
Summer School on Robust Model Predictive Control with CasADi
James B. Rawlings, Joel Andersson, Sergio Lucia, Moritz Diehl

University of Freiburg, September 15 to 19, 2025
www.syscop.de/event/rmpc25

Exercise 3: Robust Dynamic Optimization with IPOPT

Florian Messerer, Jonathan Frey, Katrin Baumgärtner, Moritz Heinlein

In this exercise, we implement and ellipsoidal tube OCP as well as a multistage OCP for a simple robot
model. The aim is to drive a robot from its starting position pstart to a goal position ptarget while robustly
avoiding an obstacle.

θ

(px, py)

x

y

The state of the robot is given by x = (px, py, θ, v, ω), where px, py parametrize the 2D-position of the
center of the robot, θ is the heading angle, v the forward velocity and ω the angular velocity. The controls
u = (a, α) are the forward acceleration a and angular acceleration α We assume that both the forward
acceleration as well as the angular acceleration are subject to additive disturbances w = (wa, wα) yielding
the ODE

ṗx = v cos θ, (1a)

ṗy = v sin θ, (1b)

θ̇ = ω, (1c)

v̇ = a+ σawa, (1d)

ω̇ = α+ σαwα (1e)

with σa, σα determining the scaling of the disturbances. This allows us to consider the unit sphere for
the values of wk, wk ∈ E(0, I). We discretize the continuous-time system using one step of an explicit
Runge-Kutta integrator of order 4 on an integration interval of length h = 0.35, with piecewise constant
controls and disturbances to obtain the discrete-time dynamics

xk+1 = f(xk, uk, wk). (2)

As stage and terminal cost we use

l(x, u) = γlHuber(p− ptarget) + u⊤Ru, (3a)

lN (x) = γN lHuber(p− ptarget) + τv2, (3b)

with p = (px, py), weights R, γ, γN , τ , and where the pseudohuber loss lHuber(p) =
√
p⊤p+ 1 behaves like

a quadratic function near the origin and like the unsquared 2-norm for larger values. This yields a smooth
tracking behavior near the target position while proportionally penalizing larger distances.
The constraints include upper and lower bounds on the controls, bounds on the position, as well as an
obstacle avoidance constraints,

umin ≤ u ≤ umax, (4a)

pmin ≤ p, (4b)

robs ≤ ∥c− pobs∥2, (4c)

1

www.syscop.de/event/rmpc25

where robs denotes the radius of the obstacle and pobs its center.

Nominal OCP

The nominal OCP, which we obtain by setting wk = 0 for k = 0, . . . , N − 1, takes the form

min
x̄, ū

N−1∑
k=0

lk(x̄k, ūk) + lN (x̄N) (5a)

s.t. x̄0 = ¯̄x0, (5b)

x̄k+1 = fk(x̄k, ūk, 0), k = 0, . . . , N − 1, (5c)

0 ≥ hk(x̄k, ūk), k = 0, . . . , N − 1, (5d)

0 ≥ hN (x̄N), (5e)

with ū = (ū0, . . . , ūN−1), x̄ = (x̄0, . . . , x̄N).

Tasks

1. Run main.py in order to solve the nominal OCP (5). This yields us a baseline to which we can
compare the robust OCP solutions obtained in the following.

2

Ellipsoidal-tube robust OCP

We consider the corresponding ellipsoidal-tube robust OCP in the form

min
x̄, ū, P, β

N−1∑
k=0

lk(x̄k, ūk) + lN (x̄N) (6a)

s.t. x̄0 = ¯̄x0, (6b)

P0 = 0, (6c)

x̄k+1 = fk(x̄k, ūk, 0), k = 0, . . . , N − 1, (6d)

Pk+1 = ψk(x̄k, ūk, Pk), k = 0, . . . , N − 1, (6e)

0 ≥ hk(x̄k, ūk) +
√
βk + ε2, k = 0, . . . , N − 1, (6f)

βk ≥ Hk(x̄k, ūk, Pk), k = 0, . . . , N − 1, (6g)

0 ≥ hN (x̄N) +
√
βN + ε2, (6h)

βN ≥ HN (x̄N , PN), (6i)

0 ≤ βk, k = 0, . . . , N. (6j)

Here, x̄, ū are the nominal trajectories (the centers of the ellipsoids). The state ellipsoids are described
by P = (P0, . . . , PN), i.e., the state tube is xk ∈ E(x̄k, Pk). The linearization-based ellipsoid dynamics are
given by

ψk(x̄k, ūk, Pk) := Ak(x̄k, ūk)PkAk(x̄k, ūk)
⊤ + Γk(x̄k, ūk)Γk(x̄k, ūk)

⊤ (7)

with Ak := ∇xfk(x̄k, ūk, 0)
⊤, Bk := ∇ufk(x̄k, ūk, 0)

⊤, Γk := ∇wfk(x̄k, ūk, 0)
⊤, k = 0, . . . , N − 1. We

point out that Pk are symmetric matrices, such that for an implementation of the OCP it can make sense
to only consider their lower or upper triangular part.
For the constraint backoffs we introduce the lifting variables β. This makes it easier to ensure that
throughout the solver iterations we never encounter the square root of a negative number. The values of β
correspond to the squared backoffs and are given via

H i
k(x̄k, ūk, Pk) = ∇hik(x̄k, ūk)⊤Pk∇hik(x̄k, ūk), (8)

H i
N (x̄N , PN) = ∇hiN (x̄N)⊤PN∇hiN (x̄N), (9)

for k = 0, . . . , N − 1 and i = 1, . . . , nhk
, and with superscript i denoting the i-th component of the vector

valued functions hk and Hk.
Note: The vector valued functions Hk are defined componentwise. For the implementation in code, we
recommend to follow this componentwise definition, with an explicit loop over index i = 1, . . . , nhk

, instead
of trying to avoid the loop via matrix-vector notation / operators.

Tasks

1. Complete the file solver open loop robust ocp.py, and modify and run main.py accordingly. Does
the resulting trajectory differ from the nominal trajectory? In what way and why?

2. In its uncertainty prediction, the above robust OCP only considers an open loop control trajectory
ū. This gives rise to unnecessarily large state tubes. Instead, we want to consider the linear feedback
law uk = ūk + K(xk − x̄k), with feedback gain K ∈ Rnu×nx . For K, we use a heuristic structure,
tailored to the robot model, given in the template as part of the OCP dataclass. Modify the OCP in
order to incorporate this simple feedback law. How do you need to change the ellipsoid propagation
and the constraint robustification? Keep in mind that the control trajectory is now also an uncertain
variable.

3

x10, u
1
0

x11, u
1
1

x21, u
2
1

x12, u
1
2

x22, u
2
2

x32, u
3
2

x42, u
4
2

x13

x23

x33

x43

x53

x63

x73

x83

w1

w2

w1

w2

w1

w2

w1

w2

w1

w2

w1

w2

w1

w2

x10, u
1
0

x11, u
1
1

x21, u
2
1

x12, u
1
2

x22, u
2
2

x32, u
3
2

x42, u
4
2

x13

x23

x33

x43

w1

w2

w1

w2

w1

w2

w̄

w̄

w̄

w̄

Figure 1: Right: Visualization of a scenario tree split at every node. Right: Visualization of scenario tree,
split only up to a robust horizon Nrob (here: Nrob = 2)

Multistage robust OCP (scenario-tree robust OCP)

We now consider a multistage (or scenario-tree) robust OCP. In order to construct the scenario
tree, we must first discretize the disturbance set E(0, I). Here, we consider the discrete set W =
{0, (1, 0), (−1, 0), (0, 1), (0,−1)} = {w1, . . . , wm}, yielding m = |W| = 5 possible disturbance values per
discrete time point. For the node numbering convention of the resulting scenario tree, we refer to Fig. 1
The tree OCP can be written as

min
x, u

N−1∑
k=0

 1

mk

mk∑
i=1

l(xik, u
i
k)

+
1

mN

mN∑
i=1

lN (xiN) (10a)

s.t. x00 = ¯̄x0, (10b)

xik+1 = f(x
⌈i/mk⌉
k , u

⌈i/mk⌉
k , w i]m1), k = 0, . . . , N − 1, i = 1, . . . ,mk+1, (10c)

0 ≤ hk(x
i
k, u

i
k), k = 0, . . . , N − 1, i = 1, . . . ,mk, (10d)

0 ≤ hN (xik, u
i
k), i = 1, . . . ,mN , (10e)

where ⌈·⌉ denotes the ceiling function and i]m1 wraps the integer i to the set {1, . . . ,m}. Thus, for each
k = 0, . . . , N − 1, the dynamics constraint (10c) cycles through all scenarios of the current stage, (xik, u

i
k),

i = 1, . . . ,mk, and simulates it forward once for every possible disturbance value, wi ∈ W.

Tasks

1. Take a moment to consider the complexity of the tree OCP. Given our specific values of N and m,
how many terminal nodes does the resulting tree have?

2. The file solver tree ocp.py implements a tree OCP. In order to alleviate the exponential scenario
growth, it allows to set a value for the robust horizon Nrob, up to which the disturbances are con-
sidered. For the remainder of the OCP horizon, each scenario is propagated only nominally, cf. the
righthand side of Fig. 1.
Complete the template, and run the tree solver via main.py. Compare the resulting trajectories to
the solutions from the previous OCPs.

4

3. Try increasing the value of Nrob. How far can you go while keeping within reasonable computation
times?

Bonus tasks

1. Already start working on the next exercise sheet.

2. Apply the above robust OCP solvers to your favorite dynamical system.

3. Create a solver class that optimizes a time-variant feedback law parametrization.

5

