with constant Jacobian
produces a different sequence, as can be seen on the right side of Fig-
ure 8.5. Here, the approximate method also converges; but in general,
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when does a Newton-type method converge, and when it converges,
how quickly? ⇥

8.3.3 Local Convergence of Newton-Type Methods

Next we investigate the conditions on R(z), z0 and on Mk required to
ensure local convergence of Newton-type iterations. In particular we
discuss the speed of convergence. In fact, even if we assume that a
sequence of iterates zk 2 Rn converges to a solution point z⇤, i.e., if
zk ! z⇤, the rate of convergence can be painstakingly slow or light-
ning fast. The speed of convergence can make the difference between
a method being useful or useless for practical computations. Math-
ematically speaking, a sequence (zk) is said to converge q-linearly if
there exists a positive integer k0 and a positive real number cmax < 1,
and sequence (ck)1k0

such that for all k � k0 holds that ck  cmax and
that ��zk+1 � z⇤

��  ck
��zk � z⇤

�� (8.10)

If in addition, ck ! 0, the sequence is said to converge q-superlinearly.
If in addition, ck = O(|zk � z⇤|), the sequence is said to converge q-
quadratically.2

Example 8.6: Convergence rates

We discuss and visualize four examples with zk 2 (0,1) and zk ! 0,
see Figure 8.6.

• zk = 1
2k converges q-linearly: zk+1

zk = 1
2

• zk = 0.99k also converges q-linearly: zk+1
zk = 0.99. This example

converges very slowly. In practice we desire cmax to be smaller
than, say, 1

2

• zk = 1
k! converges q-superlinearly, as zk+1

zk = 1
k+1

• zk = 1
22k converges q-quadratically, because zk+1

(zk)2 =
(22k )2

22k+1 = 1 <
1. For k = 6, zk = 1

264 ⇡ 0. This is a typical feature of q-quadratic
convergence: often, convergence up to machine precision is ob-
tained in about six iterations. ⇥

2The historical prefix “q” stands for “quotient,” to distinguish it from a weaker form
of convergence that is called “r-convergence,” where “r” stands for “root.”
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Figure 8.6: Convergence of different sequences as a function of k.

Local convergence of a Newton-type method can be guaranteed by the
following classical result (see, e.g., Bock (1983) or Deuflhard (2011)),
which also specifies the rate of convergence.

Theorem 8.7 (Local contraction for Newton-type methods). Regard a
nonlinear continuously differentiable function R : D ! Rnz defined on
an open domain D ⇢ Rnz and a solution point z⇤ 2 D with R(z⇤) = 0.
We start the Newton-type iteration with the initial guess z0 2 D and
iterate according to zk+1 = zk�M�1

k R(zk). The sequence (zk) converges
at least q-linearly to z⇤ and obeys the contraction inequality

��zk+1�z⇤
�� 

✓
k+

!
2

��zk�z⇤
��
◆��zk�z⇤

�� (8.11)

if there exist constants! 2 [0,1), max 2 [0,1), and a sequence (k)1k=0
with k 2 [0,max], that satisfy for all zk and all z 2 D the following
two inequalities

���M�1
k (J(zk)� J(z))

��� ! |zk � z| (Lipschitz condition)
���M�1

k (J(zk)�Mk)
���  k (compatibility condition)

and if the ball B :=
n
z 2 Rnz | |z � z⇤| < 2(1�max)

!

o
is completely con-

tained in D and if z0 2 B. If in addition k ! 0, the sequence converges
q-superlinearly. If in addition k = O(|zk � z⇤|) or even max = 0, the
sequence converges q-quadratically.
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Corollary 8.8 (Convergence of exact Newton’s method). For an exact
Newton’s method, the convergence rate is q-quadratic, because we have
Mk = J(zk), i.e., max = 0.

8.3.4 Affine Invariance

An iterative method to solve a root-finding problem R(z) = 0 is called
affine invariant if affine basis transformations of the equations or vari-
ables do not change the resulting iterations. This is an important prop-
erty in practice. It is not unreasonable to ask that a good numerical
method should behave the same if it is applied to problems formulated
in different units or coordinate systems.

The exact Newton method is affine invariant, and also some popu-
lar Newton-type optimization methods like the Gauss-Newton method
for nonlinear least squares problems share this property. Their affine
invariance makes them insensitive to the chosen problem scaling, and
this is one reason why they are successful in practice. On the other
hand, a method that is not affine invariant usually needs careful scal-
ing of the model equations and decision variables to work well.

8.3.5 Globalization for Newton-Type Methods

The iterations of a Newton-type method can be regarded the trajec-
tory of a nonlinear discrete time system, and the solution z0 a fixed
point. This system is autonomous if Mk is constant or a function of z,
i.e., if Mk = M(zk). In this case, the discrete time system is given by
z+ = f(z) with f(z) := z �M(z)�1R(z). When designing the Newton-
type method, one usually wants the solution z0 to be a stable fixed point
with a large area of attraction. Local convergence to this fixed point
usually can be guaranteed under conditions stated in Theorem 8.7, in
particular if the exact Jacobian is available. On the other hand, the area
of attraction for the full-step Newton-type methods described so far
is unfortunately not very large in practice, and Newton-type methods
usually need extra globalization features to make them globally conver-
gent from arbitrary initial guesses. Some globalization techniques are
based on a merit function that plays the role of a Lyapunov function to
be reduced in each iteration; others are based on a filter as a measure
of merit of a new iterate. To ensure progress from one iteration to
the next, some form of damping is applied that either reduces the un-
modified Newton-type step by doing a line-search along the proposed
direction, or changes the step computation by adding a trust-region
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constraint. For a detailed description of globalization techniques, we
refer to textbooks on optimization such as Nocedal and Wright (2006).

8.4 Computing Derivatives

Whenever a Newton-type method is used for numerical simulation or
optimization, we need to provide derivatives of nonlinear functions
that exist as computer code. Throughout this section, we consider a
differentiable function F(u) with m inputs and p outputs y = F(u),
i.e., a function F : Rm ! Rp. The main object of interest is the Jacobian
J(u) 2 Rm⇥p of F at the point u, or some of its elements.

Among the many ways to compute the derivatives of F(u), the most
obvious would be to apply the known differentiation rules on paper for
each of its components, and then to write another computer code by
hand that delivers the desired derivatives. This process can become
tedious and error prone, but can be automated by using symbolic com-
puter algebra systems such as Maple or Mathematica. This symbolic
differentiation often works well, but typically suffers from two disad-
vantages. First, it requires the code to exist in the specific symbolic lan-
guage. Second, the resulting derivative expressions can become much
longer than the original function, such that the CPU time needed to
evaluate the Jacobian J(u) by symbolic differentiation can become sig-
nificantly larger than the CPU time to evaluate F(u).

In contrast, we next present three ways to evaluate the Jacobian J(u)
of any computer-represented function F(u) by algorithms that have
bounded costs: numerical differentiation, as well as the algorithmic
differentiation (AD) in forward mode and in reverse mode. All three
ways are based on the evaluation of directional derivatives of the form
J(u)u̇ with a vector u̇ 2 Rm (forward directional derivatives used in
numerical differentiation and forward AD) or of the form ȳ 0J(u) with
ȳ 2 Rp (reverse directional derivatives used in reverse AD). When unit
vectors are used for u̇ or ȳ , the directional derivatives correspond to
columns or rows of J(u), respectively. Evaluation of the full Jacobian
thus needs either m forward derivatives or p reverse derivatives. Note
that in this section, the use of a dot or a bar above a vector as in u̇ and
ȳ just denotes another arbitrary vector with the same dimensions as
the original one.
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8.4.1 Numerical Differentiation

Numerical differentiation is based on multiple calls of the function
F(u) at different input values. In its simplest and cheapest form, it
computes a forward difference approximation of J(u)u̇ for given u
and u̇ 2 Rm by using a small but finite perturbation size t⇤ > 0 as
follows

F(u+ t⇤ u̇)� F(u)
t⇤

The optimal size of t⇤ for the forward difference approximation de-
pends on the numerical accuracy of the evaluations of F , which we
denote by ✏ > 0, and on the relative size of the second derivatives of F
compared to F , which we denote by L > 0. A detailed derivation leads
to the optimal choice

t⇤ ⇡
r
✏
L

While ✏ is typically known and given by the machine precision, i.e.,
✏ = 10�16 for double-precision floating-point computations, the rela-
tive size of the second derivative L is typically not known, but can be
estimated. Often, L is just assumed to be of size one, resulting in the
choice t⇤ =

p
✏, i.e., t⇤ = 10�8 for double precision. One can show that

the accuracy of the forward derivative approximation is then also given
by
p
✏, i.e., one loses half of the valid digits compared to the function

evaluation. To compute the full Jacobian J(u), one needs to evaluate
m forward differences, for them seed vectors u̇ = (1,0,0, . . .)0, u̇ = (0,
1,0 . . .)0, etc. Because the center point can be recovered, one needs in
total (m + 1) evaluations of the function F . Thus, we can summarize
the cost for computation of the full Jacobian J (as well as the function
F ) by the statement

cost(F, J) = (1+m) cost(F)

There exists a variety of more accurate, but also more expensive, forms
of numerical differentiation, which can be derived from polynomial in-
terpolation of multiple function evaluations of F . The easiest of these
are central differences, which are based on a positive and a negative
perturbation. Using such higher-order formulas with adaptive pertur-
bation size selection, one can obtain high-accuracy derivatives with nu-
merical differentiation, but at significant cost. One interesting way to
actually reduce the cost of the numerical Jacobian calculation arises if
the Jacobian is known to be sparse, and if many of its columns are struc-
turally orthogonal, i.e., have their nonzero entries at different locations.
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To efficiently generate a full Jacobian, one can, for example, use the al-
gorithm by Curtis, Powell, and Reid (1974) that is implemented in the
FORTRAN routine TD12 from the HSL Mathematical Software Library
(formerly Harwell Subroutine Library). For details of sparse Jacobian
evaluations, we refer to the review article by Gebremedhin, Manne, and
Pothen (2005).

In summary, and despite the tricks to improve accuracy or effi-
ciency, one has to conclude that numerical differentiation often re-
sults in quite inaccurate derivatives, and its only—but practically
important—advantage is that it works for any black-box function that
can be evaluated on a given computer. Fortunately, there exists a dif-
ferent technology, called AD, that also has tight bounds on the com-
putational cost of the Jacobian evaluation, but avoids the numerical
inaccuracies of numerical differentiation. It is often even faster than
numerical differentiation, and in the case of reverse derivatives ȳ 0J, it
can be tremendously faster. It does so, however, by opening the black
box.

8.4.2 Algorithmic Differentiation

We next consider a function F : Rm ! Rp that is composed of a se-
quence of N elementary operations, where an elementary operation
acts on only one or two variables. We also introduce a vector x 2 Rn
with n =m +N that contains all intermediate variables including the
inputs, x1 = u1, x2 = u2, . . . xm = um. While the inputs are given be-
fore the function is called, each elementary operation generates a new
intermediate variable, xm+i, for i = 1, . . . ,N. Some of these intermedi-
ate variables are used as output y 2 Rp of the code. This decompo-
sition into elementary operations is automatically performed in each
executable computer code, and best illustrated with an example.

Example 8.9: Function evaluation via elementary operations

We consider the function

F(u1, u2, u3) =
"

u1u2u3

sin(u1u2)+ exp(u1u2u3)

#

with m = 3 and p = 2. We can decompose this function into N =
5 elementary operations that are preceded by m and followed by p
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renaming operations, as follows

x1 = u1

x2 = u2

x3 = u3

x4 = x1x2

x5 = sin(x4)
x6 = x4x3

x7 = exp(x6)
x8 = x5 + x7

y1 = x6

y2 = x8

(8.12)

Thus, if the m = 3 inputs u1, u2, u3 are given, the N = 5 nontrivial
elementary operations compute the intermediate quantities x4, . . . , x8,
and the sixth and eighth of the intermediate quantities are then used
as the output y = F(u) of our function. ⇥

The idea of AD is to use the chain rule and differentiate each of the
elementary operations separately. There exist two modes of AD, the
forward mode and the reverse mode. Both can be derived in a mathe-
matically rigorous way by interpreting the computer functiony = F(u)
as the output of an implicit function, as explained next.

8.4.3 Implicit Function Interpretation

Let us regard all equations that recursively define the intermediate
quantities x 2 Rn for a given u 2 Rm as one large nonlinear equa-
tion system

G(x,u) = 0 (8.13)

with G : Rn ⇥ Rm ! Rn. Here, the partial derivative @G
@x 2 Rn⇥n is a

lower-triangular invertible matrix and @G
@u 2 Rn⇥m turns out to be an

m-dimensional unit matrix augmented by zeros, which we will denote
by B. The function G defines an implicit function x⇤ : Rm ! Rn, u ,
x⇤(u) that satisfies G(x⇤(u),u) = 0. The output y = F(u) is given by
the selection of some entries of x⇤(u) via a selection matrix C 2 Rp⇥n,
i.e., the computer function is represented by the expression F(u) =
Cx⇤(u). The derivative dx⇤

du of the implicit function satisfies @G
@x

dx⇤
du +

@G
@u = 0 and is therefore given by

dx⇤

du
=
✓
�@G
@x

◆�1 @G
@u| {z }
=:B

=
✓
�@G
@x

◆�1

B
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and the Jacobian of F is simply given by J(u) = C dx⇤du (u). The forward
directional derivative is given by

J(u)u̇ = C
✓
�@G
@x

◆�1

Bu̇
| {z }

=:ẋ

= Cẋ

Here, we have introduced the dot quantities ẋ that denote the direc-
tional derivative of x⇤(u) into the direction u̇, i.e., ẋ = dx⇤

du u̇. An effi-
cient algorithm to compute ẋ corresponds to the solution of a lower-
triangular linear equation system that is given by

✓
�@G
@x

◆
ẋ = Bu̇ (8.14)

Since the matrix @G
@x is lower triangular, the linear system can be solved

by a forward sweep that computes the components of ẋ in the same
order as the elementary operations, i.e., it first computes ẋ1, then ẋ2,
etc. This leads to the forward mode of AD.

The reverse directional derivative, on the other hand, is given by

ȳ 0J(u) = ȳ 0 C
✓
�@G
@x

◆�1

| {z }
=:x̄0

B = x̄0B

where we define the bar quantities x̄ that have a different meaning than
the dot quantities. For computing x̄, we need to also solve a linear
system, but with the transposed system matrix

✓
�@G
@x

◆0
x̄ = C0ȳ (8.15)

Due to the transpose, this system involves an upper-triangular matrix
and can thus be solved by a reverse sweep, i.e., one first computes x̄n,
then x̄n�1, etc. This procedure leads to the reverse mode of AD.

Example 8.10: Implicit function representation

Let us regard Example 8.9 and find the corresponding function G(x,u)
as well as the involved matrices. The function G corresponds to the
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first n = 8 rows of (8.12) and is given by

G(x,u) =

2
66666666666664

u1 � x1

u2 � x2

u3 � x3

x1x2 � x4

sin(x4)� x5

x4x3 � x6

exp(x6)� x7

x5 + x7 � x8

3
77777777777775

It is obvious that the nonlinear equation G(x,u) = 0 can be solved for
any given u by a simple forward elimination of the variables x1, x2,
. . ., yielding the map x⇤(u). This fact implies also the lower-triangular
structure of the Jacobian @G

@x which is given by

@G
@x

=

2
66666666666664

�1
0 �1
0 0 �1
x2 x1 0 �1
0 0 0 cos(x4) �1
0 0 x4 x3 0 �1
0 0 0 0 0 exp(x6) �1
0 0 0 0 1 0 1 �1

3
77777777777775

The derivative of G with respect to u is given by a unit matrix to which
zero rows are appended, and given by

B := @G
@u

=

2
66666666666664

1
1

1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

3
77777777777775

The identity y = Cx corresponds to the last p = 2 rows of (8.12), and
the matrix C 2 Rp⇥n is therefore given by

C =
"

0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

#
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The right-hand-side vectors in the equations (8.14) and (8.15) are given
by

Bu̇ =

2
66666666666664

u̇1

u̇2

u̇3

0
0
0
0
0

3
77777777777775

and C0ȳ =

2
66666666666664

0
0
0
0
0
ȳ1

0
ȳ2

3
77777777777775

⇥

8.4.4 Algorithmic Differentiation in Forward Mode

The forward mode of AD computes ẋ by solving the lower-triangular
linear system (8.14) with a forward sweep. After the trivial definition of
the firstm components of ẋ, it goes through all elementary operations
in the same order as in the original function to compute the compo-
nents of ẋ one by one. If an original line of code reads xk = �k(xi, xj),
the corresponding line to compute ẋk by forward AD is simply given
by

ẋk =
@�k
@xi

(xi, xj) ẋi +
@�k
@xj

(xi, xj) ẋj

In forward AD, the function evaluation and the derivative evaluation
can be performed simultaneously, if desired, eliminating the need to
store any internal information. The algorithm is best explained by look-
ing again at the example.

Example 8.11: Forward algorithmic differentiation

We differentiate the algorithm from Example 8.9. To highlight the rela-
tion to the original code, we list the original command again on the left
side, and show the algorithm to compute ẋ on the right side. For given
u = [u1 u2 u3]0 and u̇ = [u̇1 u̇2 u̇3]0, the two algorithms proceed as
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follows

x1 = u1 ẋ1 = u̇1

x2 = u2 ẋ2 = u̇2

x3 = u3 ẋ3 = u̇3

x4 = x1x2 ẋ4 = x2ẋ1 + x1ẋ2

x5 = sin(x4) ẋ5 = cos(x4)ẋ4

x6 = x4x3 ẋ6 = x3ẋ4 + x4ẋ3

x7 = exp(x6) ẋ7 = exp(x6)ẋ6

x8 = x5 + x7 ẋ8 = ẋ5 + ẋ7

y1 = x6 ẏ1 = ẋ6

y2 = x8 ẏ2 = ẋ8

The result of the original algorithm isy = [y1 y2]0 and the result of the
forward AD sweep is ẏ = [ẏ1 ẏ2]0. If desired, one could perform both
algorithms in parallel, i.e., evaluate first the left side, then the right side
of each row consecutively. This procedure would allow one to delete
each intermediate variable and the corresponding dot quantity after its
last usage, making the memory demands of the joint evaluation just
twice as big as those of the original function evaluation. ⇥

One can see that the dot-quantity evaluations on the right-hand
side—which we call a forward sweep—are never longer than about twice
the original line of code. This is because each elementary operation de-
pends on at maximum two intermediate variables. More generally, it
can be proven that the computational cost of one forward sweep in
AD is smaller than a small constant times the cost of a plain function
evaluation. This constant depends on the chosen set of elementary
operations, but is usually much less than two, so that we conclude

cost(Ju̇)  2 cost(F)

To obtain the full Jacobian J, we need to perform the forward sweep
several times, each time with the seed vector corresponding to one of
the m unit vectors in Rm. The m forward sweeps all could be per-
formed simultaneously with the evaluation of the function itself, so
that one needs in total one function evaluation plusm forward sweeps,
i.e., we have

cost(F, J)  (1+ 2m) cost(F)

This is a conservative bound, and depending on the AD tool used the
cost of several combined forward sweeps can be significantly reduced,
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and often become much cheaper than a finite difference approxima-
tion. Most important, the result of forward AD is exact up to machine
precision.

8.4.5 Algorithmic Differentiation in Reverse Mode

The reverse mode of AD computes x̄ by solving the upper-triangular
linear system (8.15) with a reverse sweep. It does so by first computing
the right-hand-side C0ȳ vector and initializing all bar quantities with
the respective values, i.e., it initially sets x̄ = C0ȳ . Then, the reverse
AD algorithm modifies the bar quantities by going through all elemen-
tary operations in reverse order. The value of x̄i is modified for each
elementary operation in which xi is involved. If two quantities xi and
xj are used in the elementary operation xk = �k(xi, xj), then the cor-
responding two update equations are given by

x̄i = x̄i + x̄k
@�k
@xi

(xi, xj) and

x̄j = x̄j + x̄k
@�k
@xj

(xi, xj)

Again, the algorithm is best illustrated with the example.

Example 8.12: Algorithmic differentiation in reverse mode

We consider again the code from Example 8.9. In contrast to before
in Example 8.11, now we compute the reverse directional derivative
ȳ 0J(u) for given [u1 u2 u3]0 and ȳ = [ȳ1 ȳ2]0. After the forward
evaluation of the function, which is needed to define all intermediate
quantities, we need to solve the linear system (8.15) to obtain x̄. In the
example, this system is explicitly given by
2
66666666666664

1 �x2

1 �x1

1 0 �x4

1 � cos(x4) �x3

1 0 �1
1 � exp(x6) 0

1 �1
1

3
77777777777775

2
66666666666664

x̄1

x̄2

x̄3

x̄4

x̄5

x̄6

x̄7

x̄8

3
77777777777775

=

2
66666666666664

0
0
0
0
0
ȳ1

0
ȳ2

3
77777777777775

To solve this equation without forming the matrix explicitly, we process
the elementary operations in reverse order, i.e., one column after the
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other, noting that the final result for each x̄i will be a sum of the right-
hand-side vector component C0ȳ and a weighted sum of the values x̄j
for those j > i which correspond to elementary operations that have
xi as an input. We therefore initialize all variables by x̄ = C0ȳ , which
results for the example in the initialization

x̄1 = 0 x̄5 = 0

x̄2 = 0 x̄6 = ȳ1

x̄3 = 0 x̄7 = 0

x̄4 = 0 x̄8 = ȳ2

In the reverse sweep, the algorithm updates the bar quantities in re-
verse order compared to the original algorithm, processing one column
after the other.

// differentiation of x8 = x5 + x7

x̄5 = x̄5 + x̄8

x̄7 = x̄7 + x̄8

// differentiation of x7 = exp(x6)
x̄6 = x̄6 + x̄7 exp(x6)
// differentiation of x6 = x4x3

x̄4 = x̄4 + x̄6x3

x̄3 = x̄3 + x̄6x4

// differentiation of x5 = sin(x4)
x̄4 = x̄4 + x̄5 cos(x4)
// differentiation of x4 = x1x2

x̄1 = x̄1 + x̄4x2

x̄2 = x̄2 + x̄4x1

At the very end, the algorithm sets

ū1 = x̄1

ū2 = x̄2

ū3 = x̄3

to read out the desired result ȳ 0J(x) = [ū1 ū2 ū3]. Note that all three
of the components are returned by only one reverse sweep. ⇥

It can be shown that the cost of one reverse sweep of AD is less than
a small constant (which is certainly less than three) times the cost of a
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function evaluation, i.e.,

cost(ȳ 0J)  3 cost(F)

To obtain the full Jacobian of F , we need to call the reverse sweep p
times, with the seed vectors corresponding to the unit vectors in Rp,
i.e., together with one forward evaluation, we have

cost(F, J)  (1+ 3p) cost(F)

Remarkably, reverse AD can compute the full Jacobian at a cost that is
independent of the input dimension m. This is particularly advanta-
geous if p ⌧ m, e.g., if we compute the gradient of a scalar function
like the objective in optimization. The reverse mode can be much faster
than what we can obtain by forward finite differences, where we always
need (m+1) function evaluations. For example, to compute the gradi-
ent of a scalar function f : Rm ! R whenm = 1,000,000 and each call
of the function requires one second of CPU time, the finite difference
approximation of the gradient would take 1,000,001 seconds, while
the computation of the same quantity with the backward mode of AD
requires only four seconds (one call of the function plus one backward
sweep). Thus, besides being more accurate, reverse AD can also be
much faster than numerical finite differences. This astonishing fact is
also known as the “cheap gradient result” in the AD community, and
in the field of neural networks it is exploited in the back propagation
algorithm. The only disadvantage of the reverse mode of AD is that
we have to store all intermediate variables and partial derivatives, in
contrast to finite differences or forward AD.

Backward sweep for discrete time optimal control. In numerical op-
timal control we often have to differentiate a function that is the result
of a dynamic system simulation. If the system simulation is in discrete
time, one can directly apply the principles of AD to compute the de-
sired derivatives by the forward or the reverse mode. For evaluating
the gradient of the objective, the reverse mode is most efficient. If
the controls are given by u = [u(0)0 · · · u(N � 1)0]0 and the states
x(k) are obtained by a discrete time forward simulation of the form
x(k+1) = f(x(k),u(k)) for k = 0, . . . ,N �1 started at x(0) = x0, and
if the objective function is given by J(u) :=

PN�1
k=0 `(x(k),u(k))+V(xN),

then the backward sweep to compute ruJ(u) performs the following
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steps

x̄(N)0 = Vx(x(N))
for k = N � 1, N � 2, . . . ,0 (8.16)

x̄(k)0 = `x(x(k),u(k))+ x̄(k+ 1)0fx(x(k),u(k))
ū(k)0 = `u(x(k),u(k))+ x̄(k+ 1)0fu(x(k),u(k))

end

The output of this algorithm is the vector ū = [ū(0)0 · · · ū(N � 1)0]0
which equals the gradient ruJ(u). This method to compute the ob-
jective gradient in the sequential approach was well known in the field
of optimal control even before the field of algorithmic differentiation
developed. From a modern perspective, however, it is simply an ap-
plication of reverse AD to the algorithm that computes the objective
function.

8.4.6 Differentiation of Simulation Routines

When a continuous time system is simulated by numerical integration
methods and one wants to compute the derivatives of the state trajec-
tory with respect to initial values or controls, as needed in shooting
methods, there are many different approaches and many possible pit-
falls. While a complete textbook could be written on the differentiation
of just numerical integrators, we present and discuss only three popu-
lar approaches here.

External numerical differentiation (END). Probably the simplest ap-
proach to differentiate an integrator is to regard the integrator call as
a black box, and to compute the desired derivatives by numerical fi-
nite differences. Here one computes one nominal trajectory, and one
or more perturbed trajectories, depending on the desired number of
forward derivatives. This approach, called external numerical differ-
entiation (END), is easy to implement; it is generally not recommended
because it suffers from some disadvantages.

• It is typically inaccurate because integrator accuracies ✏int are well
above machine precision, e.g., ✏int ⇡ 10�6, such that the perturba-
tion size needs to be chosen rather large, in particular for adaptive
integrators.

• It usually is expensive because each call of the integrator for a per-
turbed trajectory creates some overhead, such as error control or
matrix factorizations, which can be avoided in other approaches.
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• It can only compute forward derivatives.

The first disadvantage can be mitigated for explicit integrators with
fixed stepsize, where one is allowed to choose smaller perturbation
sizes, in the order of the square root of the machine precision. For this
special case, END becomes equivalent to the approach described next.

Internal numerical differentiation (IND). The idea behind internal
numerical differentiation (IND) (Bock, 1981) is to regard the numerical
integrator as a differentiable computer code in the spirit of algorithmic
differentiation (AD). Similar to END, it works with perturbed trajecto-
ries. What is different from END is that all perturbed trajectories are
treated in one single forward sweep, and that all adaptive integrator
components are switched off for the perturbed trajectories. Thus, for
an adaptive explicit integrator, the stepsize selection works only on the
nominal trajectory; once the stepsize is chosen, the same size also is
used for all perturbed trajectories.

For implicit integrators, where one performs Newton-type iterations
in each step, the philosophy of IND is to choose the sequence of itera-
tion matrices and numbers of Newton-type iterations for only the nom-
inal trajectory, and to regard the iteration matrices as constant for all
perturbed trajectories. Because all adaptive components are switched
off during the numerical differentiation process, one can regard the
integrator code as a function that evaluates its output with machine
precision. For this reason, the perturbation size can be chosen sig-
nificantly smaller than in END. Thus, IND is both more accurate and
cheaper than END.

Algorithmic differentiation of integrators. Another approach that
is related to IND is to directly apply the principles of AD to the integra-
tion algorithm. In an extreme case, one could just take the integrator
code and process it with an AD tool—this approach can work well for
explicit integrators with fixed stepsize, as we show in Example 8.13,
but otherwise needs to be applied with care to avoid the many possible
pitfalls of a blind application of AD. In particular, for adaptive integra-
tors, one needs to avoid the differentiation of the stepsize selection
procedure. If this simple rule is respected, AD in both forward and re-
verse modes can be easily applied to adaptive explicit integrators, and
is both efficient and yields highly accurate results.

For implicit integrators, one should also regard the number and type
of Newton-type iterations in each step as constant. Otherwise, the AD
tool also tries to differentiate the Jacobian evaluations and factoriza-
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tions, which would create unnecessary overhead. When AD is imple-
mented in this way, i.e., if it respects the same guidelines as the IND
approach, its forward mode has similar costs, but yields more accurate
derivatives than IND. Depending on input and output dimensions, the
reverse mode can accelerate computations further.

8.4.7 Algorithmic and Symbolic Differentiation Software

A crucial property of many AD tools is that they are able to pro-
cess generic code from a standard programming language like C, C++,
MATLAB, or FORTRAN, with no or only minor modifications to the source
code. For example, the AD tools ADOL-C and CppAD can process
generic user-supplied C or C++ code. This is in contrast to computer al-
gebra systems such as Maple, Mathematica, or MATLAB’s Symbolic Math
Toolbox, which require the user to define the function to be differenti-
ated using symbolic expressions in a domain-specific language. A fur-
ther advantage of AD over symbolic differentiation is that it is able to
provide tight bounds on the length of the resulting derivative code, as
well as its runtime and memory requirements. On the other hand, some
symbolic tools—such as AMPL or CasADi—make use of AD internally,
so the performance differences between algorithmic and symbolic dif-
ferentiation can become blurry.

An overview of nearly all available AD tools is given at www.
autodiff.org. Most AD tools implement both the forward and re-
verse mode of AD, and allow recursive application of AD to generate
higher-order derivatives. Some AD tools automatically perform graph-
coloring strategies to reduce the cost of Jacobian evaluations, similar
to the sparse numerical differentiation algorithm by Curtis et al. (1974)
mentioned before in the context of numerical differentiation. We refer
to the textbook on algorithmic differentiation by Griewank and Walther
(2008) for an in-depth analysis of the different concepts of AD.

8.4.8 CasADi for Optimization

Many of the computational exercises in this text use the open-source
tool CasADi, which implements AD on user-defined symbolic expres-
sions. CasADi also provides standardized interfaces to a variety of
numerical routines: simulation and optimization, and solution of lin-
ear and nonlinear equations. A key feature of these interfaces is that
every user-defined CasADi function passed to a numerical solver au-
tomatically provides the necessary derivatives to this solver, without
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any additional user input. Often, the result of the numerical solver it-
self can be interpreted as a differentiable CasADi function, such that
derivatives up to any order can be generated without actually differen-
tiating the source code of the solver. Thus, concatenated and recursive
calls to numerical solvers are possible and still result in differentiable
CasADi functions.

CasADi is written in C++, but allows user input to be provided from
either C++, Python, Octave, or MATLAB. When CasADi is used from the
interpreter languages Python, Octave, or MATLAB, the user does not have
any direct contact with C++; but because the internal handling of all
symbolic expressions as well as the numerical computations are per-
formed in a compiled environment, the speed of simulation or op-
timization computations is similar to the performance of compiled
C-code. One particularly powerful optimization solver interfaced to
CasADi is IPOPT, an open-source C++ code developed and described
by Wächter and Biegler (2006). IPOPT is automatically provided in the
standard CasADi installation. For more information on CasADi and
how to install it, we refer the reader to casadi.org. Here, we illustrate
the use of CasADi for optimal control in a simple example.

Example 8.13: Sequential optimal control using CasADi from Octave

In the following example we formulate and solve a simple nonlinear
MPC problem. The problem is formulated and solved by the sequential
approach in discrete time, but the discrete time dynamics are the result
of one step of an integrator applied to a continuous time ordinary dif-
ferential equation (ODE). We go through the example problem and the
corresponding solution using CasADi from Octave, which works with-
out changes from MATLAB. The code is available from the book website as
the file casadi-example-mpc-book-1.m along with a Python version
of the same code, casadi-example-mpc-book-1.py.

As a first step, we define the ODE describing the system, which is
given by a nonlinear oscillator described by the following ODE with
x 2 R2 and u 2 R

d
dt

"
x1

x2

#
=
"

x2

�x1 � x3
1 +u

#

| {z }
=:fc(x,u)

with the initial condition x(0) = [0,1]0. We can encode this in Oc-
tave as follows
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% Continuous time dynamics
f_c = @(x, u) [x(2); -x(1) - x(1)^3 + u];

To define the discrete time dynamics x+ = f(x,u), we perform one
step of the classical Runge-Kutta method of fourth order. We choose
a stepsize of 0.2 seconds. Given x+ = f(x,u), we can state an MPC
optimization problem with zero terminal constraint that we solve, as
follows

minimize
x,u

N�1X

k=0

x(k)0
"

10 0
0 5

#
x(k)+u(k)2 (8.17a)

subject to x(0) = [1,0]0 (8.17b)

x(k+ 1) = f(x(k),u(k)), k = 0,1, . . . ,N � 1 (8.17c)

u(k) 2 [�1,1], k = 0,1, . . . ,N � 1 (8.17d)

x(N) = [0,0]0 (8.17e)

For its numerical solution, we formulate this problem using the se-
quential approach, i.e., we regard only u as optimization variables and
eliminate x by a system simulation. This elimination allows us to gen-
erate a cost function c(u) and a constraint function G(u) such that the
above problem is equivalent to

minimize
u

c(u) (8.18a)

subject to u 2 [�1,1]N (8.18b)

G(u) = 0 (8.18c)

Here, c : RN ! R and G : RN ! R2, with N = 50.
To code this into CasADi/Octave, we begin by declaring a symbolic

variable corresponding to u as follows

% Decision variable
N = 50;
U = casadi.SX.sym(’U’, N);

This symbolic variable can be used to construct expressions for c and
G

% System simulation
xk = [1; 0];
c = 0;
for k=1:N

% RK4 method
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dt = 0.2;
k1 = f_c(xk, U(k));
k2 = f_c(xk+0.5*dt*k1, U(k));
k3 = f_c(xk+0.5*dt*k2, U(k));
k4 = f_c(xk+dt*k3, U(k));
xk = xk + dt/6.0*(k1 + 2*k2 + 2*k3 + k4);
% Add contribution to objective function
c = c + 10*xk(1)^2 + 5*xk(2)^2 + U(k)^2;

end
% Terminal constraint
G = xk - [0; 0];

The last remaining step is to pass the expressions for c and G to an
optimization solver, more specifically, to the nonlinear programming
solver IPOPT. The solver expects an optimization problem with lower
and upper bounds for all variables and constraints of the form

minimize
x

f(x)

subject to xlb  x  xub

glb  g(x)  gub

(8.19)

To formulate equality constraints in the CasADi syntax for NLPs, one
just sets the upper and lower bounds to equal values. The solver also
expects an initial guess x0 for the optimization variables (the initial
guess x0 for the NLP solver is not to be confused with the initial value
x0 for the state trajectory). The interface to the NLP solver uses the
keywords f and g for the functions f and g, x for the variables x, lbx
for xlb etc. The corresponding CasADi code to pass all data to the NLP
solver, call it, and retrieve the solution looks as follows.

% Create an NLP solver object
nlp = struct(’x’, U, ’f’, c, ’g’, G);
solver = casadi.nlpsol(’solver’, ’ipopt’, nlp);
% Solve the NLP
solution = solver(’x0’, 0, ’lbx’, -1, ’ubx’, 1,

’lbg’, 0, ’ubg’, 0);
U_opt = solution.x;

⇥

8.5 Direct Optimal Control Parameterizations

Direct optimal control methods transform a continuous time optimal
control problem of the form (8.5) into a finite-dimensional optimization
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problem. For convenience, we restate the OCP (8.5) in a form that re-
places the constraint sets Z andXf by equivalent inequality constraints,
as follows

minimize
x(·),u(·)

Z T

0
`c(x(t),u(t)) dt + Vf (x(T)) (8.20a)

subject to x(0) = x0 (8.20b)

ẋ(t) = fc(x(t),u(t)), t 2 [0, T ] (8.20c)

h(x(t),u(t))  0, t 2 [0, T ] (8.20d)

hf (x(T))  0 (8.20e)

While the above problem has infinitely many variables and constraints,
the idea of direct optimal control methods is to solve instead a related
finite-dimensional problem of the general form

minimize
w 2 Rnw

F(w)

subject to G(x0,w) = 0

H(w)  0

(8.21)

This finite-dimensional optimization problem is solved for given initial
value x0 with any of the Newton-type optimization methods described
in the following section, Section 8.6. In this section, we are concerned
only with the transformation of the continuous problem (8.20) into a
finite-dimensional problem of form (8.21).

First, one chooses a finite representation of the continuous func-
tions, which is often called discretization. This encompasses three parts
of the OCP, namely the control trajectory (which is often represented by
a piecewise constant function), the state trajectory (which is often dis-
cretized using a numerical integration rule), and the path constraints
(which are often only imposed on some grid points). Second, one selects
the variablesw that are finally passed to the optimization solver. These
can be all of the discretization variables (in the fully simultaneous or
direct transcription approach), but are often only a subset of the param-
eters that represent the control and state trajectories. The remaining
discretization parameters are hidden to the optimization solver, but
are implicitly computed during the optimization computations—such
as the state trajectories in the sequential approach, or the intermediate
quantities in a Runge-Kutta step. Next we present some of the most
widely used direct optimal control parameterizations.
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8.5.1 Direct Single Shooting

Like most direct methods, the single-shooting approach first parame-
terizes the control trajectory with a finite-dimensional vector q 2 Rnq
and sets u(t) = ue(t; q) for t 2 [0, T ]. One sometimes calls this step
“control vector parameterization.” One example for such a function
ue : [0, T ] ⇥ Rnq ! Rm is a polynomial of degree p, which requires
(p + 1) coefficients for each component of u(t) 2 Rm. With this
choice, the resulting control parameter q would have the dimension
nq = (p + 1)m. A disadvantage of the polynomials—as of any other
“global” parameterization—is that the inherent problem sparsity due
to the dynamic system structure is inevitably lost. For this reason, and
also because it better corresponds to the discrete time implementation
of MPC, most often one chooses basis functions with local support, for
example, a piecewise constant control parameterization. In this case,
one divides the time horizon [0, T ] into N subintervals [ti, ti+1] with
0 = t0 < t1 < . . . < tN = T , and sets

ue(t; q) := qi for t 2 [ti, ti+1)

For each interval, one needs one vector qi 2 Rm, such that the to-
tal dimension of q =

�
q0, q1, . . . , qN�1

�
is given by nq = Nm. In the

following, we assume this form of piecewise constant control parame-
terization.

Regarding the state discretization, the direct single-shooting
method relies on any of the numerical simulation methods described in
Section 8.2 to find an approximation xe(t;x0,q) of the state trajectory,
given the initial value x0 at t = 0 and the control trajectory ue(t; q).
Often, adaptive integrators are chosen. In case of piecewise constant
controls, the integration needs to stop and restart briefly at the time
points ti to avoid integrating a nonsmooth right-hand-side function.
Due to state continuity, the state xe(ti;x0,q) is both the initial state
of the interval [ti, ti+1] as well as the last state of the previous inter-
val [ti�1, ti]. The control values used in the numerical integrators on
both sides differ, due to the jump at ti, and are given by qi�1 and qi,
respectively.

Evaluating the integral in the objective (8.20a) requires an integra-
tion rule. One option is to just augment the ODE system with a quadra-
ture state xquad(t) starting at xquad(0) = 0, and obeying the trivial dif-
ferential equation ẋquad(t) = `c(x(t),u(t)) that can be solved with
the same numerical solver as the standard ODE. Another option is to
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evaluate `c(xe(t;x0,q),ue(t; q)) on some grid and to apply another inte-
gration rule that is external with respect to the integrator. For example,
one can use a refinement of the grid that was used for the control dis-
cretization, where each interval [ti, ti+1] is divided intoM equally sized
subintervals [⌧i,j ,⌧i,j+1] with ⌧i,j := ti+ j/M(ti+1� ti) for j = 0, . . . ,M
and i = 0, . . . ,N � 1, and just apply a Riemann sum on each interval to
yield the objective function

F(x0,q) :=
N�1X

i=0

M�1X

j=0

`c(xe(⌧i,j ;x0,q),ue(⌧i,j ; q)) (⌧i,j+1�⌧i,j)

+ Vf (xe(T ;x0,q))

In the context of the Gauss-Newton method for least squares integrals,
this second option is preferable because it allows one to easily obtain
a Gauss-Newton Hessian approximation from the sensitivities which
are provided by the integrator. Note that the fine grid evaluation as
described here requires an integrator able to output the states at ar-
bitrary locations; collocation methods, for example, have this ability.
If not, one must select points ⌧i,j that coincide with the intermediate
steps or stages of the integrator.

The last discretization choice considers the path constraints (8.20d).
These often are evaluated on the same grid as the control discretization,
or, more generally, on a finer grid, e.g., the time points ⌧i,j defined
above for the objective integral. Then, only finitely many constraints
h(xe(⌧i,j ;x0,q),ue(⌧i,j ; q))  0 are imposed for j = 0, . . . ,M and i = 0,
1, . . . ,N � 1. Together with the terminal constraint, one defines the
inequality constraint function

H(x0,q) :=

2
6666666666666664

h(xe(⌧0,0;x0,q),ue(⌧0,0; q))
h(xe(⌧0,1;x0,q),ue(⌧0,1; q))

...
h(xe(⌧1,0;x0,q),ue(⌧1,0; q))
h(xe(⌧1,1;x0,q),ue(⌧1,1; q))

...
h(xe(⌧N�1,M�1;x0,q),ue(⌧N�1,M�1; q))

hf (xe(T ;x0,q))

3
7777777777777775

If the function h maps to Rnh and hf to Rnhf , the function H maps to

R(NMnh+nhf ). The resulting finite-dimensional optimization problem in
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single shooting is thus given by

minimize
s0,q

F(s0,q)

subject to s0 � x0 = 0

H(s0,q)  0

(8.22)

Of course, the trivial equality constraint s0 � x0 = 0 could easily be
eliminated, and this is often done in single-shooting implementations.
In the real-time optimization context, however, it is beneficial to in-
clude also the parameter x0 as a trivially constrained variable s0 of
the single-shooting optimization problem, as we do here. This simple
trick is called initial-value embedding, and allows one to initialize the
optimization procedure with the past initial value s0, for which an ap-
proximately optimal solution already exists; it also allows one to easily
obtain a linearized feedback control for new values of x0, as we dis-
cuss in the next section. Also, for moving horizon estimation (MHE)
problems, one has to keep the (unconstrained) initial value s0 as an
optimization variable in the single-shooting optimization problem for-
mulation.

In summary, the single-shooting method is a fully sequential ap-
proach that treats all intermediate state values computed in the numer-
ical integration routine as hidden variables, and solves the optimization
problem in the space of control parameters q 2 Rnq and initial values
s0 2 Rn only.

There are many different ways to numerically solve the optimization
problem (8.22) in the single-shooting approach using standard meth-
ods from the field of nonlinear programming. At first sight, the opti-
mization problem in the single-shooting method is dense, and usually
problem (8.22) is solved by a dense NLP solver. However, some single-
shooting approaches use a piecewise control parameterization and are
able to exploit the intrinsic sparsity structure of the OCP in the NLP
solution, as discussed in Section 8.8.5.

8.5.2 Direct Multiple Shooting

The direct multiple-shooting method makes exactly the same dis-
cretization choices as the single-shooting method with piecewise con-
trol discretization, but it keeps the states si ⇡ x(ti) at the interval
boundary time points as decision variables in the finite-dimensional
optimization problem. This allows one to completely decouple the nu-
merical integrations on the separate intervals. For simplicity, we regard
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again a piecewise constant control parameterization that uses the con-
stant control value qi 2 Rm on the interval [ti, ti+1]. On the same
interval, we then define the N trajectory pieces xe i(t; si, qi) that are the
numerical solutions of the initial-value problems

xe i(ti; si, qi) = si,
dxe i
dt

(t; si, qi) = fc(xe i(t; si, qi), qi), t 2 [ti, ti+1]

for i = 0,1, . . . ,N � 1. Note that each trajectory piece only depends
on the artificial initial value si 2 Rn and the local control parameter
qi 2 Rm.

Using again a possibly refined grid on each interval, with time points
⌧i,j 2 [ti, ti+1] for j = 0, . . . ,M , we can formulate numerical approx-
imations of the objective integrals

R ti+1
ti `c(xe i(t; si, qi), qi) dt on each

interval by

`i(si, qi) :=
M�1X

j=0

`c(xe i(⌧i,j ; si, qi), qi) (⌧i,j+1�⌧i,j)

The overall objective is thus given by
PN�1
i=0 `i(si, qi) + Vf (sN). Note

that the objective terms `i(si, qi) each depend again only on the lo-
cal initial values si and local controls qi, and can thus be evaluated
independently from each other. Likewise, we discretize the path con-
straints, for simplicity on the same refined grid, by defining the local
inequality constraint functions

Hi(si, qi) :=

2
66664

h(xe i(⌧0,0; si, qi), qi)
h(xe i(⌧0,1; si, qi), qi)

...
h(xe i(⌧0,M�1; si, qi), qi)

3
77775

for i = 0,1, . . . ,N � 1. These are again independent functions, with
Hi : Rn⇥Rm ! R(Mnh). Using these definitions, and the concatenations
s := (s0, s1, . . . , sN) and q :=

�
q0, . . . , qN�1

�
, one can state the finite-

dimensional optimization problem that is formulated and solved in
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the direct multiple-shooting method

minimize
s,q

N�1X

i=0

`i(si, qi) + Vf (sN) (8.23a)

subject to s0 = x0 (8.23b)

si+1 = xe i(ti+1; si, qi), for i = 0, . . . ,N � 1 (8.23c)

Hi(si, qi)  0, for i = 0, . . . ,N � 1 (8.23d)

hf (sN)  0 (8.23e)

By a straightforward definition of problem functions F,G, and H, and
optimization variables w = [s00 q00 s01 q01 · · · s0N�1 q0N�1 s0N]0, the above
problem can be brought into the form (8.21).

Note that, due to the presence of s as optimization variables,
the problem dimension is higher than in the single-shooting method,
namely nw = (N + 1)n+Nm variables compared with only (n+Nm)
in the single-shooting method. On the other hand, the additional Nn
equality constraints (8.23c) eliminate the additionalNn degrees of free-
dom, and the problems (8.23) and (8.22) are fully equivalent if the same
integration routines are used. Also note that the multiple-shooting
NLP (8.23) has exactly the same form as the discrete time optimal con-
trol problem (8.1). From this perspective, the single-shooting prob-
lem (8.22) is thus identical to the sequential formulation, compare (8.3),
and the multiple-shooting problem is identical to the simultaneous for-
mulation, compare (8.1), of the same discrete time OCP.

When comparing the continuous time problem (8.20) with the non-
linear program (NLP) (8.23) in direct multiple shooting, it is interest-
ing to note that the terminal cost and terminal constraint function are
identical, while the cost integrals, the system dynamics, and the path
constraints are all numerically approximated in the multiple-shooting
NLP.

Multiple versus single shooting. The advantages of multiple com-
pared to single shooting are the facts that the evaluation of the in-
tegrator calls can be performed in parallel on the different subinter-
vals, that the state values s can also be used for initialization of the
optimization solver, and that the contraction rate of Newton-type op-
timization iterations is often observed to be faster, in particular for
nonlinear and unstable systems. Its disadvantage for problems with-
out state constraints is that globalization strategies cannot simply rely
on the objective function as merit function, but have to also monitor
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the residuals of the dynamic constraints (8.23c), which can become
cumbersome. Some people also prefer the single-shooting method for
the simple reason, that, as a sequential approach, it shows “feasible,”
or more exactly, “physical” state trajectories in each optimization iter-
ation, i.e., trajectories that satisfy, up to numerical integration errors,
the system’s differential equation.

We argue here, however, that this reason is not valid, because if
one wants to see “physical” trajectories during an optimization run,
one could numerically simulate and plot the system evolution for the
currently best available guess of the control trajectory q in any simul-
taneous method at comparably low additional cost. On the other hand,
in the presence of state constraints, the iterates of both sequential and
simultaneous methods always lead to slightly infeasible state trajec-
tories, while simultaneous methods often converge even faster in this
case. Thus, “feasibility” is not really a reason to prefer one approach
over the other.

A theoretical comparison of sequential and simultaneous (“lifted”)
formulations in the context of Newton-type optimization (Albersmeyer
and Diehl, 2010) shows that both methods can be implemented with
nearly identical computational cost per iteration. Also, it can be
shown—and observed in practice—that simultaneous formulations
lead to faster contraction rates if the nonlinearities of the concate-
nated system dynamics reinforce each other, e.g., if an exponential
x1 = exp(x0) is concatenated with an exponential x2 = exp(x1), lead-
ing to x2 = exp(exp(x0)). On the other hand, the sequential approach
would lead to faster contraction if the concatenated nonlinearities miti-
gate each other, e.g., if a logarithmx2 = log(x1) follows the exponential
x1 = exp(x0) and renders the concatenation x2 = log(exp(x0)) = x0

the identity (a linear map). In optimal control, one often observes that
the concatenation reinforces the nonlinearities, which renders the si-
multaneous approach favorable.

Exact expressions for linear systems with quadratic costs. In the
special case of linear systems fc(x,u) = Acx + Bcu with quadratic
costs `c(x,u) = x0Qcx+u0Rcu, the exact multiple-shooting functions
xe i(ti+1; si, qi) and `i(si, qi) also turn out to be linear and quadratic,
and it is possible to compute them explicitly. Specifically

xe i(ti+1; si, qi) = Asi + Bqi
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with

A = exp (Ac (ti+1 � ti)) and B =
Z (ti+1�ti)

0
exp (Ac⌧) Bc d⌧

and

`i(si, qi) =
"
si
qi

#0 "Q S
S0 R

#"
si
qi

#

with more complicated formulas for Q,R, and S that can be found
in Van Loan (1978) or Pannocchia, Rawlings, Mayne, and Mancuso
(2015). Note that approximations of the above matrices also can be ob-
tained from the differentiation of numerical integration routines that
are applied to the linear ODE system, augmented by the quadratic cost
integral. The first-order derivatives of the final states yield A and B,
and the second-order derivative of the cost gives Q,R, and S. Because
these numerical computations can be done before an actual MPC im-
plementation, they can be performed offline and with high accuracy.

8.5.3 Direct Transcription and Collocation Methods

The idea of simultaneous optimal control can be extended even further
by keeping all ODE discretization variables as optimization variables.
This fully simultaneous approach is taken in the family of direct tran-
scription methods, which directly transcribe all data of the continuous
time OCP (8.20) into an NLP without making use of numerical integra-
tion routines. Instead, they directly formulate the numerical simula-
tion equations as equalities of the optimization problem. One example
of a direct transcription method was already given in the introduction
of this chapter, in (8.6), where an explicit Euler integration rule was
employed. Because the state equations are equality constraints of the
optimization problem, direct transcription methods often use implicit
integration rules; they offer higher orders for the same number of state
discretization variables, and come with better stability properties for
stiff systems. Probably the most popular class of direct transcription
methods are the direct collocation methods.

Direct transcription by collocation. In direct collocation, the time
horizon [0, T ] is first divided into a typically large number N of collo-
cation intervals [ti, ti+1], with 0 = t0 < t1 < . . . < tN = T . On each of
these intervals, an implicit Runge-Kutta integration rule of collocation
type is applied to transcribe the ODE ẋ = fc(x,u) to a finite set of non-
linear equations. For this aim, we first introduce the states si ⇡ x(ti) at
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the time points ti, and then regard the implicit Runge-Kutta equations
with M stages on the interval with length hi := (ti+1� ti), which create
an implicit relation between si and si+1. We introduce additional vari-
ables Ki := [k0i,1 · · · k0i,M]0 2 RnM , where ki,j 2 Rn corresponds to the
state derivative at the collocation time point ti + cjhi for j = 1, . . . ,M .
These variables Ki are uniquely defined by the collocation equations if
si and the control value qi 2 Rm are given. We summarize the colloca-
tion equations as GRK

i (si, Ki, qi) = 0 with

GRK
i (si, Ki, qi) :=

2
66664

ki,1 � fc(si + hi(a11ki,1 + . . .+ a1,Mki,M), qi)
ki,2 � fc(si + hi(a21ki,1 + . . .+ a2,Mki,M), qi)

...
ki,M � fc(si + hi(aM1ki,1 + . . .+ aM,Mki,M), qi)

3
77775

(8.24)
The transition to the next state is described by si+1 = FRK

i (si, Ki, qi)
with

FRK
i (si, Ki, qi) := si + hi(b1ki,1 + . . .+ bMki,M)

In contrast to shooting methods, where the controls are often held con-
stant across several integration steps, in direct collocation one usu-
ally allows one new control value qi per collocation interval, as we do
here. Even a separate control parameter for every collocation time point
within the interval is possible. This would introduce the maximum
number of control degrees of freedom that is compatible with direct
collocation methods and could be interpreted as a piecewise polyno-
mial control parameterization of order (M � 1).

Derivative versus state representation. In most direct collocation
implementations, one uses a slightly different formulation, where the
intermediate stage derivative variables Ki = [k0i,1 · · · k0i,M]0 2 RnM are
replaced by the stage state variables Si = [s0i,1 · · · s0i,M]0 2 RnM that
are related to si and Ki via the linear map

si,j = si + hi(aj1ki,1 . . .+ aj,Mki,M) for j = 1, . . . ,M (8.25)

If c1 > 0, then the relative time points (0, c1, . . . , cM) are all different,
such that the interpolation polynomial through the (M + 1) states (si,
si,1, . . . , si,M) is uniquely defined, which renders the linear map (8.25)
from (si, Ki) to (si, Si) invertible. Concretely, the values ki,j can be
obtained as the time derivatives of the interpolation polynomial at the
collocation time points. The inverse map, for j = 1, . . . ,M , is given by

ki,j =
1
hi

⇣
Dj,1(si,1 � si)+ . . .+Dj,M(si,M � si)

⌘
(8.26)
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Interestingly, the matrix (Djl) is the inverse of the matrix (amj) from
the Butcher tableau, such that

PM
j=1 amjDjl = �ml. Inserting this in-

verse map into GRK
i (si, Ki, qi) from Eq. (8.24) leads to the equivalent

root-finding problem Gi(si, Si, qi) = 0 with

Gi(si, Si, qi) :=
2
666664

1
hi

�
D1,1(si,1 � si)+ . . .+D1,M(si,M � si)

�
� fc(si,1, qi)

1
hi

�
D2,1(si,1 � si)+ . . .+D2,M(si,M � si)

�
� fc(si,2, qi)
...

1
hi

�
DM,1(si,1 � si)+ . . .+DM,M(si,M � si)

�
� fc(si,M, qi)

3
777775

(8.27)

Likewise, inserting the inverse map into FRK
i (si, Ki, qi) leads to the lin-

ear expression

Fi(si, Si, qi) := si + be1(si,1 � si)+ . . .+ beM(si,M � si)

where the coefficient vector be 2 RM is obtained from the RK weight
vector b by the relation be = D0b. In the special case that cM = 1, for
example in Radau IIA collocation methods, the vector be becomes a unit
vector and the simple relation Fi(si, Si, qi) = si,M holds. Because the
transition from (si, Ki) to (si, Si) just amounts to a basis change, affine
invariant Newton-type methods lead to identical iterates independent
of the chosen parameterization. However, using either the derivative
variables Ki or the state variables Si leads to different sparsity patterns
in the Jacobians and higher-order derivatives of the problem functions.
In particular, the Hessian of the Lagrangian is typically sparser if the
node state variables Si are used. For this reason, the state represen-
tation is more often used than the derivative representation in direct
collocation codes.

Direct collocation optimization problem. The objective integralsR ti+1
ti `c(xe(t), qi) dt on each interval are canonically approximated by

a weighted sum of evaluations of `c on the collocation time points, as
follows

`i(si, Si, qi) := hi
MX

j=1

bj`c(si,j, qi)
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Similarly, one might choose to impose the path constraints on all col-
location time points, leading to the stage inequality function

Hi(si, Si, qi) :=

2
66664

h(si,1, qi)
h(si,2, qi)

...
h(si,M, qi)

3
77775

The finite-dimensional optimization problem to be solved in direct
collocation has as optimization variables the sequence of external
states s := (s0, s1, . . . , sN), the sequence of the internal states S :=
(S0, S1, . . . , SN�1) as well as the sequence of local control parameters,
q :=

�
q0, q1, . . . , qN�1

�
, and is formulated as follows

minimize
s,S,q

N�1X

i=0

`i(si, Si, qi) + Vf (sN) (8.28a)

subject to s0 = x0 (8.28b)

si+1 = Fi(si, Si, qi), for i = 0, . . . ,N � 1 (8.28c)

0 = Gi(si, Si, qi), for i = 0, . . . ,N � 1 (8.28d)

Hi(si, Si, qi)  0, for i = 0, . . . ,N � 1 (8.28e)

hf (sN)  0 (8.28f)

One sees that the above nonlinear programming problem in direct
collocation is similar to the NLP (8.23) arising in the direct multiple-
shooting method, but is augmented by the intermediate state variables
S and the corresponding algebraic constraints (8.28d). Typically, it is
sparser, but has more variables than the multiple-shooting NLP, not
only because of the presence of S, but also because N is larger since
it equals the total number of collocation intervals, each of which cor-
responds to one integration step in a shooting method. Typically, one
chooses rather small stage orders M , e.g., two or three, and large num-
bers for N, e.g., 100 or 1000. The NLPs arising in the direct collocation
method are large but sparse. If the sparsity is exploited in the opti-
mization solver, direct collocation can be an extremely efficient optimal
control method. For this reason, it is widely used.

Pseudospectral methods. The pseudospectral optimal control
method can be regarded a special case of the direct collocation
method, where only one collocation interval (N = 1) is chosen, but with
a high-order M . By increasing the order M , one can obtain arbitrarily
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high solution accuracies in case of smooth trajectories. The state
trajectory is represented by one global polynomial of order M that
is uniquely determined by the initial value s0 and the M collocation
node values s0,1, . . . , s0,M . In this approach, the controls are typically
parameterized by one parameter per collocation node, i.e., by M
distinct values q0,1, . . . , q0,M , such that the control trajectories can be
regarded to be represented by global polynomials of order (M � 1).
One gains a high approximation order, but at the cost that the typical
sparsity of the direct collocation problem is lost.

8.6 Nonlinear Optimization

After the finite-dimensional optimization problem is formulated, it
needs to be solved. From now on, we assume that a nonlinear pro-
gram (NLP) of the form (8.21) is formulated, with variablew 2 Rnw and
parameter x0 2 Rn, which we restate here for convenience.

minimize
w 2 Rnw

F(w)

subject to G(x0,w) = 0

H(w)  0

(8.29)

As before, we call the above optimization problem PN(x0) to indicate
its dependence on the parameter x0 and on the horizon length N. The
aim of the optimization procedure is to reliably and efficiently find an
approximation of the solution w0(x0) of PN(x0) for a given value of
x0. Inside the MPC loop, the optimization solver is confronted with
a sequence of related values of the parameter x0, a fact that can be
exploited in online optimization algorithms to improve speed and reli-
ability compared to standard offline optimization algorithms.

Assumptions and definitions. In this chapter, we make only two as-
sumptions on PN(x0): first, that all problem functions are at least twice
continuously differentiable, and second, that the parameter x0 enters
the equalitiesG linearly, such that the Jacobian matricesGx andGw are
independent of x0. This second assumption is satisfied for all problem
formulations from the previous sections, because the initial value en-
ters only via the initial-value constraint s0 � x0 = 0. If one would en-
counter a problem where the parametric dependence is nonlinear, one
could always use the same trick that we used in the single-shooting
method and introduce a copy of the parameter as an additional opti-
mization variable s0—which becomes part of w—and constrain it by



8.6 Nonlinear Optimization 543

the additional constraint s0�x0 = 0. Throughout the section, we often
make use of the linearization HL(·; w̄) of a function H(·) at a point w̄,
i.e., its first-order Taylor series, as follows

HL(w; w̄) := H(w̄)+Hw(w̄) (w � w̄)

Due to the linear parameter dependence of G, its Jacobian does not
depend on x0, such that we can write

GL(x0,w; w̄) = G(x0, w̄)+Gw(w̄) (w � w̄)

We also heavily use the Lagrangian function defined by

L(x0,w,�, µ) := F(w)+ �0G(x0,w)+ µ0H(w) (8.30)

whose gradient and Hessian matrix with respect to w are often used.
Again, they do not depend on x0, and can thus be written as rwL(w,
�, µ) andr2

wL(w,�, µ). Note that the dimensions of the multipliers, or
dual variables � and µ, equal the output dimensions of the functions
G and H, which we denote by nG and nH . We sometimes call w 2 Rnw
the primal variable. At a feasible point w, we say that an inequality
with index i 2 {1, . . . , nH} is active if and only if Hi(w) = 0. The
linear independence constraint qualification (LICQ) is satisfied if and
only if the gradients of all active inequalities,rwHi(w) 2 Rnw , and the
gradients of the equality constraints, rwGj(w) 2 Rnw for j 2 {1, . . . ,
nG}, form a linearly independent set of vectors.

8.6.1 Optimality Conditions and Perturbation Analysis

The first-order necessary conditions for optimality of the above opti-
mization problem are known as the Karush-Kuhn-Tucker (KKT) condi-
tions, which are formulated as follows.

Theorem 8.14 (KKT conditions). If w0 is a local minimizer of the opti-
mization problem PN(x0) defined in (8.29) and if LICQ holds atw0, then
there exist multiplier vectors �0 and µ0 such that

rwL(w0,�0, µ0) = 0 (8.31a)

G(x0,w0) = 0 (8.31b)

0 � H(w0) ? µ0 � 0 (8.31c)

Here, the last condition, known as the complementarity condition,
states not only that all components of H(w0) are negative and all com-
ponents of µ0 are positive, but also that the two vectors are orthogonal,
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which implies that the products µ0
i Hi(w0) are zero for each i 2 {1, . . . ,

nH}. Thus, each pair (Hi(w0), µ0
i ) 2 R2 must be an element of a nons-

mooth, L-shaped subset of R2 that comprises only the negative x-axis,
the positive y-axis, and the origin.

Any triple (w0,�0, µ0) that satisfies the KKT conditions (8.31) and
LICQ is called a KKT point, independent of local optimality.

In general, the existence of multipliers such that the KKT condi-
tions (8.31) hold is just a necessary condition for local optimality of a
point w0 at which LICQ holds. Only in the special case that the opti-
mization problem is convex, the KKT conditions can be shown to be
both a necessary and a sufficient condition for global optimality. For
the general case, we need to formulate additional conditions on the
second-order derivatives of the problem functions to arrive at suffi-
cient conditions for local optimality. This is only possible after making
a few definitions.

Strictly active constraints and null space basis. At a KKT point (w,
�, µ), an active constraint with index i 2 {1, . . . , nH} is called weakly
active if and only if µi = 0 and strictly active if µi > 0. Note that for
weakly active constraints, the pair (Hi(w), µi) is located at the origin,
i.e., at the nonsmooth point of the L-shaped set. For KKT points without
weakly active constraints, i.e., when the inequalities are either strictly
active or inactive, we say that the strict complementarity condition is
satisfied.

Based on the division into weakly and strictly active constraints, one
can construct the linear spaceZ of directions in which the strictly active
constraints and the equality constraints remain constant up to first or-
der. This space Z plays an important role in the second-order sufficient
conditions for optimality that we state below, and can be defined as the
null space of the matrix that is formed by putting the transposed gra-
dient vectors of all equality constraints and all strictly active inequality
constraints on top of each other. To define this properly at a KKT point
(w,�, µ), we reorder the inequality constraints such that

H(w) =

2
64
H+(w)
H0(w)
H�(w)

3
75

In this reordered view on the functionH(w), the strictly active inequal-
ity constraints H+(w) come first, then the weakly active constraints
H0(w), and finally the inactive constraints H�(w). Note that the out-
put dimensions of the three functions add to nH . The set Z ⇢ Rnw is
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now defined as null space of the matrix

A :=
"
Gw(w)
H+w(w)

#
2 RnA⇥nw

One can regard an orthogonal basis matrix Z 2 Rnw⇥(nw�nA) of Z that
satisfies AZ = 0 and Z0Z = I and whose columns span Z. This al-
lows us to compactly formulate the following sufficient conditions for
optimality.

Theorem 8.15 (Strong second-order sufficient conditions for optimal-
ity). If (w0,�0, µ0) is a KKT point and if the Hessian of its Lagrangian
is positive definite on the corresponding space Z, i.e., if

Z0r2
wL(w0,�0, µ0)Z > 0 (8.32)

then the point w0 is a local minimizer of problem PN(x0).

We call a KKT point that satisfies the conditions of Theorem 8.15 a
strongly regular KKT point. We should mention that there exists also a
weaker form of second-order sufficient conditions. We prefer to work
with the stronger variant because it does not only imply optimality
but also existence of neighboring solutions w0(x0) as a function of
the parameter x0. Moreover, the solution map w0(x0) is directionally
differentiable, and the directional derivative can be obtained by the
solution of a quadratic program, as stated in the following theorem that
summarizes standard results from parametric optimization (Robinson,
1980; Guddat, Vasquez, and Jongen, 1990) and is proven in the specific
form below in Diehl (2001).

Theorem 8.16 (Tangential predictor by quadratic program). If (w̄, �̄,
µ̄) is a strongly regular KKT point for problem PN(x̄0) (i.e., it satisfies
the conditions of Theorem 8.15) then there is a neighborhood N ⇢ Rn
around x̄0 such that for each x0 2 N the problem PN(x0) has a lo-
cal minimizer and corresponding strongly regular KKT point (w0(x0),
�0(x0), µ0(x0)). Moreover, the map from x0 2 N to (w0(x0),�0(x0),
µ0(x0)) is directionally differentiable at x̄0, and the directional deriva-
tive can be obtained by the solution of the following quadratic pro-
gram

minimize
w 2 Rnw

FL(w; w̄)+ 1
2
(w � w̄)0r2

wL(w̄, �̄, µ̄)(w � w̄)

subject to GL(x0,w; w̄) = 0

HL(w; w̄)  0

(8.33)
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More specifically, the solution (wQP(x0,�QP(x0), µQP(x0)) of the above
QP satisfies

�������

2
64
wQP(x0)�w0(x0)
�QP(x0)� �0(x0)
µQP(x0)� µ0(x0)

3
75

�������
= O(|x0 � x̄0|2)

8.6.2 Nonlinear Optimization with Equalities

When we solve an optimization problem without inequalities, the KKT
conditions simplify to

rwL(w0,�0) = 0

G(x0,w0) = 0

This is a smooth root-finding problem that can be summarized as R(x0,
z) = 0 with z = [w0 �0]0. Interestingly, if one regards the Lagrangian L
as a function of x0 and z, we have R(x0, z) = rzL(x0, z). The classical
Newton-Lagrange method addresses the above root-finding problem by
a Newton iteration of the form

zk+1 = zk +�zk with Rz(zk)�zk = �R(x0, zk) (8.35)

To simplify notation and avoid that the iteration index k interferes with
the indices of the optimization variables, we usually use the following
notation for the Newton step

z+ = z̄ +�z with Rz(z̄)�z = �R(x0, z̄) (8.36)

Here, the old iterate and linearization point is called z̄ and the new it-
erate z+. The square Jacobian matrix Rz(z) that needs to be factorized
in each iteration to compute �z has a particular structure and is given
by

Rz(z) =
"
r2
wL(w,�) Gw(w)0
Gw(w) 0

#

This matrix is called the KKT matrix and plays an important role in
all constrained optimization algorithms. The KKT matrix is invertible
at a point z if the LICQ condition holds, i.e., Gw(w) has rank nG, and
if the Hessian of the Lagrangian is positive definite on the null space
of Gw(w), i.e., if Z0r2

wL(w,�, µ)Z > 0, for Z being a null space basis.
The matrix Z0r2

wL(w,�, µ)Z is also called the reduced Hessian. Note
that the KKT matrix is invertible at a strongly regular point, as well



8.6 Nonlinear Optimization 547

as in a neighborhood of it, such that Newton’s method is locally well
defined. The KKT matrix is the second derivative of the Lagrangian L
with respect to the primal-dual variables z, and is therefore symmetric.
For this reason, it has only real eigenvalues, but it is typically indefinite.
At strongly regular KKT points, it has nw positive and nG negative
eigenvalues.

Quadratic program interpretation and tangential predictors. A
particularly simple optimization problem arises if the objective func-
tion is linear quadratic, F(w) = b0w + (1/2)w0Bw, and the constraint
linear, G(w) = a+Aw. In this case, we speak of a quadratic program
(QP), and the KKT conditions of the QP directly form a linear system in
the variables z = [w0 �0]0, namely

"
B A0
A 0

#"
w
�

#
= �

"
b
a

#

Due to the equivalence of the KKT conditions of the QP with a linear
system one can show that the new point z+ = z̄ + �z in the Newton
iteration for the nonlinear problem (8.34) also can be obtained as the
solution of a QP

minimize
w 2 Rnw

FL(w; w̄)+ 1
2
(w � w̄)0Bex(z̄)(w � w̄)

subject to GL(x0,w; w̄) = 0
(8.37)

with Bex(z̄) := r2
wL(w̄, �̄, µ̄). If the primal-dual solution of the above

QP is denoted by wQP and �QP, one can easily show that setting
w+ := wQP and �+ := �QP yields the same step as the Newton iteration.
The interpretation of the Newton step as a QP is not particularly rele-
vant for equality constrained problems, but becomes a powerful tool in
the context of inequality constrained optimization. It directly leads to
the family of sequential quadratic programming (SQP) methods, which
are treated in Section 8.7.1. One interesting observation is that the
QP (8.37) is identical to the QP (8.33) from Theorem 8.16, and thus its
solution cannot only be used as a Newton step for a fixed value of x0,
but it can also deliver a tangential predictor for changing values of x0.
This property is used extensively in continuation methods for nonlin-
ear MPC, such as the real-time iteration presented in Section 8.9.2.

8.6.3 Hessian Approximations

Even though the reduced exact Hessian is guaranteed to be positive def-
inite at regular points, it can become indefinite at nonoptimal points.
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In that case the Newton’s method would fail because the KKT matrix
would become singular in one iteration. Also, the evaluation of the ex-
act Hessian can be costly. For this reason, Newton-type optimization
methods approximate the exact Hessian matrix Bex(z̄) by an approxi-
mation B̄ that is typically positive definite or at least positive semidef-
inite, and solve the QP

minimize
w 2 Rnw

FL(w; w̄)+ 1
2
(w � w̄)0B̄(w � w̄)

subject to GL(x0,w; w̄) = 0
(8.38)

in each iteration. These methods can be generalized to the case of
inequality constrained optimization problems and then fall into the
class of sequential quadratic programming (SQP) methods.

The local convergence rate of Newton-type optimization methods
can be analyzed directly with the tools from Section 8.3.3. Since the
difference between the exact KKT matrix J(zk) and the Newton-type
iteration matrixMk is due only to the difference in the Hessian approx-
imation, Theorem 8.7 states that convergence can occur only if the dif-
ference Bex(zk)�B̄k is sufficiently small, and that the linear contraction
factor max directly depends on this difference and becomes zero if the
exact Hessian is used. Thus, the convergence rate for an exact Hessian
SQP method is quadratic, and superlinear convergence occurs if the dif-
ference between exact and approximate Hessian shrinks to zero in the
relevant directions. Note that the algorithms described in this and the
following sections only approximate the Hessian matrix, but evaluate
the exact constraint Jacobian Gw(w̄) in each iteration.

The constrained Gauss-Newton method. One particularly useful
Hessian approximation is possible if the objective function F(w) is a
sum of squared residuals, i.e., if

F(w) = (1/2) |M(w)|2

for a differentiable function M : Rnw ! RnM . In this case, the exact
Hessian Bex(z̄) is given by

Mw(w̄)0Mw(w̄)| {z }
=:BGN(w̄)

+
nMX

j=1

Mj(w̄)r2Mj(w̄)+
nGX

i=1

�̄ir2Gi(w̄)

By taking only the first part of this expression, one obtains the Gauss-
Newton Hessian approximation BGN(w̄), which is by definition always
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a positive semidefinite matrix. In the case that Mw(w̄) 2 RnM⇥nw has
rank nw , i.e., if nM � nw and the nw columns are linearly indepen-
dent, the Gauss-Newton Hessian BGN(w̄) is even positive definite. Note
that BGN(w̄) does not depend on the multipliers �, but the error with
respect to the exact Hessian does. This error would be zero if both the
residuals Mj(w̄) and the multipliers �i are zero. Because both can be
shown to be small at a strongly regular solution with small objective
function (1/2) |M(w)|2, the Gauss-Newton Hessian BGN(w̄) is a good
approximation for problems with small residuals |M(w)|.

When the Gauss-Newton Hessian BGN(w̄) is used within a con-
strained optimization algorithm, as we do here, the resulting algo-
rithm is often called the constrained or generalized Gauss-Newton
method (Bock, 1983). Newton-type optimization algorithms with
Gauss-Newton Hessian converge only linearly, but their contraction rate
can be surprisingly fast in practice, in particular for problems with
small residuals. The QP subproblem that is solved in each iteration of
the constrained Gauss-Newton method can be shown to be equivalent
to

minimize
w 2 Rnw

(1/2) |ML(w; w̄)|2

subject to GL(x0,w; w̄) = 0
(8.39)

A particularly simple instance of the constrained Gauss-Newton
method arises if the objective function is itself already a positive defi-
nite quadratic function, i.e., if F(w) = (1/2)(w �wref)0B(w �wref). In
this case, one could define M(w) := B 1

2 (w �wref) to see that the QP
subproblem has the same objective as the NLP. Generalizing this ap-
proach to nonquadratic, but convex, objectives and convex constraint
sets, leads to the class of sequential convex programming methods as
discussed and analyzed in Tran-Dinh, Savorgnan, and Diehl (2012).

Hessian update methods. Another way to obtain a cheap and posi-
tive definite Hessian approximation B̄ for Newton-type optimization is
provided by Hessian update methods. In order to describe them, we
recall the iteration index k to the primal-dual variables zk = [w0

k �
0
k]0

and the Hessian matrix Bk at the k-th iteration, such that the QP to be
solved in each iteration is described by

minimize
w 2 Rnw

FL(w;wk)+
1
2
(w �wk)0Bk(w �wk)

subject to GL(x0,w;wk) = 0
(8.40)
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In a full step method, the primal-dual solutionwQP
k and �QP

k of the above
QP is used as next iterate, i.e., wk+1 := wQP

k and �k+1 := �QP
k . A Hessian

update formula uses the previous Hessian approximation Bk and the
Lagrange gradient evaluations at wk and wk+1 to compute the next
Hessian approximation Bk+1. Inspired from a directional derivative of
the function rwL(·,�k+1) in the direction sk := (wk+1 � wk), which,
up-to-first order, should be equal to the finite difference approximation
yk := rwL(wk+1,�k+1)�rwL(wk,�k+1), all Hessian update formulas
require the secant condition

Bk+1sk = yk

One particularly popular way of the many ways to obtain a matrix
Bk+1 that satisfies the secant condition is given by the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) formula, which sets

Bk+1 := Bk �
Bksks0kBk
s0kBksk

+ yky
0
k

y 0ksk

One often starts the update procedure with a scaled unit matrix, i.e.,
sets B0 := ↵I with some ↵ > 0. It can be shown that for a positive defi-
nite Bk and for y 0ksk > 0, the matrix Bk+1 resulting from the BFGS for-
mula is also positive definite. In a practical implementation, to ensure
positive definiteness of Bk+1, the unmodified update formula is only
applied if y 0ksk is sufficiently large, say if the inequality y 0ksk � �s0kBksk
is satisfied with some � 2 (0,1), e.g., � = 0.2. If it is not satisfied, the
update can either be skipped, i.e., one sets Bk+1 := Bk, or the vector yk
is first modified and then the BFGS update is performed with this mod-
ified vector. An important observation is that the gradient difference
yk can be computed with knowledge of the first-order derivatives of F
and G atwk andwk+1, which are needed to define the linearizations FL

and GL in the QP (8.40) at the current and next iteration point. Thus, a
Hessian update formula does not create any additional costs in terms
of derivative computations compared to a fixed Hessian method (like,
for example, steepest descent); but it typically improves the conver-
gence speed significantly. One can show that Hessian update methods
lead to superlinear convergence under mild conditions.

8.7 Newton-Type Optimization with Inequalities

The necessary optimality conditions for an equality constrained opti-
mization problem form a smooth system of nonlinear equations in the
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primal-dual variables, and can therefore directly be addressed by New-
ton’s method or its variants. In contrast to this, the KKT conditions for
inequality constrained problems contain the complementarity condi-
tions (8.31c), which define an inherently nonsmooth set in the primal-
dual variable space, such that Newton-type methods can be applied
only after some important modifications. In this section, we present
two widely used classes of methods, namely sequential quadratic pro-
gramming (SQP) and nonlinear interior point (IP) methods.

8.7.1 Sequential Quadratic Programming

Sequential quadratic programming (SQP) methods solve in each itera-
tion an inequality constrained quadratic program (QP) that is obtained
by linearizing all problem functions

minimize
w 2 Rnw

FL(w;wk)+
1
2
(w �wk)0Bk(w �wk)

subject to GL(x0,w;wk) = 0

HL(w;wk)  0

(8.41)

The above QP is a quadratic approximation of the nonlinear problem
PN(x0), and is denoted by PQP

N (x0;wk,Bk) to express its dependence
on the linearization point wk and the choice of Hessian approximation
Bk. In the full-step SQP method, the primal-dual solution zQP

k = (wQP
k ,

�QP
k , µ

QP
k ) of the QP PQP

N (x0;wk,Bk) is directly taken as the next iter-
ate, zk+1 = (wk+1,�k+1, µk+1), i.e., one sets zk+1 := zQP

k . Note that the
multipliers (�k+1, µk+1) only have an influence on the next QP via the
Hessian approximation Bk+1, and can be completely discarded in case a
multiplier-free Hessian approximation such as a Gauss-Newton Hessian
is used.

The solution of an inequality constrained QP is a nontrivial task, but
for convex QP problems there exist efficient and reliable algorithms that
are just treated here as a black box. To render the QP subproblem con-
vex, one often chooses positive semidefinite Hessian approximations
Bk.

Active set detection and local convergence. A crucial property of
SQP methods is that the set of active inequalities (the active set, in
short) is discovered inside the QP solver, and that the active set can
change significantly from one SQP iteration to the next. However, one
can show that the QP solution discovers the correct active set when
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the linearization point wk is close to a strongly regular solution of the
NLP (8.29) at which strict complementarity holds. Thus, in the vicinity
of the solution, the active set remains stable, and, therefore, the SQP
iterates become identical to the iterates of a Newton-type method for
equality constrained optimization applied to a problem where all active
constraints are treated as equalities, and where all other inequalities are
discarded. Therefore, the local convergence results for general Newton-
type methods can be applied; and the SQP method shows quadratic
convergence in case of an exact Hessian, superlinear convergence in
case of Hessian updates, and linear convergence in case of a Gauss-
Newton Hessian.

Generalized tangential predictors in SQP methods. An appealing
property of SQP methods for problems that depend on a parameter x0

is that they deliver a generalized tangential predictor, even at points
where the active set changes, i.e., where strict complementarity does
not hold. More precisely, it is easily seen that the QP PQP

N (x0; w̄, B̄)
formulated in an SQP method, with exact Hessian B̄ = r2L(z̄) at a
strongly regular solution z̄ = (w̄, �̄, µ̄) of problem PN(x̄0), delivers the
tangential predictor of Theorem 8.16 for neighboring problems PN(x0)
with x0 î x̄0 (Diehl, 2001). A disadvantage of SQP methods is that they
require in each iteration the solution of an inequality constrained QP,
which is more expensive than solution of a linear system.

8.7.2 Nonlinear Interior Point Methods

Nonlinear interior point (IP) methods remove the nonsmoothness of
the KKT conditions by formulating an approximate, but smooth root-
finding problem. This smooth problem corresponds to the necessary
optimality conditions of an equality constrained optimization problem
that is an approximation of the original problem. In a first and trivial
step, the nonlinear inequalities H(w)  0 are reformulated into equal-
ity constraintsH(w)+s = 0 by introduction of a slack variable s 2 RnH
that is required to be positive, such that the equivalent new problem
has bounds of the form s � 0 as its only inequality constraints. In the
second and crucial step, these bounds are replaced by a barrier term
of the form �⌧

PnH
i=1 log si with ⌧ > 0 that is added to the objective.

This leads to a different and purely equality constrained optimization
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problem given by

minimize
w, s

F(w)� ⌧
nHX

i=1

log si

subject to G(x0,w) = 0

H(w)+ s = 0

(8.42)

For ⌧ ! 0, the barrier term �⌧ log si becomes zero for any strictly posi-
tive si > 0 while it always grows to infinity for si ! 0, i.e., on the bound-
ary of the feasible set. Thus, for ⌧ ! 0, the barrier function would be a
perfect indicator function of the true feasible set and one can show that
the solution of the modified problem (8.42) tends to the solution of the
original problem (8.29) for ⌧ ! 0. For any positive ⌧ > 0, the necessary
optimality conditions of problem (8.42) are a smooth set of equations,
and can, if we denote the multipliers for the equalities H(w)+s = 0 by
µ 2 RnH and keep the original definition of the Lagrangian from (8.30),
be equivalently formulated as

rwL(w,�, µ) = 0 (8.43a)

G(x0,w) = 0 (8.43b)

H(w)+ s = 0 (8.43c)

µisi = ⌧ for i = 1, . . . , nH (8.43d)

Note that for ⌧ > 0, the last condition (8.43d) is a smooth version of
the complementarity condition 0  s ? µ � 0 that would correspond
to the KKT conditions of the original problem after introduction of the
slack variable s.

A nonlinear IP method proceeds as follows: it first sets ⌧ to a rather
large value, and solves the corresponding root-finding problem (8.43)
with a Newton-type method for equality constrained optimization. Dur-
ing these iterations, the implicit constraints si > 0 and µi > 0 are
strictly enforced by shortening the steps, if necessary, to avoid being
attracted by spurious solutions of µisi = ⌧ . Then, it slowly reduces the
barrier parameter ⌧ ; for each new value of ⌧ , the Newton-type iterations
are initialized with the solution of the previous problem.

Of course, with finitely many Newton-type iterations, the root-
finding problems for decreasing values of ⌧ can only be solved ap-
proximately. In practice, one often performs only one Newton-type
iteration per problem, i.e., one iterates while one changes the problem.
Here, we have sketched the primal-dual IP method as it is for example
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implemented in the NLP solver IPOPT (Wächter and Biegler, 2006); but
there exist many other variants of nonlinear interior point methods. IP
methods also exist in variants that are tailored to linear or quadratic
programs and IP methods also can be applied to other convex optimiza-
tion problems such as second-order cone programs or semidefinite pro-
grams (SDP). For these convex IP algorithms, one can establish polyno-
mial runtime bounds, which unfortunately cannot be established for
the more general case of nonlinear IP methods described here.

Nonlinear IP methods with fixed barrier parameter. Some variants
of nonlinear IP methods popular in the field of nonlinear MPC use a
fixed positive barrier parameter ⌧ throughout all iterations, and there-
fore solve a modified MPC problem. The advantage of this approach is
that a simple and straightforward Newton-type framework for equality
constrained optimization can be used out of the box. The disadvantage
is that for a large value of ⌧ , the modified MPC problem is a conservative
approximation of the original MPC problem; for a small value of ⌧ , the
nonlinearity due to the condition (8.43d) is severe and slows down the
convergence of the Newton-type procedure. Interestingly, these non-
linear IP variants are sometimes based on different barrier functions
than the logarithmic barrier described above; they use slack formula-
tions that make violation of the implicit constraint si � 0 impossible by
setting, for example, si = (ti)2 with new slacks ti. This last variant is
successfully used for nonlinear MPC by Ohtsuka (2004), and modifies
the original problem to a related problem of the form

minimize
w, t

F(w)� ⌧
nHX

i=1

ti

subject to G(x0,w) = 0

Hi(w)+ (ti)2 = 0, i = 1, . . . , nH

(8.44)

which is then solved by a tailored Newton-type method for equality
constrained optimization.

8.7.3 Comparison of SQP and Nonlinear IP Methods

While SQP methods need to solve a QP in each iteration, nonlinear IP
methods only solve a linear system of similar size in each iteration,
which is cheaper. Some SQP methods even solve the QP by an interior
point method, and then perform about 10-30 inner iterations—each of
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which is as expensive as the linear system solution in a nonlinear IP
method.

On the other hand, the cost per iteration for both SQP and nonlin-
ear IP methods also comprises the evaluation of the problem functions
and their derivatives. The number of high-level iterations required to
reach a desired level of accuracy is often smaller for SQP methods than
for nonlinear IP methods. Also, SQP methods are better at warmstart-
ing, which is particularly important in the context of nonlinear MPC.
Roughly speaking, for an NLP with cheap function and derivative eval-
uations, as in direct collocation, and if no good initial guess is provided,
a nonlinear IP method is preferable. An SQP method would be favorable
in case of expensive function evaluations, as in direct single or multiple
shooting, and when good initial guesses can be provided, for example,
if a sequence of neighboring problems is solved.

8.8 Structure in Discrete Time Optimal Control

When a Newton-type optimization method is applied to an optimal con-
trol problem, the dynamic system constraints lead to a specific sparsity
structure in the KKT matrix. And the quadratic program (QP) in the
Newton-type iteration corresponds to a linear quadratic (LQ) optimal
control problem with time-varying matrices. To discuss this structure
in detail, consider an unconstrained discrete time OCP as it arises in
the direct multiple-shooting method

minimize
w

N�1X

i=0

`i(xi,ui) + Vf (xN)

subject to ¯̄x0 � x0 = 0

fi(xi,ui)� xi+1 = 0 for i = 0, . . . ,N � 1

(8.45)

Here, the vector w 2 R(N+1)n+Nm of optimization variables is given by
w = [x00 u00 · · · x0N�1 u0N�1 x0N]0. The fixed vector ¯̄x0 is marked by
two bars to distinguish it from the optimization variable x0, as well
as from a specific value x̄0 of x0 that is used as linearization point
in a Newton-type algorithm. We introduce also a partitioned vector of
Lagrange multipliers, � = [�00 �01 . . . �0N]0, with � 2 R(N+1)n, such that
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the Lagrangian of the problem is given by

L(¯̄x0,w,�) = �00(¯̄x0 � x0)+
N�1X

i=0

`i(xi,ui)+

�0i+1(fi(xi,ui)� xi+1)+ Vf (xN)

As before, we can combine w and � to a vector z 2 R2(N+1)n+Nm of all
primal-dual variables. Interestingly, the exact Hessian matrix Bex(z) =
r2
wL(z) is block diagonal (Bock and Plitt, 1984), because the Lagrangian

function L is a sum of independent terms that each depend only on a
small subset of the variables—a property called partial separability.
The exact Hessian is easily computed to be a matrix with the structure

Bex(z̄) =

2
6666666664

Q0 S00
S0 R0

. . .
QN�1 S0N�1
SN�1 RN�1

PN

3
7777777775

(8.46)

where the blocks with index i, only depend on the primal variables with
index i and the dual variables with index (i+ 1). More specifically, for
i = 0, . . . ,N � 1 the blocks are readily shown to be given by

"
Qi S0i
Si Ri

#
= r2

(xi,ui)[`i(xi,ui)+ �
0
i+1fi(xi,ui)]

8.8.1 Simultaneous Approach

Most simultaneous Newton-type methods for optimal control pre-
serve the block diagonal structure of the exact Hessian Bex(z̄) and
also of the Hessian approximation B̄. Thus, the linear quadratic
optimization problem (8.38) that is solved in one iteration of a
Newton-type optimization method for a given linearization point w̄ =
[x̄00 ū00 · · · x̄0N�1 ū0N�1 x̄0N]0 and a given Hessian approximation B̄ is
identical to the following time-varying LQ optimal control problem

minimize
w

N�1X

i=0

`QP,i(xi,ui; w̄, B̄) + VQP,f (xN ; w̄, B̄)

subject to ¯̄x0 � x0 = 0

fL,i(xi,ui; x̄i, ūi)� xi+1 = 0 for i = 0, . . . ,N � 1
(8.47)



8.8 Structure in Discrete Time Optimal Control 557

Here, the quadratic objective contributions `QP,i(xi,ui; w̄, B̄) are given
by

`i(x̄i, ūi)+r(s,q)`i(x̄i, ūi)0
"
xi � x̄i
ui � ūi

#
+1

2

"
xi � x̄i
ui � ūi

#0 "Q̄i S̄0i
S̄i R̄i

#"
xi � x̄i
ui � ūi

#

the terminal cost VQP,f (xN ; w̄, B̄) is given by

Vf (x̄N)+rVf (x̄N)0[xN � x̄N]+ (1/2)[xN � x̄N]0P̄N[xN � x̄N]

and the linearized constraint functions fL,i(xi,ui; x̄i, ūi) are simply
given by

fi(x̄i, ūi)+
@fi
@s
(x̄i, ūi)

| {z }
=:Āi

[xi � x̄i]+
@fi
@q
(x̄i, ūi)

| {z }
=:B̄i

[ui � ūi]

To create a banded structure, it is advantageous to order the primal-
dual variable vector as z = [�00 x00 u00 · · · �0N�1 x0N�1 u0N�1 �0N x0N]0;
then the solution of the above LQ optimal control problem at iterate
z̄ corresponds to the solution of a block-banded linear system M̄KKT ·
(z � z̄) = �rzL(¯̄x0, z̄), which we can write equivalently as

M̄KKT · z = �r̄KKT (8.48)

where the residual vector is given by r̄KKT := rzL(¯̄x0, z̄) � M̄KKTz̄.
The matrix M̄KKT is an approximation of the block-banded KKT matrix
r2
zL(z̄) and given by

M̄KKT =

2
66666666666666666664

0 �I
�I Q̄0 S̄00 Ā00

S̄0 R̄0 B̄00
Ā0 B̄0 0 �I

�I . . .
Q̄N�1 S̄0N�1 Ā0N�1
S̄N�1 R̄N�1 B̄0N�1
ĀN�1 B̄N�1 0 �I

�I
P̄N

3
77777777777777777775

(8.49)

Ignoring the specific block structure, this is a banded symmetric ma-
trix with bandwidth (2n+m) and total size N(2n+m)+ 2n, and the
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linear system can thus in principle be solved using a banded LDLT-
factorization routine at a cost that is linear in the horizon length N
and cubic in (2n +m). There exists a variety of even more efficient
solvers for this form of KKT systems with smaller runtime and smaller
memory footprint. Many of these solvers exploit the specific block-
banded structure of the LQ optimal control problem. Some of these
solvers are based on the backward Riccati recursion, as introduced in
Section 1.3.3 and Section 6.1.1, and described in Section 8.8.3 for the
time-varying case.

8.8.2 Linear Quadratic Problems (LQP)

Consider a time-varying LQ optimal control problem of the form

minimize
x,u

N�1X

i=0

h
q̄i
r̄i

i0 hxi
ui

i
+ 1

2

h
xi
ui

i0 Q̄i S̄0i
S̄i R̄i

�h
xi
ui

i
+ p̄0NxN +

1
2
x0NP̄NxN

subject to ¯̄x0 � x0 = 0

b̄i + Āixi + B̄iui � xi+1 = 0 for i = 0, . . . ,N � 1
(8.50)

Here, we use the bar above fixed quantities such as Āi, Q̄i to distin-
guish them from the optimization variables xi,ui, and the quantities
that are computed during the solution of the optimization problem.
This distinction makes it possible to directly interpret problem (8.50)
as the LQ approximation (8.47) of a nonlinear problem (8.45) at a given
linearization point z̄ = [�̄00 x̄00 ū00 · · · �̄0N�1 x̄0N�1 ū0N�1 �̄0N x̄0N]0 within
a Newton-type optimization method. We call the above problem the lin-
ear quadratic problem (LQP), and present different solution approaches
for the LQP in the following three subsections.

8.8.3 LQP Solution by Riccati Recursion

One band-structure-exploiting solution method for the above linear
quadratic optimization problem is called the Riccati recursion. It can
easily be derived by dynamic programming arguments. It is given by
three recursions—one expensive matrix and two cheaper vector recur-
sions.

First, and most important, we perform a backward matrix recursion
which is started at PN := P̄N , and goes backward through the indices
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i = N � 1, . . . ,0 to compute PN�1, . . . , P0 with the following formula

Pi := Q̄i + Ā0iPi+1Āi
� (S̄0i + Ā0iPi+1B̄i)(R̄i + B̄0iPi+1B̄i)�1(S̄i + B̄0iPi+1Āi) (8.51)

The only condition for the above matrix recursion formula to be well
defined is that the matrix (R̄i + B̄0iPi+1B̄i) is positive definite, which
turns out to be equivalent to the optimization problem being well posed
(otherwise, problem (8.50) would be unbounded from below). Note that
the Riccati matrix recursion propagates symmetric matrices Pi, whose
symmetry can and should be exploited for efficient computations.

The second recursion is a vector recursion that also goes backward
in time and is based on the matrices P0, . . . , PN resulting from the first
recursion, and can be performed concurrently. It starts with pN := p̄N
and then runs through the indices i = N � 1, . . . ,0 to compute

pi := q̄i + Ā0i(Pi+1b̄i + pi+1)

� (S̄0i + Ā0iPi+1B̄i)(R̄i + B̄0iPi+1B̄i)�1(r̄i + B̄0i(Pi+1b̄i + pi+1)) (8.52)

Interestingly, the result of the first and the second recursion together
yield the optimal cost-to-go functions V0

i for the states xi that are given
by

V0
i (xi) = ci + p0ixi +

1
2
x0iPixi

where the constants ci are not of interest here. Also, one directly ob-
tains the optimal feedback control laws u0

i that are given by

u0
i (xi) = ki +Kixi

with

Ki := �(R̄i + B̄0iPi+1B̄i)�1(S̄i + B̄0iPi+1Āi) and (8.53a)

ki := �(R̄i + B̄0iPi+1B̄i)�1(r̄i + B̄0i(Pi+1b̄i + pi+1)) (8.53b)

Based on these data, the optimal solution to the optimal control prob-
lem is obtained by a forward vector recursion that is nothing other
than a forward simulation of the linear dynamics using the optimal
feedback control law. Thus, the third recursion starts with x0 := ¯̄x0

and goes through i = 0, . . . ,N � 1 computing

ui := ki +Kixi (8.54a)

xi+1 := b̄i + Āixi + B̄iui (8.54b)
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For completeness, one would simultaneously also compute the La-
grange multipliers �i, which are for i = 0, . . . ,N given by the gradient
of the optimal cost-to-go function at the solution

�i := pi + Pixi (8.54c)

The result of the three recursions of the Riccati algorithm is a vector
z = [�00 x00 u00 · · · �0N�1 x0N�1 u0N�1 �0N x0N]0 that solves the linear
system M̄KKT · z = �r̄KKT with a right-hand side that is given by r̄KKT =
[¯̄x00 q̄00 r̄ 00 b̄00 · · · q̄0N�1 r̄ 0N�1 b̄0N�1 p̄0N]0.

The matrix recursion (8.51) can be interpreted as a factorization of
the KKT matrix M̄KKT, and in an efficient implementation it needs about
N(7/3n3 + 4n2m + 2nm2 + 1/3m3) FLOPs, which is about one-third
the cost of a plain banded LDLT-factorization.

On the other hand, the two vector recursions (8.52) and (8.54a)-
(8.54c) can be interpreted as a linear system solve with the already fac-
torized matrix M̄KKT. In an efficient implementation, this linear system
solve needs about N(8n2 + 8nm+ 2n2) FLOPs.

If care is taken to reduce the number of memory movements and
to optimize the linear algebra operations for full CPU usage, one can
obtain significant speedups in the range of one order of magnitude
compared to a standard implementation of the Riccati recursion—even
for small- and medium-scale dynamic systems (Frison, 2015). With only
minor modifications, the Riccati recursion can be used inside an interior
point method for inequality constrained optimal control problems.

8.8.4 LQP Solution by Condensing

A different way to exploit the block-sparse structure of the LQ op-
timal control problem (8.50) is to first eliminate the state trajectory
x = [x00 x01 · · · x0N]0 as a function of the initial value ¯̄x0 and the con-
trol u = [u00 u01 · · · u0N�1]0. After subdivision of the variables into
states and controls, the equality constraints of the QP (8.50) can be ex-
pressed in the following form, where we omit the bar above the system
matrices and vectors for better readability
2
66666664

I
�A0 I

�A1 I
. . .

. . .
�AN�1 I

3
77777775

| {z }
=:A

x =

2
66666664

0
b0

b1
...

bN�1

3
77777775

| {z }
=:b

+

2
66666664

I
0
0
...
0

3
77777775

| {z }
=:I

¯̄x0+

2
66666664

0
B0

B1
. . .

BN�1

3
77777775

| {z }
=:B

u
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It can easily be shown that the inverse of A is given by

A�1=

2
66666664

I
A0 I
A1A0 A1 I

...
...

...
. . .

(AN�1 · · ·A0) (AN�1 · · ·A1) (AN�1 · · ·A2) I

3
77777775

and state elimination results in the affine map

x =A�1b + A�1I ¯̄x0 + A�1B u

Using this explicit expression to eliminate all states in the objective
results in a condensed, unconstrained quadratic optimization problem
of the form

minimize
u

c +
"
q
r

#0"¯̄x0

u

#
+ 1

2

"
¯̄x0

u

#0"Q S0
S R

#"
¯̄x0

u

#
(8.55)

that is equivalent to the original optimal control problem (8.50). Con-
densing algorithms process the vectors and matrices of the sparse
problem (8.50) to yield the data of the condensed QP (8.55)—in par-
ticular the Hessian R—and come in different variants. One classical
condensing algorithm has a cost of about (1/3)N3nm2 FLOPS; a second
variant, that can be derived by applying reverse AD to the quadratic cost
function, has a different complexity and costs about N2(2n2m+nm2)
FLOPs. See Frison (2015) for a detailed overview of these and other
condensing approaches.

After condensing, the condensed QP still needs to be solved, and
the solution of the above unconstrained QP (8.50) is given by u0 =
�R�1(r +S¯̄x0). Because the Hessian R is a dense symmetric and usu-
ally positive definite matrix of size (Nm), it can be factorized using a
Cholesky decomposition, which costs about (1/3)N3m3 FLOPs. Inter-
estingly, the Cholesky factorization also could be computed simultane-
ously with the second condensing procedure mentioned above, which
results in an additional cost of only about Nm3 FLOPs (Frison, 2015),
resulting in a condensing based Cholesky factorization of quadratic
complexity in N, as discovered by Axehill and Morari (2012). The con-
densing approach can easily be extended to the case of additional con-
straints, and results in a condensed QP with Nm variables and some
additional equality and inequality constraints that can be addressed by
a dense QP solver.
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Is condensing a sequential approach? Condensing is similar in
spirit to a sequential approach that is applied to the LQ subproblem. To
distinguish the different algorithmic ingredients, we reserve the term
“sequential” for the nonlinear OCP only, while we speak of “condens-
ing” when we refer to an LQ optimal control problem. This distinction is
useful because all four combinations of sequential or simultaneous ap-
proaches with either the Riccati recursion or the condensing algorithm
are possible, and lead to different algorithms. For example, when the
simultaneous approach is combined with the condensing algorithm, it
leads to different Newton-type iterates than the plain sequential ap-
proach, even though the linear algebra operations in the quadratic sub-
problems are similar.

Comparing Riccati recursion and condensing. The Riccati recur-
sion, or, more generally, the banded-LDLT-factorization approaches,
have a runtime that is linear in the horizon length N; they are there-
fore always preferable to condensing for long horizons. They can easily
be combined with interior point methods and result in highly compet-
itive QP solution algorithms. On the other hand, condensing-based QP
solutions become more competitive than the Riccati approach for short
to moderate horizon lengths N—in particular if the state dimension n
is larger than the control dimension m, and if an efficient dense ac-
tive set QP solver is used for the condensed QPs. Interestingly, one
can combine the advantages of condensing and band structured linear
algebra to yield a partial condensing method (Axehill, 2015), which is
even more efficient than the plain Riccati approach on long horizons.

8.8.5 Sequential Approaches and Sparsity Exploitation

So far, we have only presented the solution of the unconstrained OCP
by Newton-type methods in the simultaneous approach, to highlight
the specific sparsity structure that is inherent in the resulting LQ prob-
lem. Many Newton-type algorithms also exist which are based on the
sequential approach, however, where the Newton-type iterations are
performed in the space of control sequences u = [u00 · · · u0N�1]0 only.
We recall that one eliminates the state trajectory by a nonlinear forward
simulation in the sequential approach to maintain physically feasible
trajectories. The plain sequential approach does not exploit sparsity
and is not applicable to strongly unstable systems. Interestingly, some
sequential approaches exist that do exploit the sparsity structure of
the OCP and some—notably differential dynamic programming—even



8.8 Structure in Discrete Time Optimal Control 563

incorporate feedback into the forward simulation to better deal with
unstable dynamic systems.

Plain dense sequential approach. We start by describing how the
plain sequential approach—the direct single-shooting method intro-
duced in Section 8.5.1—solves the unconstrained OCP (8.45) with a
Newton-type method. Here, all states are directly eliminated as a func-
tion of the controls by a forward simulation that starts at x0 := ¯̄x0 and
recursively defines xi+1 := fi(xi,ui) for i = 0, . . . ,N � 1. The result is
that the objective function F(¯̄x0,u) :=

PN�1
i=0 `i(xi,ui) + Vf (xN) di-

rectly depends on all optimization variables u = [u00 · · · u0N�1]0. The
task of optimization now is to find a root of the nonlinear equation
system ruF(¯̄x0,u) = 0. At some iterate ū, after choosing a Hessian
approximation B̄ ⇡ r2

uF(¯̄x0, ū), one has to solve linear systems of the
form

B̄(u� ū) = �ruF(¯̄x0, ū) (8.56)

It is important to note that the exact Hessian r2
uF(¯̄x0, ū) is a dense

matrix of size Nm (where m is the control dimension), and that one
usually also chooses a dense Hessian approximation B̄ that is ideally
positive definite.

A Cholesky decomposition of a symmetric positive definite linear
system of sizeNm has a computational cost of (1/3)(Nm)3 FLOPs, i.e.,
the iteration cost of the plain sequential approach grows cubically with
the horizon length N. In addition to the cost of the linear system solve,
one has to consider the cost of computing the gradient ruF(¯̄x0, ū).
This is ideally done by a backward sweep equivalent to the reverse mode
of algorithmic differentiation (AD) as stated in (8.16), at a cost that
grows linearly in N. The cost of forming the Hessian approximation
depends on the chosen approximation, but is typically quadratic in N.
For example, an exact Hessian could be computed by performing Nm
forward derivatives of the gradient function ruF(¯̄x0,u).

The plain dense sequential approach results in a medium-sized op-
timization problem without much sparsity structure but with expen-
sive function and derivative evaluations, and can thus be addressed
by a standard nonlinear programming method that does not exploit
sparsity, but converges with a limited number of function evaluations.
Typically, an SQP method in combination with a dense active set QP
solver is used.

Sparsity-exploiting sequential approaches. Interestingly, one can
form and solve the same linear system as in (8.56) by using the sparse
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linear algebra techniques described in the previous section for the si-
multaneous approach. To implement this, it would be easiest to start
with an algorithm for the simultaneous approach that computes the
full iterate in the vector z that contains as subsequences the controls
u = [u00 · · · u0N�1]0, the states x = [x00 · · · xN]0, and the multipliers
� = [�00 · · · �0N]0. After the linear system solve, one would simply
overwrite the states x by the result of a nonlinear forward simulation
for the given controls u.

The sparse sequential approach is particularly easy to implement
if a Gauss-Newton Hessian approximation is used (Sideris and Bobrow,
2005). To compute the exact Hessian blocks, one performs a second
reverse sweep identical to (8.16) to overwrite the values of the multipli-
ers �. As in the simultaneous approach, the cost for each Newton-type
iteration would be linear in N with this approach, while one can show
that the resulting iterates would be identical to those of the dense se-
quential approach for both the exact and the Gauss-Newton Hessian
approximations.

8.8.6 Differential Dynamic Programming

The sequential approaches presented so far first compute the com-
plete control trajectory u in each iteration, and then simulate the non-
linear system open loop with this trajectory u to obtain the states x
for the next linearization point. In contrast, differential dynamic pro-
gramming (DDP) (Mayne, 1966; Jacobson and Mayne, 1970) uses the
time-varying affine feedback law u0

i (xi) = ki + Kixi from the Riccati
recursion to simulate the nonlinear system forward in time. Like other
sequential approaches, the DDP algorithm starts with an initial guess
for the control trajectory—or the assumption of some feedback law—
and the corresponding state trajectory. But then in each DDP iteration,
starting at x0 := ¯̄x0, one recursively defines for i = 0,1, . . . ,N � 1

ui := ki +Kixi (8.57a)

xi+1 := fi(xi,ui) (8.57b)

with Ki and ki from (8.53a) and (8.53b), to define the next control and
state trajectory. Interestingly, DDP only performs the backward recur-
sions (8.51) and (8.52) from the Riccati algorithm. The forward simula-
tion of the linear system (8.54b) is replaced by the forward simulation
of the nonlinear system (8.57b). Note that both the states and the con-
trols in DDP are different from the standard sequential approach.
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DDP with Gauss-Newton Hessian. Depending on the type of Hessian
approximation, different variants of DDP can be derived. Conceptu-
ally the easiest is DDP with a Gauss-Newton Hessian approximation,
because it has no need of the multipliers �i. In case of a quadratic
objective with positive semidefinite cost matrices, these matrices coin-
cide with the Gauss-Newton Hessian blocks, and the method becomes
particularly simple; one needs only to compute the system lineariza-
tion matrices Āi, B̄i for i = 0, . . . ,N �1 at the trajectory (x,u) from the
previous iteration to obtain all data for the LQ optimal control prob-
lem, and then perform the backward recursions (8.51) and (8.52) to
define Ki and ki in (8.53a) and (8.53b). This DDP variant is sometimes
called iterative linear quadratic regulator (LQR) (Li and Todorov, 2004)
and is popular in the field of robotics. Like any method based on the
Gauss-Newton Hessian, the iterative LQR algorithm has the advantage
that the Hessian approximation is always positive semidefinite, but the
disadvantage that its convergence rate is only linear.

DDP with exact Hessian. In contrast to the iterative LQR algorithm,
the DDP algorithm from Mayne (1966) uses an exact Hessian approxi-
mation and thus offers a quadratic rate of convergence. Like all exact
Hessian methods, it can encounter indefiniteness of the Hessian, which
can be addressed by algorithmic modifications that are beyond our in-
terest here. To compute the exact Hessian blocks

"
Q̄i S̄0i
S̄i R̄i

#
:= r2

(xi,ui)[`i(x̄i, ūi)+ �̄
0
i+1fi(x̄i, ūi)]

the DDP algorithm needs not only the controls ūi, but also the states
x̄i and the Lagrange multipliers �̄i+1, which are not part of the mem-
ory of the algorithm. While the states x̄i are readily obtained by the
nonlinear forward simulation (8.57b), the Lagrange multipliers �̄i+1 are
obtained simultaneously with the combined backward recursions (8.51)
and (8.52). They are chosen as the gradient of the quadratic cost-to-go
function V0

i (xi) = p0ixi+
1
2x

0
iPixi at the corresponding state values, i.e.,

as
�̄i := pi + Pix̄i (8.58)

for i = N�1, . . . ,0. The last Hessian block (which is needed first in the
backward recursion) is independent of the multipliers and just given
by the second derivative of the terminal cost and defined by P̄N :=
r2Vf (x̄N). Because p̄N := rVf (x̄N)� P̄Nx̄N , the last multiplier is given
by �̄N := rVf (x̄N). Starting with these values for P̄N, p̄N, and �̄N , the
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backward Riccati recursions (8.51) and (8.52) can be started and the
Lagrange multipliers be computed simultaneously using (8.58).

The DDP algorithm in its original form is only applicable to uncon-
strained problems, but can easily be adapted to deal with control con-
straints. In order to deal with state constraints, a variety of heuristics
can be employed that include, for example, barrier methods; a similar
idea was presented in the more general context of constrained OCPs un-
der the name feasibility perturbed sequential quadratic programming
by Tenny, Wright, and Rawlings (2004).

8.8.7 Additional Constraints in Optimal Control

Most Newton-type methods for optimal control can be generalized to
problems with additional equality or inequality constraints. In nonlin-
ear MPC, these additional constraints could be terminal equality con-
straints of the form r(xN) = 0, as in the case of a zero terminal con-
straint; or terminal inequality constraints of the form r(xN)  0, as
in the case of a terminal region. They could also be path constraints
of the form ri(xi,ui) = 0 or ri(xi,ui)  0 for i = 0, . . . ,N � 1. The
Lagrangian function then comprises additional contributions, but the
block diagonal structure of the exact Hessian in (8.46) and the general
sparsity of the problem is preserved.

Simultaneous approaches. If the multipliers for the extra constraints
are denoted by µi for i = 0, . . . ,N, the Lagrangian in the simultaneous
approaches is given by

L(¯̄x0,w,�, µ) = �00(¯̄x0 � x0)+ µ0NrN(xN) + Vf (xN)

+
N�1X

i=0

`i(xi,ui)+ �0i+1(fi(xi,ui)� xi+1)+ µ0iri(xi,ui)

We can summarize all primal-dual variables in a vector z := [w0 �0 µ0]0
and write the Lagrangian asL(¯̄x0, z). In the purely equality-constrained
case, Newton-type optimization algorithms again just try to find a root
of the nonlinear equation system rzL(z) = 0 by solving at a given
iterate z̄ the linear system M̄(z � z̄) = �rzL(z̄) where M̄ is an ap-
proximation of the exact KKT matrix r2

zL(z̄). In the presence of in-
equalities, one can resort to SQP or nonlinear IP methods. In all cases,
the Lagrangian remains partially separable and the KKT matrix has a
similar sparsity structure as for the unconstrained OCP. Therefore, the
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linear algebra operations again can be performed by band-structure-
exploiting algorithms that have a linear complexity in the horizon
length N, if desired, or by condensing based approaches.

One major difference with unconstrained optimal control is that the
overall feasibility of the optimization problem and the satisfaction of
the linear independence constraint qualification (LICQ) condition is no
longer guaranteed a priori, and thus, care needs to be taken in for-
mulating well-posed constrained OCPs. For example, one immediately
runs into LICQ violation problems if one adds a zero terminal con-
straint xN = 0 to a problem with a large state dimension n, but a small
control dimension m, and such a short time horizon N that the total
number of control degrees of freedom, Nm, is smaller than n. In these
unfortunate circumstances, the total number of equality constraints,
(N+1)n+n, would exceed the total number of optimization variables,
(N + 1)n+Nm, making satisfaction of LICQ impossible.

Sequential approaches. Like the simultaneous approaches, most se-
quential approaches to optimal control—with the exception of DDP—
can easily be generalized to the case of extra equality constraints, with
some adaptations to the linear algebra computations in each iteration.
For the treatment of inequality constraints on states and controls, one
can again resort to SQP or nonlinear IP-based solution approaches. In
the presence of state constraints, however, the iterates violate in gen-
eral these state constraints; thus the iterates are infeasible points of
the optimization problem, and the main appeal of the sequential ap-
proach is lost. On the other hand, the disadvantages of the sequential
approach, i.e., the smaller region of convergence and slower contraction
rate, especially for nonlinear and unstable systems, remain or become
even more pronounced. For this reason, state constrained optimal con-
trol problems are most often addressed with simultaneous approaches.

8.9 Online Optimization Algorithms

Optimization algorithms for model predictive control need to solve not
only one OCP, but a sequence of problems PN(x0) for a sequence of
different values of x0, and the time to work on each problem is limited
by the sampling time �t. Many different ideas can be used alone or in
combination to ensure that the numerical approximation errors do not
become too large and that the computation times remain bounded. In
this section, we first discuss some general algorithmic considerations,
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then present the important class of continuation methods and discuss
in some detail the real-time iteration.

8.9.1 General Algorithmic Considerations

We next discuss one by one some general algorithmic ideas to adapt
standard numerical optimal control methods to the context of online
optimization for MPC.

Coarse discretization of control and state trajectories. The CPU
time per Newton-type iteration strongly depends on the number of opti-
mization variables in the nonlinear program (NLP), which itself depends
on the horizon length N, the number of free control parameters, and
on the state discretization method. To keep the size of the NLP small,
one would classically choose a relatively small horizon length N, and
employ a suitable terminal cost and constraint set that ensures recur-
sive feasibility and nominal stability in case of exact NLP solutions. The
total number of control parameters would then be Nm, and the state
discretization would be equally accurate on all N control intervals.

In the presence of modeling errors and unavoidably inexact NLP
solutions, however, one could also accept additional discretization er-
rors by choosing a coarser control or state discretization, in particular
in the end of the MPC horizon. Often, practitioners use move blocking
where only the firstM ⌧ N control moves in the MPC horizon have the
feedback sampling time �t. The remaining (N �M) control moves are
combined into blocks of size two or larger, such that the overall num-
ber of control parameters is less thanNm. In particular if a plain dense
single-shooting algorithm is employed, move blocking can significantly
reduce the CPU cost per iteration. Likewise, one could argue that the
state evolution need only be simulated accurately on the immediate fu-
ture, while a coarser state discretization could be used toward the end
of the horizon.

From the viewpoint of dynamic programming, one could argue that
only the first control interval of duration �t needs to be simulated ac-
curately using the exact discrete time model x1 = f(x0, u0), while the
remaining (N �1) intervals of the MPC horizon only serve the purpose
of providing an approximation of the gradient of the cost-to-go func-
tion, i.e., of the gradient of VN�1(f (x0, u0)). Since the discrete time
dynamics usually originate from the approximation of a continuous
time system, one could even decide to use a different state and control
parameterization on the remaining time horizon. For example, after
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the first interval of length �t, one could use one single long collocation
interval of length (N�1)�t with one global polynomial approximation
of states and controls, as in pseudospectral collocation, in the hope of
obtaining a cheaper approximation of VN�1(f (x0, u0)).

Code generation and fixed matrix formats. Since MPC optimization
problems differ only in the value x0, many problem functions, and
even some complete matrices in the Newton-type iterations, remain
identical across different optimization problems and iterations. This
allows for the code generation of optimization solvers that are tailored
to the specific system model and MPC formulation. While the user in-
terface can be in a convenient high-level language, the automatically
generated code is typically in a standardized lower-level programming
language such as plain C, which is supported by many embedded com-
puting systems. The generated code has fixed matrix and vector dimen-
sions, needs no online memory allocations, and contains no or very few
switches. As an alternative to code generation, one could also just fix
the matrix and vector dimensions in the most computationally inten-
sive algorithmic components, and use a fixed specific matrix storage
format that is optimized for the given computing hardware.

Delay compensations by prediction. Often, at a sampling instant t0,
one has a current state estimate x0, but knows in advance that the MPC
optimization calculations take some time, e.g., a full sampling time �t.
In the meantime, i.e., on the time interval [t0, t0 +�t], one usually has
to apply some previously computed control action u0. As all this is
known before the optimization calculations start, one could first pre-
dict the expected state x1 := f(x0, u0) at the time (t0 + �t) when the
MPC computations are finished, and directly let the optimization algo-
rithm address the problem PN(x1). Though this prediction approach
cannot eliminate the feedback delay of one sampling time �t in case
of unforeseen disturbances, it can alleviate its effect in the case that
model predictions and reality are close to each other.

Division into preparation and feedback phases. An additional idea
is to divide the computations during each sampling interval into a long
preparation phase, and a much shorter feedback phase that could,
for example, consist of only a matrix vector multiplication in case of
linear state feedback. We assume that the computations in the feed-
back phase take a computational time �tfb with �tfb ⌧ �t, while the
preparation time takes the remaining duration of one sampling inter-
val. Thus, during the time interval [t0, t0+�t��tfb] one would perform
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a preparation phase that presolves as much as possible the optimiza-
tion problem that one expects at time (t0 + �t), corresponding to a
predicted state x̄1.

At time (t0+�t��tfb), when the preparation phase is finished, one
uses the most current state estimate to predict the state at time (t0+�t)
more accurately than before. Denote this new prediction x1. During
the short time interval [t0 +�t ��tfb, t0 +�t], one performs the com-
putations of the feedback phase to obtain an approximate feedback u1

that is based on x1. In case of linear state feedback, one would, for ex-
ample, precompute a vector v and a matrix K in the preparation phase
that are solely based on x̄1, and then evaluate u1 := v +K(x1 � x̄1) in
the feedback phase. Alternatively, more complex computations—such
as the solution of a condensed QP—can be performed in the feedback
phase. The introduction of the feedback phase reduces the delay to
unforeseen disturbances from �t to �tfb. One has to accept, however,
that the feedback is not the exact MPC feedback, but only an approxima-
tion. Some online algorithms, such as the real-time iteration discussed
in Section 8.9.2, achieve the division into preparation and feedback
phase by reordering the computational steps of a standard optimiza-
tion algorithm, without creating any additional overhead per iteration.

Tangential predictors. A particularly powerful way to obtain a cheap
approximation of the exact MPC feedback is based on the tangential
predictors from Theorem 8.16. In case of strict complementarity at the
solution w̄ of an expected problem PN(x̄1), one can show that for suffi-
ciently small distance |x1 � x̄1|, the solution of the parametric QP (8.33)
corresponds to a linear map, i.e.,wQP(x1) = w̄+A(x1�x̄1). The matrix
A can be precomputed based on knowledge of the exact KKT matrix at
the solution w̄, but before the state x1 is known.

Generalized tangential predictors are based on the (approximate)
solution of the full QP (8.33), which is more expensive than a matrix
vector multiplication, but is also applicable to the cases where strict
complementarity does not hold or where the active set changes. The
aim of all tangential predictors is to achieve a second-order approxi-
mation that satisfies

��wQP(x1)�w⇤(x1)
�� = O(|x1 � x̄1|2), which is

only possible if the exact KKT matrix is known. If the exact KKT matrix
is not used in the underlying optimization algorithm, e.g., in case of a
Gauss-Newton Hessian approximation, one can alternatively compute
an approximate generalized tangential predictor we QP(x1) ⇡ wQP(x1),
which only approximates the exact tangential predictor, but can be ob-
tained without creating additional overhead compared to a standard
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optimization iteration.

Warmstarting and shift. Another easy way to transfer solution infor-
mation from one MPC problem to the next is to use an existing solution
approximation as initial guess for the next MPC optimization problem,
in a procedure called warmstarting. In its simplest variant, one can
just use the existing solution guess without any modification. In the
shift initialization, one first shifts the current solution guess to account
for the advancement of time. The shift initialization can most easily be
performed if an equidistant grid is used for control and state discretiza-
tion, and is particularly advantageous for systems with time-varying
dynamics or objectives, e.g., if a sequence of future disturbances is
known, or one is tracking a time-varying trajectory.

Iterating while the problem changes. Extending the idea of warm-
starting, some MPC algorithms do not separate between one opti-
mization problem and the next, but always iterate while the problem
changes. They only perform one iteration per sampling time, and they
never try to iterate the optimization procedure to convergence for any
fixed problem. Instead, they continue to iterate while the optimization
problem changes. When implemented with care, this approach ensures
that the algorithm always works with the most current information, and
never loses precious time by working on outdated information.

8.9.2 Continuation Methods and Real-Time Iterations

Several of the ideas mentioned above are related to the idea of contin-
uation methods, which we now discuss in more algorithmic detail. For
this aim, we first regard a parameter-dependent root-finding problem
of the form

R(x, z) = 0

with variable z 2 Rnz , parameter x 2 Rn, and a smooth function
R : Rn⇥Rnz ! Rnz . This root-finding problem could originate from an
equality constrained MPC optimization problem with fixed barrier as
it arises in a nonlinear IP method. The parameter dependence on x is
due to the initial state value, which varies from one MPC optimization
problem to the next. In case of infinite computational resources, one
could just employ one of the Newton-type methods from Section 8.3.2
to converge to an accurate approximation of the exact solution z⇤(x)
that satisfies R(x, z⇤(x)) = 0. In practice, however, we only have lim-
ited computing power and finite time, and need to be satisfied with an
approximation of z⇤(x).
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Fortunately, it is a realistic assumption that we have an approximate
solution of a related problem available, for the previous value of x. To
clarify notation, we introduce a problem index k, such that the aim of
the continuation method is to solve root-finding problems R(xk, z) = 0
for a sequence (xk)k2I. For algorithmic simplicity, we assume that the
parameter x enters the function R linearly. This assumption means
that the Jacobian of R with respect to z does not depend on x but only
on z, and can thus be written as Rz(z). As a consequence, also the
linearization of R depends only on the linearization point z̄, i.e., it can
be written as RL(x, z; z̄) := R(x, z̄)+ Rz(z̄)(z � z̄).

A simple full-step Newton iteration for a fixed parameter x would
iterate z+ = z̄ � Rz(z̄)�1R(x, z̄). If we have a sequence of values xk,
we could decide to perform only one Newton iteration for each value
xk and then proceed to the next one. Given a solution guess zk for the
parameter value xk, a continuation method would then generate the
next solution guess by the iteration formula

zk+1 := zk � Rz(zk)�1R(xk+1, zk)

Another viewpoint on this iteration is that zk+1 solves the linear equa-
tion system RL(xk+1, zk+1;zk) = 0. Interestingly, assuming only regu-
larity of Rz, one can show that if zk equals the exact solution z⇤(xk)
for the previous parameter xk, the next iterate zk+1 is a first-order ap-
proximation, or tangential predictor, for the exact solution z⇤(xk+1).
More generally, one can show that

��zk+1 � z⇤(xk+1)
�� = O

0
@
�����

"
zk � z⇤(xk)
xk+1 � xk

#�����

2
1
A (8.59)

From this equation it follows that one can remain in the area of con-
vergence of the Newton method if one starts close enough to an ex-
act solution, zk ⇡ z⇤(xk), and if the parameter changes (xk+1 � xk)
are small enough. Interestingly, it also implies quadratic convergence
toward the solution in case the parameter values of xk remain con-
stant. Roughly speaking, the continuation method delivers tangential
predictors in case the parameters xk change a lot, and nearly quadratic
convergence in case they change little.

The continuation method idea can be extended to Newton-type it-
erations of the form

zk+1 := zk �M�1
k R(xk+1, zk)
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with approximations Mk ⇡ Rz(zk). In this case, only approximate tan-
gential predictors are obtained.

Real-time iterations. To generalize the continuation idea to a se-
quence of inequality constrained optimization problems PN(xk) of the
general form (8.29) with primal-dual solutions z⇤(xk), one performs
SQP type iterations of the form (8.41), but use in each iteration a new
parameter value xk+1. This idea directly leads to the real-time itera-
tion (Diehl, Bock, Schlöder, Findeisen, Nagy, and Allgöwer, 2002) that
determines the approximate solution zk+1 = (wk+1,�k+1, µk+1) of prob-
lem PN(xk+1) from the primal-dual solution of the following QP

minimize
w 2 Rnw

FL(w;wk)+
1
2
(w �wk)0Bk(w �wk)

subject to GL(xk+1,w;wk) = 0

HL(w;wk)  0

(8.60)

which we denote by PQP
N (xk+1;wk,Bk). If one uses the exact Hessian,

Bk = r2
wL(zk), Theorem 8.16 ensures that the QP solution is a gener-

alized tangential predictor of the exact solution if zk was equal to an
exact and strongly regular solution z⇤(xk). Conversely, if the values of
xk would remain constant, the exact Hessian SQP method would have
quadratic convergence.

More generally, the exact Hessian real-time iteration satisfies the
quadratic approximation formula (8.59), despite the fact that active set
changes lead to nondifferentiability in the solution map z⇤(·). Loosely
speaking, the SQP based real-time iteration is able to easily “jump”
across this nondifferentiability, and its prediction and convergence
properties are not directly affected by active set changes. If the Hessian
is not the exact one, the real-time iteration method delivers only ap-
proximate tangential predictors, and shows linear instead of quadratic
convergence. In practice, one often uses the Gauss-Newton Hessian in
conjunction with a simultaneous approach to optimal control, but also
sequential approaches were suggested in a similar framework (Li and
Biegler, 1989). One can generalize the SQP based real-time iteration
idea further by allowing the subproblems to be more general convex
optimization problems, and by approximating also the constraint Jaco-
bians, as proposed and investigated by Tran-Dinh et al. (2012).

Shift initialization and shrinking horizon problems. If the paramet-
ric optimization problems originate from an MPC optimal control prob-
lem with time-varying dynamics or objectives, it can be beneficial to
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employ a shift strategy that shifts every approximate solution by one
time step backward in time before the next QP problem is solved. For
notational correctness, we need to denote the MPC problem by PN(k,
xk) in this case, to reflect the direct dependence on the time index k.
While most of the variable shift is canonical, the addition of an extra
control, state, and multiplier at the end of the prediction horizon is
not trivial, and different variants exist. Some are based on an auxiliary
control law and a forward simulation, but also a plain repetition of the
second-to-last interval, which needs no additional computations, is a
possibility.

The guiding idea of the shift initialization is that a shifted optimal
solution should ideally correspond to an optimal solution of the new
MPC problem, if the new initial value xk+1 originates from the nominal
system dynamics xk+1 = f(xk,uk). But while recursive feasibility can
be obtained easily by a shift, recursive optimality can usually not be
obtained for receding horizon problems. Thus, a shift strategy perturbs
the contraction of the real-time iterations and needs to be applied with
care. In the special case of time-invariant MPC problems PN(xk) with a
short horizon and tight terminal constraint or cost, a shift strategy is
not beneficial.

On the other hand, in the case of finite-time (batch) processes that
are addressed by MPC on shrinking horizons, recursive optimality can
easily be achieved by shrinking a previously optimal solution. More
concretely, if the initial horizon length was N, and at time k one would
have the solution to the problem PN�k(k,xk) on the remaining time
horizon, the optimal solution to the problem PN�k�1(k + 1, xk+1) is
easily obtained by dropping the first component of the controls, states,
and multipliers. Thus, the shrinking operation is canonical and should
be used if real-time iterations—or other continuation methods—are ap-
plied to shrinking horizon MPC problems.

8.10 Discrete Actuators

Optimal control problems with discrete actuators fall into the class of
mixed-integer optimal control problems, which are NP-hard and known
to be difficult to solve. If one is lucky and the system model and con-
straints are linear and the cost is linear or convex quadratic, the dis-
crete time optimal control problem turns out to be a mixed-integer
linear program (MILP) or mixed-integer quadratic program (MIQP). For
both classes there exist robust and reliable solvers that can be used
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as a black-box for small to moderate problem dimensions. Another
lucky case arises if the sequence of switches happens to be known in
advance in a continuous time system, in which case switching-time op-
timization can be used to transform the problem into a standard non-
linear program (NLP). On the other hand, if we have a nonlinear system
model with unknown switching sequence, we have to confront a sig-
nificantly more difficult problem after discretization, namely a mixed-
integer nonlinear program (MINLP). To address this MINLP one has ba-
sically three options:

• One can use piecewise system linearizations and mixed logical
dynamics (MLD) to approximate the MINLP by a MILP or MIQP.

• One can try to solve the MINLP to global optimality using tech-
niques from the field of global optimization.

• One can use a heuristic to find an approximate solution of the
MINLP.

While the first two options can lead to viable solutions for relevant ap-
plications, they often lead to excessively large runtimes, so the MPC
practitioner may need to resort to the last option. Fortunately, the
optimal control structure of the problem allows us to use a powerful
heuristic that exploits the fact that the state of a (continuous time)
system is most strongly influenced by the time average of its controls
rather than their pointwise values, as illustrated in Figure 8.7. This
heuristic is based on a careful MINLP formulation, which is very similar
to a standard nonlinear MPC problem, but with special structure. First,
divide the input vector u = (uc,ub) 2 Rmc+mb into continuous inputs,
uc , and binary integer inputs, ub, such that the system is described by
x+ = f(x,uc,ub). Second, and without loss of generality, we restrict
ourselves to binary integers ub 2 {0,1}mb inside a convex polyhedron
P ⇢ [0,1]mb , and assume thatub enters the system linearly.3 The poly-
hedral constraint ub 2 P allows us to exclude some combinations, e.g.,

3If necessary, this binary representation can be achieved by a technique called outer

convexification, which is applicable to any system x+ = fe(x,uc,uI) where the integer
vector uI has dimension mI and can take finitely many (nI ) values uI 2 {uI,1, . . . ,
uI,nI }. We set mb := nI and f(x,uc,ub) :=

Pmb
i=1ub,if

e(x,uc,uI,i) and P := {ub 2 [0,
1]mb |

Pmb
j=1ub,i = 1}. Due to exponential growth of nI in the number of original

integer decisionsmI , this technique should be applied with care, e.g., only partially for
separate subsystems, or avoided altogether if the original system is already linear in
the integer controls.
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if two machines cannot be operated simultaneously. The polyhedron
P can and should be chosen such that its vertices equal the admissible
binary values in each time step.

We might have additional combinatorial constraints that couple dif-
ferent time steps with each other. Typical examples are limits on the
total number of switches, or dwell-time constraints, which bound the
duration that a component of ub can be active without interruption.
We introduce the binary control trajectory ub := (ub(0),ub(1), . . . ,
ub(N�1)) 2 [0,1]mb⇥N and denote the set of combinatorially feasible
trajectories by B ⇢ {0,1}mb⇥N \ PN . The MINLP arising in MPC with
discrete actuators can then be formulated as follows

minimize
x,uc,ub

N�1X

k=0

`(x(k),uc(k),ub(k))+ Vf (x(N))

subject to x(0) = x0

x(k+ 1) = f(x(k),uc(k),ub(k)), k = 0, . . . ,N � 1

h(x(k),uc(k),ub(k))  0, k = 0, . . . ,N � 1

hf (x(N))  0

ub(k) 2 P, k = 0, . . . ,N � 1

ub 2 B
(8.61)

Without the last constraint, ub 2 B, the above problem would be a
standard NLP with optimal control structure. Likewise, a standard NLP
arises if the binary controls ub are fixed. These two observations di-
rectly lead to the following three-step algorithm that is a heuristic to
find a good feasible solution of the MINLP (8.61).

1. Solve the relaxed NLP (8.61) without combinatorial constraints,
ub 2 B, leading to a relaxed solution guess (x⇤,u⇤c ,u⇤b ), possi-
bly with u⇤b � B, with objective value V⇤N .

2. Find a binary trajectory u⇤⇤b 2 B that approximates u⇤b , e.g. by
minimizing the distance between u⇤b and u⇤⇤b in a suitable norm.

3. Fix the binary controls to u⇤⇤b and solve the restricted NLP (8.61)
in the variables (x,uc) only, with solution (x⇤⇤⇤,u⇤⇤⇤c ) and ob-
jective value V⇤⇤⇤N .

The result of the algorithm is the triple (x⇤⇤⇤,u⇤⇤⇤c ,u⇤⇤b ) which is a
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feasible, but typically not an optimal point of the MINLP (8.61).4 Note
that this feasible MINLP solution has an objective value V⇤⇤⇤N that is
larger than the unknown exact MINLP solution V0

N which in turn is larger
than the relaxed NLP objectiveV⇤N from Step 1 (if the global NLP solution
was found): V⇤N  V0

N  V⇤⇤⇤N . Thus, the objective values from Steps 1
and 3 help us to bound the optimality loss incurred by using the above
three-step heuristic.

The choice of the approximation in Step 2 affects both solution qual-
ity and computational complexity. One popular choice, that is taken in
the combinatorial integral approximation (CIA) algorithm (Sager, Jung,
and Kirches, 2011) is to minimize the distance in a specially scaled
maximum norm that compares integrals, and is given by

kubkCIA := max
jmb, nN

������

n�1X

k=0

ub,j(k)

������

Thus, in Step 2 of the CIA algorithm, one has to find u⇤⇤b =
arg minub2B kub � u⇤bkCIA. This problem turns out to be a MILP (see
Exercise 8.11) with a special structure that can be exploited in tai-
lored algorithms, some of which are available in the open source tool
pycombina (Bürger, Zeile, Hahn, Altmann-Dieses, Sager, and Diehl,
2020).

For the special case of continuous time problems with trivial com-
binatorial constraints, B = {0,1}mb⇥N \ PN , one can show under mild
conditions that the difference between the objectives V⇤N and V⇤⇤⇤N in
the three-step CIA algorithm shrinks linearly with the discretization
step size h = T/N if the length of the continuous time horizon T is
fixed while N grows (Sager, Bock, and Diehl, 2012). A more general
approximation result can be established in the presence of minimum
dwell-time constraints (Zeile, Robuschi, and Sager, 2020).

Example 8.17: MPC with discrete actuator

We regard a simple problem of the form (8.61) for a nonlinear and un-
stable system with one state x 2 R and one binary control ub 2 R. The
continuous time system is described by ẋ = x3 �ub and transformed
to a discrete time system x+ = f(x,ub) by using one RK4 step with
step length h = 0.05. The aim is to track a reference xref = 0.7 starting
from the initial value x0 = 0.9 on a horizon of length N = 30, resulting

4An important feature in practice is the relaxation of inequality constraints, e.g., by
using L1-penalties, in order to ensure feasible optimization problems in Steps 1 and 3.
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Figure 8.7: Relaxed and binary feasible solution for Example 8.17.

in the following MINLP

minimize
x,ub

NX

k=0

(x(k)� xref)2

subject to x(0) = x0

x(k+ 1) = f(x(k),ub(k)), k = 0, . . . ,N � 1

ub(k) 2 [0,1], k = 0, . . . ,N � 1

ub 2 B

(8.62)

The combinatorial constraint set B imposes a minimum dwell-time con-
straint on the uptime that requires that ub remains active for at least
two consecutive time steps, i.e., we have B = {ub 2 {0,1}N | ub(k) �
ub(k � 1) � ub(k � 2), k = 0, . . . ,N � 1}. The required initial val-
ues ub(�1) and ub(�2) are both set to zero. We solve the problem
using the described three-step procedure and the combinatorial inte-
gral approximation in Step 2. The relaxed solution (x⇤,u⇤b ) after Step
1 as well as the solution (x⇤⇤⇤,u⇤⇤b ) after Step 3 are shown in Fig-
ure 8.7. Note that due to the absence of continuous controls, Step 3
just amounts to a system simulation. The objective values are given by
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V⇤N = 0.166 and V⇤⇤⇤N = 0.1771. The true optimal cost, which can for
this simple example be found in a few seconds by an intelligent inves-
tigation of all 230 ⇡ 109 possibilities via branch-and-bound, is given by
V0
N = 0.176. ⇥

8.11 Notes

The description of numerical optimal control methods in this chapter
is far from complete, and we have left out many details as well as many
methods that are important in practice. We mention some related lit-
erature and software links that could complement this chapter.

General numerical optimal control methods are described in the
textbooks by Bryson and Ho (1975); Betts (2001); Gerdts (2011); and
in particular by Biegler (2010). The latter reference focuses on di-
rect methods and also provides an in-depth treatment of nonlinear
programming. The overview articles by Binder, Blank, Bock, Bulirsch,
Dahmen, Diehl, Kronseder, Marquardt, Schlöder, and Stryk (2001);
and Diehl, Ferreau, and Haverbeke (2009); as well a forthcoming text-
book on numerical optimal control (Gros and Diehl, 2020) has a similar
focus on online optimization for MPC as the current chapter.

General textbooks on numerical optimization are Bertsekas (1999);
Nocedal and Wright (2006). Convex optimization is covered by Ben-
Tal and Nemirovski (2001); Nesterov (2004); Boyd and Vandenberghe
(2004). The last book is particularly accessible for an engineering audi-
ence, and its PDF is freely available on the home page of its first author.
Newton’s method for nonlinear equations and its many variants are
described and analyzed in a textbook by Deuflhard (2011). An up-to-
date overview of optimization tools can be found at plato.asu.edu/
guide.html, many optimization solvers are available as source code
at www.coin-or.org, and many optimization solvers can be accessed
online via neos-server.org.

While the direct single-shooting method often is implemented by
coupling an efficient numerical integration solver with a general non-
linear program (NLP) solver such as SNOPT (Gill, Murray, and Saun-
ders, 2005), the direct multiple-shooting and direct collocation meth-
ods need to be implemented by using NLP solvers that fully exploit the
sparsity structure, such as IPOPT5 (Wächter and Biegler, 2006) There
exist many custom implementations of the direct multiple-shooting

5This code is available to the public under a permissive open-source license.
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method with their own structure-exploiting NLP solvers, such as, for
example, HQP5 (Franke, 1998); MUSCOD-II (Leineweber, Bauer, Schäfer,
Bock, and Schlöder, 2003); ACADO5(Houska, Ferreau, and Diehl, 2011);
and FORCES-NLP (Zanelli, Domahidi, Jerez, and Morari, 2017).

Structure-exploiting QP solvers that can be used standalone for lin-
ear MPC or as subproblem solvers within SQP methods are, for example,
the dense code qpOASES5 (Ferreau, Kirches, Potschka, Bock, and Diehl,
2014), which is usually combined with condensing, or the sparse codes
FORCES (Domahidi, 2013); qpDUNES5 (Frasch, Sager, and Diehl, 2015);
and HPMPC5 (Frison, 2015). The latter is based on a CPU specific ma-
trix storage format that by itself leads to speedups in the range of one
order of magnitude, and which was made available to the public in the
BLASFEO5 library at github.com/giaf/blasfeo.

In Section 8.2 on numerical simulation methods, we have exclu-
sively treated Runge-Kutta methods because they play an important
role within a large variety of numerical optimal control algorithms, such
as shooting, collocation, or pseudospectral methods. Another popular
and important family of integration methods, however, are the linear
multistep methods; in particular, the implicit backward differentiation
formula (BDF) methods are widely used for simulation and optimization
of large stiff differential algebraic equations (DAEs). For an in-depth
treatment of general numerical simulation methods for ordinary dif-
ferential equations (ODEs) and DAEs, we recommend the textbooks by
Hairer, Nørsett, and Wanner (1993, 1996); as well as Brenan, Campbell,
and Petzold (1996); Ascher and Petzold (1998).

For derivative generation of numerical simulation methods, we refer
to the research articles Bauer, Bock, Körkel, and Schlöder (2000); Pet-
zold, Li, Cao, and Serban (2006); Kristensen, Jørgensen, Thomsen, and
Jørgensen (2004); Quirynen, Gros, Houska, and Diehl (2017a); Quirynen,
Houska, and Diehl (2017b); and the Ph.D. theses by Albersmeyer (2010);
Quirynen (2017). A collection of numerical ODE and DAE solvers with
efficient derivative computations are implemented in the SUNDIALS5

suite (Hindmarsh, Brown, Grant, Lee, Serban, Shumaker, and Wood-
ward, 2005).

Regarding Section 8.4 on derivatives, we refer to a textbook on al-
gorithmic differentiation (AD) by Griewank and Walther (2008), and
an overview of AD tools at www.autodiff.org. The AD framework
CasADi5 can in its latest form be found at casadi.org, and is de-
scribed in the article Andersson, Akesson, and Diehl (2012); and the
Ph.D. theses by Andersson (2013); Gillis (2015).
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8.12 Exercises

Some of the exercises in this chapter were developed for courses on
numerical optimal control at the University of Freiburg, Germany. The
authors gratefully acknowledge Joel Andersson, Joris Gillis, Sébastien
Gros, Dimitris Kouzoupis, Jesus Lago Garcia, Rien Quirynen, Andrea
Zanelli, and Mario Zanon for contributions to the formulation of these
exercises; as well as Michael Risbeck, Nishith Patel, Douglas Allan, and
Travis Arnold for testing and writing solution scripts.

Exercise 8.1: Newton’s method for root finding

In this exercise, we experiment with a full-step Newton method and explore the depen-
dence of the iterates on the problem formulation and the initial guess.

(a) Write a computer program that performs Newton iterations in Rn that takes as
inputs a function F(z), its Jacobian J(z), and a starting point z[0] 2 Rn. It
shall output the first 20 full-step Newton iterations. Test your program with
R(z) = z32 � 2 starting first at z[0] = 1 and then at different positive initial
guesses. How many iterations do you typically need in order to obtain a solution
that is exact up to machine precision?

(b) An equivalent problem to z32 � 2 = 0 can be obtained by lifting it to a higher
dimensional space (Albersmeyer and Diehl, 2010), as follows

R(z) =

2
6666666664

z2 � z2
1

z3 � z2
2

z4 � z2
3

z5 � z2
4

2� z2
5

3
7777777775

Use your algorithm to implement Newton’s method for this lifted problem and
start it at z[0] = [1 1 1 1 1]0 (note that we use square brackets in the index to
denote the Newton iteration). Compare the convergence of the iterates for the
lifted problem with those of the equivalent unlifted problem from the previous
task, initialized at one.

(c) Consider now the root-finding problem R(z) = 0 with R : R ! R, R(z) :=
tanh(z)� 1

2 . Convergence of Newton’s method is sensitive to the chosen initial
value z0. Plot R(z) and observe the nonlinearity. Implement Newton’s method
with full steps for it, and test if it converges or not for different initial values
z[0].

(d) Regard the problem of finding a solution to the nonlinear equation system
2x = ey/4 and 16x4 + 81y4 = 4 in the two variables x,y 2 R. Solve it with
your implementation of Newton’s method using different initial guesses. Does
it always converge, and, if it converges, does it always converge to the same
solution?
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Exercise 8.2: Newton-type methods for a boundary-value problem

Regard the scalar discrete time system

x(k+ 1) = 1
10

⇣
11x(k)+ x(k)2 +u

⌘
, k = 0, . . . ,N � 1

with boundary conditions
x(0) = x0 x(N) = 0

We fix the initial condition to x0 = 0.1 and the horizon length to N = 30. The aim is to
find the control value u 2 R—which is kept constant over the whole horizon—in order
to steer the system to the origin at the final time, i.e., to satisfy the constraint x(N) = 0.
This is a two-point boundary-value problem (BVP). In this exercise, we formulate this
BVP as a root-finding problem in two different ways: first, with the sequential approach,
i.e., with only the single control as decision variable; and second, with the simultaneous
approach, i.e., with all 31 states plus the control as decision variables.

(a) Formulate and solve the problem with the sequential approach, and solve it with
an exact Newton’s method initialized at u = 0. Plot the state trajectories in each
iteration. Also plot the residual values x(N) and the variable u as a function of
the Newton iteration index.

(b) Now formulate and solve the problem with the simultaneous approach, and solve
it with an exact Newton’s method initialized at u = 0 and the corresponding
state sequence that is obtained by forward simulation started at x0. Plot the
state trajectories in each iteration.

Plot again the residual valuesx(N) and the variableu as a function of the Newton
iteration index, and compare with the results that you have obtained with the
sequential approach. Do you observe differences in the convergence speed?

(c) One feature of the simultaneous approach is that its states can be initialized with
any trajectory, even an infeasible one. Initialize the simultaneous approach with
the all-zero trajectory, and again observe the trajectories and the convergence
speed.

(d) Now solve both formulations with a Newton-type method that uses a constant
Jacobian. For both approaches, the constant Jacobian corresponds to the exact
Jacobian at the solution of the same problem for x0 = 0, where all states and the
control are zero. Start with implementing the sequential approach, and initialize
the iterates at u = 0. Again, plot the residual values x(N) and the variable u as
a function of iteration index.

(e) Now implement the simultaneous approach with a fixed Jacobian approxima-
tion. Again, the Jacobian approximation corresponds to the exact Jacobian at
the solution of the neighboring problem with x0 = 0, i.e., the all zero trajectory.
Start the Newton-type iterations with all states and the control set to zero, and
plot the residual values x(N) and the variable u as a function of iteration index.
Discuss the differences of convergence speed with the sequential approach and
with the exact Newton methods from before.

(f) The performance of the sequential approach can be improved if one introduces
the initial state x(0) as a second decision variable. This allows more freedom
for the initialization, and one can automatically profit from tangential solution



8.12 Exercises 583

predictors. Adapt your exact Newton method, initialize the problem in the all-
zero solution and again observe the results.

(g) If u⇤ is the exact solution that is found at the end of the iterations, plot the loga-
rithm of

��u�u⇤
�� versus the iteration number for all six numerical experiments

(a)–(f), and compare.

(h) The linear system that needs to be solved in each iteration of the simultaneous
approach is large and sparse. We can use condensing in order to reduce the linear
system to size one. Implement a condensing-based linear system solver that only
uses multiplications and additions, and one division. Compare the iterations
with the full-space linear algebra approach, and discuss the differences in the
iterations, if any.

Exercise 8.3: Convex functions

Determine and explain whether the following functions are convex or not on their
respective domains.

(a) f(x) = c0x + x0A0Ax on Rn

(b) f(x) = �c0x � x0A0Ax on Rn

(c) f(x) = log(c0x)+ exp(b0x) on {x 2 Rn | c0x > 0}

(d) f(x) = � log(c0x)� exp(b0x) on {x 2 Rn | c0x > 0}

(e) f(x) = 1/(x1x2) on R2++

(f) f(x) = x1/x2 on R2++

Exercise 8.4: Convex sets

Determine and explain whether the following sets are convex or not.

(a) A ball, i.e., a set of the form

⌦ = {x | |x � xc|  r}

(b) A sublevel set of a convex function f : Rn ! R for a constant c 2 R

⌦ = {x 2 Rn | f(x)  c}

(c) A superlevel set of a convex function f : Rn ! R for a constant c 2 R

⌦ = {x 2 Rn | f(x) � c}

(d) The set
⌦ = {x 2 Rn | x0B0Bx  b0x}

(e) The set
⌦ = {x 2 Rn | x0B0Bx � b0x}

(f) A cone, i.e., a set of the form

⌦ = {(x,↵) 2 Rn ⇥R | |x|  ↵}
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(g) A wedge, i.e., a set of the form

{x 2 Rn | a01x  b1, a02x  b2}

(h) A polyhedron
{x 2 Rn | Ax  b}

(i) The set of points closer to one set than another

⌦ = {x 2 Rn | dist(x,S)  dist(x,T )}

where dist(x,S) := inf{|x � z|2 | z 2 S}.

Exercise 8.5: Finite differences: theory of optimal perturbation size

Assume we have a twice continuously differentiable function f : R ! R and we want
to evaluate its derivative f 0(x0) at x0 with finite differences. Further assume that for
all x 2 [x0 � �, x0 + �] holds that

��f(x)
��  fmax

��f 00(x)
��  f 00max

��f 000(x)
��  f 000max

We assume � > t for any perturbation size t in the following finite difference approx-
imations. Due to finite machine precision ✏mach that leads to truncation errors, the

computed function fe(x) = f(x)(1+✏(x)) is perturbed by noise ✏(x) that satisfies the
bound

|✏(x)|  ✏mach

(a) Compute a bound on the error of the forward difference approximation

fe
0
fd,t(x0) := fe(x0 + t)� fe(x0)

t

namely, a function  (t;fmax , f 00max , ✏mach) that satisfies
����fe

0
fd,t(x0)� f 0(x0)

����   (t;fmax , f 00max , ✏mach)

(b) Which value t⇤ minimizes this bound and which value  ⇤ has the bound at t⇤?

(c) Perform a similar error analysis for the central difference quotient

fe
0
cd,t(x0) := fe(x0 + t)� fe(x0 � t)

2t

that is, compute a bound
����fe

0
fd,t(x0)� f 0(x0)

����   cd(t;fmax , f 00max , f 000max , ✏mach)

(d) For central differences, what is the optimal perturbation size t⇤cd and what is the
size  ⇤cd of the resulting bound on the error?
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Figure 8.8: A hanging chain at rest. See Exercise 8.6(b).

Exercise 8.6: Finding the equilibrium point of a hanging chain using CasADi

Consider an elastic chain attached to two supports and hanging in-between. Let us
discretize it with N mass points connected by N � 1 springs. Each mass i has position
(yi, zi), i = 1, . . . ,N.

Our task is to minimize the total potential energy, which is made up by potential
energy in each string and potential energy of each mass according to

J(y1, z1, . . . , yn, zn) =

1
2

N�1X

i=1

Di
⇣
(yi �yi+1)2 + (zi � zi+1)2

⌘

| {z }
spring potential energy

+ g0

NX

i=1

mi zi
| {z }

gravitational potential energy

(8.63)

subject to constraints modeling the ground.

(a) CasADi is an open-source software tool for solving optimization problems in
general and optimal control problems (OCPs) in particular. In its most typical
usage, it is used to formulate and solve constrained optimization problems of
the form

minimize
x

f(x)

subject to x  x  x
g  g(x)  g

(8.64)

where x 2 Rnx is the decision variable, f : Rnx ! R is the objective function,
and g : Rnx ! Rng is the constraint function. For equality constraints, the
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upper and lower bounds are equal.

If you have not already done so, go to casadi.org and locate the installation
instructions. On most platforms, installing CasADi amounts to downloading a
binary installation and placing it somewhere in your path. Version 3.3 of CasADi
on Octave/MATLAB was used in this edition, so make sure that you are not using a
version older than this and keep an eye on the text website for incompatibilities
with future versions of CasADi. Locate the CasADi user guide and, with an Octave
or MATLAB interpreter in front of you, read Chapters 1 through 4. These chapters
give you an overview of the scope and syntax of CasADi.

(b) We assume that f is a convex quadratic function and g is a linear function. In
this case we refer to (8.64) as a convex quadratic program (QP). To solve a QP
with CasADi, we construct symbolic expressions for x, f , and g, and use this
to construct a solver object that can be called one or more times with different
values for x, x, g, and g. An initial guess for x can also be provided, but this is
less important for convex QPs, where the solution is unique.

Figure 8.8 shows the solution of the unconstrained problem using the open-
source QP solver qpOASES with N = 40, mi = 40/N kg, Di = 70N N/m, and
g0 = 9.81 m/s2. The first and last mass points are fixed to (�2,1) and (2,1),
respectively. Go through the code for the figure and make sure you understand
the steps.

(c) Now introduce ground constraints: zi � 0.5 and zi � 0.5+0.1yi, for i = 2, · · · ,
N � 2. Resolve the QP and compare with the unconstrained solution.

(d) We now want to formulate and solve a nonlinear program (NLP). Since an NLP is a
generalization of a QP, we can solve the above problem with an NLP solver. This
can be done by simply changing casadi.qpsol in the script to casadi.nlpsol
and the solver plugin ’qpoases’ with ’ipopt’, corresponding to the open-
source NLP solver IPOPT. Are the solutions of the NLP and QP solver the same?

(e) Now, replace the linear equalities by nonlinear ones that are given by zi � 0.5+
0.1y2

i for i = 2, · · · , N � 2. Modify the expressions from before to formulate
and solve the NLP, and visualize the solution. Is the NLP convex?

(f) Now, by modifications of the expressions from before, formulate and solve an
NLP where the inequality constraints are replaced by zi � 0.8+ 0.05yi � 0.1y2

i
for i = 2, · · · , N � 2. Is this NLP convex?

Exercise 8.7: Direct single shooting versus direct multiple shooting

Consider the following OCP, corresponding to driving a Van der Pol oscillator to the
origin, on a time horizon with length T = 10
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Figure 8.9: Direct single shooting solution for (8.65) without path
constraints.

minimize
x(·),u(·)

Z T

0
(x1(t)2 + x2(t)2 +u(t)2)dt

subject to ẋ1(t) = (1� x2(t)2)x1(t)� x2(t)+u(t)
ẋ2(t) = x1(t)
�1 u(t)  1, t 2 [0, T ]
x1(0) = 0, x1(T) = 0

x2(0) = 1, x2(T) = 0

�0.25 x1(t), t 2 [0, T ]

(8.65)

We will solve this problem using direct single shooting and direct multiple shooting
using IPOPT as the NLP solver.

(a) Figure 8.9 shows the solution to the above problem using a direct single shooting
approach, without enforcing the constraint �0.25  x1(t). Go through the code
for the figure step by step. The code begins with a modeling step, where sym-
bolic expressions for the continuous-time model are constructed. Thereafter,
the problem is transformed into discrete time by formulating an object that
integrates the system forward in time using a single step of the RK4 method.
This function also calculates the contribution to the objective function for the
same interval using the same integrator method. In the next part of the code, a
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symbolic representation of the NLP is constructed, starting with empty lists of
variables and constraints. This symbolic representation of the NLP is used to
define an NLP solver object using IPOPT as the underlying solver. Finally, the
solver object is evaluated to obtain the optimal solution.

(b) Modify the code so that the path constraint on x1(t) is being respected. You
only need to enforce this constraint at the end of each control interval. This
should result in additional components to the NLP constraint function G(w),
which will now have upper and lower bounds similar to the decision variable w.
Resolve the modified problem and compare the solution.

(c) Modify the code to implement the direct multiple-shooting method instead of
direct single shooting. This means introducing decision variables corresponding
to not only the control trajectory, but also the state trajectory. The added deci-
sion variables will be matched with an equal number of new equality constraints,
enforcing that the NLP solution corresponds to a continuous state trajectory.
The initial and terminal conditions on the state can be formulated as upper and
lower bounds on the corresponding elements of w. Use x(t) = 0 as the initial
guess for the state trajectory.

(d) Compare the IPOPT output for both transcriptions. How did the change from
direct single shooting to direct multiple shooting influence

• The number of iterations?

• The number of nonzeros in the Jacobian of the constraints?

• The number of nonzeros in the Hessian of the Lagrangian?

(e) Generalize the RK4 method so that it takesM = 4 steps instead of just one. This
corresponds to a higher-accuracy integration of the model dynamics. Approxi-
mately how much smaller discretization error can we expect from this change?

(f) Replace the RK4 integrator with the variable-order, variable-step size code
CVODES from the SUNDIALS suite, available as the ’cvodes’ plugin for
casadi.integrator. Use 10�8 for the relative and absolute tolerances. Consult
CasADi’s user guide for syntax. What are the advantages and disadvantages of
using this integrator over the fixed-step RK4 method used until now?

Exercise 8.8: Direct collocation

Collocation, in its most basic sense, refers to a way of solving initial-value problems
by approximating the state trajectory with piecewise polynomials. For each step of the
integrator, corresponding to an interval of time, we choose the coefficients of these
polynomials to ensure that the ODE becomes exactly satisfied at a given set of time
points. In the following, we choose the Gauss-Legendre collocation integrator of sixth
order, which has d = 3 collocation points. Together with the point 0 at the start of the
interval [0,1], we have four time points to define the collocation polynomial

⌧0 = 0 ⌧1 = 1/2�
p

15/10 ⌧2 = 1/2 ⌧3 = 1/2+
p

15/10

Using these time points, we define the corresponding Lagrange polynomials

Lj(⌧) =
dY

r=0, r 6=j

⌧ � ⌧r
⌧j � ⌧r
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Introducing a uniform time grid tk = kh, k = 0, . . . ,N, with the corresponding state
values xk := x(tk), we can approximate the state trajectory inside each interval [tk,
tk+1] as a linear combination of these basis functions

xek(t) =
dX

r=0
Lr
✓ t � tk

h

◆
xk,r

By differentiation, we get an approximation of the time derivative at each collocation
point for j = 1, . . . ,3

ẋek(tk,j) =
1
h

dX

r=0
L̇r (⌧j)xk,r := 1

h

dX

r=0
Cr,j xk,r

We also can get an expression for the state at the end of the interval

xek+1,0 =
dX

r=0
Lr (1)xk,r :=

dX

r=0
Dr xk,r

Finally, we also can integrate our approximation over the interval, giving a formula for
quadratures

Z tk+1

tk
xek(t)dt = h

dX

r=0

Z 1

0
Lr (⌧)d⌧ xk,r := h

dX

r=1
br xk,r

(a) Figure 8.10 shows an open-loop simulation for the ODE in (8.65) using Gauss-
Legendre collocation of order 2, 4, and 6. A constant control u(t) = 0.5 was
applied and the initial conditions were given by x(0) = [0,1]0. The figure on
the left shows the first state x1(t) for the three methods as well as a high-
accuracy solution obtained from CVODES, which uses a backward differentia-
tion formula (BDF) method. In the figure on the right we see the discretization
error, as compared with CVODES. Go through the code for the figure and make
sure you understand it. Using this script as a template, replace the integrator
in the direct multiple-shooting method from Exercise 8.7 with this collocation
integrator. Make sure that you obtain the same solution. The structure of the
NLP should remain unchanged—you are still implementing the direct multiple-
shooting approach, only with a different integrator method.

(b) In the NLP transcription step, replace the embedded function call with additional
degrees of freedom corresponding to the state at all the collocation points. En-
force the collocation equations at the NLP level instead of the integrator level.

Enforce upper and lower bounds on the state at all collocation points. Compare
the solution time and number of nonzeros in the Jacobian and Hessian matrices
with the direct multiple-shooting method.

Exercise 8.9: Gauss-Newton SQP iterations for optimal control

Consider a nonlinear pendulum defined by

ẋ(t) = f(x(t),u(t)) =
"

v(t)
�C sin(p(t)/C)

#
+
"

0
1

#
u(t)

with state x = [p,v]0 and C := 180/⇡/10, to solve an OCP using a direct multiple-
shooting method and a self-written sequential quadratic programming (SQP) solver
with a Gauss-Newton Hessian.
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Figure 8.10: Open-loop simulation for (8.65) using collocation.

(a) Starting with the pendulum at x̄0 = [10 0]0, we aim to minimize the required
controls to bring the pendulum to xN = [0 0]0 in a time horizon T = 10 s.
Regarding bounds on p, v , and u, namely pmax = 10, vmax = 10, and umax = 3,
the required controls can be obtained as the solution of the following OCP

minimize
x0,u0,x1,...,uN�1,xN

1
2

N�1X

k=0

��uk
��2

2

subject to x̄0 � x0 = 0

�(xk,uk)� xk+1 = 0, k = 0, . . . ,N � 1

xN = 0

� xmax  xk  xmax , k = 0, . . . ,N � 1

�umax  uk  umax , k = 0, . . . ,N � 1

Formulate the discrete dynamics xk+1 = �(xk,uk) using a RK4 integrator with
a time step �t = 0.2 s. Encapsulate the code in a single CasADi function of the
form of a CasADi function object as in Exercise 8.7. Simulate the system forward
in time and plot the result.

(b) Usingw = (x0, u0, . . . , uN�1, xN) as the NLP decision variable, we can formulate
the equality constraint function G(w), the least squares functionM(w), and the
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bounds vector wmax so that the above OCP can be written

minimize
w

1
2
|M(w)|22

subject to G(w) = 0

�wmax  w  wmax

The SQP method with Gauss-Newton Hessian solves a linearized version of this
problem in each iteration. More specifically, if the current iterate is w̄, the next
iterate is given by w̄ +�w, where �w is the solution of the following QP

minimize
�w

1
2
�w0JM(w̄)0JM(w̄)�w +M(w̄)0JM(w̄)�w

subject to G(w̄)+ JG(w̄)�w = 0

�wmax � w̄  �w  wmax � w̄

(8.66)

In order to implement the Gauss-Newton method, we need the Jacobians
JG(w) = @G

@w (w) and JM(w) = @M
@w (w), both of which can be efficiently obtained

using CasADi’s jacobian command. In this case the Gauss-Newton Hessian
H = JM(w̄)0JM(w̄) can readily be obtained by pen and paper. Define what Hx
and Hu need to be in the Hessian

H =

2
666664

Hx
Hu

. . .
Hx

3
777775

Hx =
" #

Hu =
h i

(c) Figure 8.11 shows the control trajectory after 0, 1, 2, and 6 iterations of the
Gauss-Newton method applied to a direct multiple-shooting transcription of
(8.65). Go through the code for the figure step by step. You should recog-
nize much of the code from the solution to Exercise 8.7. The code represents a
simplified, yet efficient way of using CasADi to solve OCPs.

Modify the code to solve the pendulum problem. Note that the sparsity patterns
of the linear and quadratic terms of the QP are printed out at the beginning of
the execution. JG(w) is a block sparse matrix with blocks being either identity
matrices I or partial derivatives Ak = @�

@x (xk,uk) and Bk = @�
@u(xk,uk).

Initialize the Gauss-Newton procedure at w = 0, and stop the iterations when��wk+1 �wk
�� gets smaller than 10�4. Plot the iterates as well as the vector G

during the iterations. How many iterations do you need?
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Figure 8.11: Gauss-Newton iterations for a direct multiple-shooting
transcription of (8.65); u(t) after 0, 1, 2, and 6 Gauss-
Newton iterations.

Exercise 8.10: Real-time iterations and nonlinear MPC

We return to the OCP from Exercise 8.9

minimize
x0,u0,x1,...,uN�1,xN

1
2

N�1X

k=0

��uk
��2

2

subject to x̄0 � x0 = 0

�(xk,uk)� xk+1 = 0, k = 0, . . . ,N � 1

xN = 0

�xmax  xk  xmax , k = 0, . . . ,N � 1

�umax  uk  umax , k = 0, . . . ,N � 1

In this problem, we regard x̄0 as a parameter and modify the simultaneous Gauss-
Newton algorithm from Exercise 8.9. In particular, we modify this algorithm to per-
form real-time iterations for different values of x̄0, so that we can use the algorithm
to perform closed-loop nonlinear MPC simulations for stabilization of the nonlinear
pendulum.

(a) Modify the function sqpstep from the solution of Exercise 8.9 so that it accepts
the parameter x̄0. You would need to update the upper and lower bounds on w
accordingly. Test it and make sure that it works.
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(b) In order to visualize the generalized tangential predictor, call the sqpstep
method with different values for x̄0 while resetting the variable vector w̄ to its
initial value (zero) between each call. Use a linear interpolation for x̄0 with 100
points between zero and the value (10,0)0, i.e., set x̄0 = �[10 0]0 for � 2 [0,1].
Plot the first control u0 as a function of � and keep your plot.

(c) To compute the exact solution manifold with relatively high accuracy, perform
now the same procedure for the same 100 increasing values of �, but this time
perform for each value of � multiple Gauss-Newton iterations, i.e., replace each
call to sqpstep with, e.g., 10 calls without changing x̄0. Plot the obtained values
for u0 and compare with the tangential predictor from the previous task by
plotting them in the same plot.

(d) In order to see how the real-time iterations work in a more realistic setting, let
the values of � jump faster from 0 to 1, e.g., by doing only 10 steps, and plot the
result again into the same plot.

(e) Modify the previous algorithm as follows: after each change of � by 0.1, keep it
constant for nine iterations, before you do the next jump. This results in about
100 consecutive real-time iterations. Interpret what you see.

(f) Now we do the first closed-loop simulation: set the value of x̄[1]0 to [10 0]0 and ini-
tialize w[0] at zero, and perform the first real-time iteration by calling sqpstep.
This iteration yields the new solution guessw[1] and corresponding controlu[1]0 .
Use this control at the “real plant,” i.e., generate the next value of x̄0, which we
denote x̄[2]0 , by calling the one-step simulation function, x̄[2]0 := �(x̄[1]0 , u[1]0 ).
Close the loop by calling sqpstep using w[1] and x̄[2]0 , etc., and perform 100
iterations. For better observation, plot after each real-time iteration the control
and state variables on the whole prediction horizon. (It is interesting to note
that the state trajectory is not necessarily feasible).

Also observe what happens with the states x̄0 during the scenario, and plot
them in another plot against the time index. Do they converge, and if yes, to
what value?

(g) Now we make the control problem more difficult by treating the pendulum in an
upright position, which is unstable. This is simply done by changing the sign in
front of the sine in the differential equation, i.e., our model is now

f(x(t),u(t)) =
"

v(t)
C sin(p(t)/C)

#
+
"

0
1

#
u(t) (8.67)

Start your real-time iterations again at w[0] = 0 and set x̄[1]0 to [10 0]0, and
perform the same closed-loop simulation as before. Explain what happens.

Exercise 8.11: CIA norm and MILP

One of the heuristics discussed in Section 8.10 for approximating the solution of mixed-
integer nonlinear optimal control problems is the combinatorial integral approximation
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(CIA) (Sager et al., 2011). The CIA step solves the following optimization problem

min
ub

max
j 2 I1:nb
k 2 I0:N�1

������

kX

i=0

ub,j(i)�u⇤b,j(i)
������

in which ub is the discrete control sequence that approximates u⇤b , the real-valued
solution of a nonlinear program in the heuristic. Additional constraints can be included
in this optimization such as rate-of-change constraints, dwell-time constraints, etc.

Consider the standard form of a mixed-integer linear program (MILP)

min
x,y

c0x + d0y

subject to

Ax + Ey  b
y 2 Bs

with real x 2 Rq and b 2 Rr , and binary y 2 Bs . State the CIA step in the standard
form of an MILP, i.e., give the MILP variables x,y, c, d,A, E, b, q, r , s for solving the CIA
step.
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M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer.
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