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Chapter 1

Introduction

1.1 Motivation and lecture overview

This course introduces the fundamentals of wind energy systems from resource analysis to
aerodynamics, mechanical design, and control. The objective is to provide students with
a thorough understanding of how wind energy can be harvested e�ciently and integrated
into modern power systems.

Wind energy is a rapidly growing sector of renewable energy, combining concepts from
�uid dynamics, mechanical and electrical engineering, and control theory. These lecture
notes serve as a companion to the slides, exercise sessions, and video lectures. For slides:
Click here for slides (https://tinyurl.com/yb8xskhn).

1.2 Energy content of the wind

Consider a cylindrical volume of air �owing through an imaginary �window� of cross-
sectional area A [m2] with �ow speed u [ms−1] and length L [m].

Figure 1.1: Power �owing through a 'window' of air.

The mass of air m [kg] in this volume is:

m = ρLA, (1.1)

where ρ is the air density [kgm−3], typically ρ = 1.225 kg/m3.

The kinetic energy T [J] in this volume of air is:

T =
1

2
mu2 =

1

2
ρLAu2. (1.2)

1
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The power P [W] is de�ned as the rate of energy transfer through the �window.� And as
an average speed is the distance traveled divided by the time to travel, the time t [s] for
the air volume to pass through the window is t = L/u. So the power becomes:

P =
T

t
=

1

2
ρAu3. (1.3)

The key insight here is that the power P is proportional to the cube of wind speed
u.

The SI-unit consistency of this equation can be shown explicitly:

kg

m3︸︷︷︸
air density

·
(m
s

)3
︸ ︷︷ ︸

�ow speed cubed

=
kg

s3

=

(
kg ·m
s2

)
︸ ︷︷ ︸

N

·
(

1

m · s

)
= (N ·m)︸ ︷︷ ︸

J

·
(

1

m2 · s

)
=

J

s︸︷︷︸
W

· 1
m2

=
W

m2

Strong winds constitute a fairly concentrated form of sustainable energy of a similar power
density as solar power. Note that the cross-sectional area, A (shown in Figure 1.2), of
wind turbines is given by the whole disc over which the rotor blades sweep.

If we compare the power available in the wind to the average European's power need of
about 5 kW:

� 2 m2 of cross-sectional area in very strong wind,

� 16 m2 of area in good wind (of u = 10 m s−1), or

� 128 m2 of area in weak wind (of u = 5 m s−1)

contains about 5 kW of power.

(Not all of this can be harvested due to the so-called �Betz-Limit,� which we will derive
and discuss in Chapter 3.)

Figure 1.2: The rotor blades (white) and the swept area (pink).

So, wind turbines can harvest from the entire area with relatively little blade area; this
is one explanation of why wind power is comparably cheap and competitive.

2
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Example: For u = 20 m/s, the power density is:

P

A
=

1

2
ρu3 = 4.8 kW/m2.

With a rotor radius of R = 35 m, the swept area is:

A = πR2 = 3850 m2.

The total power is:

P = 4.8 · 103 W/m2 × 3850 m2 = 18.5 MW.

At high wind speeds, a large amount of power is accessible to the wind turbine!

1.3 Power density and blade area

Let's try to estimate how much power can be captured by a given blade areaAB [m2].

We consider only the outer part of a rotor blade (close to the wing tips) which moves
with a blade speed VB [ms−1] in the cross-wind direction.

Note that the inner part of the blade moves slower, but they are not our focus for
now.

Figure 1.3: The outer part of the rotor blade near the tip moves at high speed VB; the
inner parts move slower.

We simplify further by assuming that the blade tip moves in a straight line (not along a
circular path).

With this simpli�cation, the motion of the blade tip can be compared to a sailing boat
moving �half-wind� or �cross-wind.� This situation can be depicted from the top view as
shown in Figure 1.4.

The apparent wind VA [ms−1] is given by the vector di�erence between the true wind V
[ms−1] and the blade speed VB [ms−1]:

VA = V −VB

3
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Figure 1.4: Top view analogy: the blade tip behaves like a sailboat moving �cross-wind.�

In component form:

VA =

(
V
0

)
−
(

0
VB

)
=

(
V

−VB

)
The magnitude of the apparent wind is:

|VA| =
√

V 2
B + V 2 := VA (1.4)

To determine the forces on the �wing� (we use this term for the blade tip with area AB),
we use a basic fact from aerodynamics: the aerodynamic force on a body in a moving
�uid is proportional to the dynamic pressure 1

2
ρV 2

A and the reference area AB.

The aerodynamic force can be decomposed into:

� the lift force L [N], which is perpendicular to VA

� the drag force D [N], which is aligned with VA

With the lift coe�cient CL [-] and drag coe�cient CD [-] we can express the aerodynamic
forces on the blade tip as:

FL =
1

2
CL ρAB V 2

A (1.5)

FD =
1

2
CD ρAB V 2

A (1.6)

The coe�cients CL and CD depend upon:

� the angle of attack (orientation of the blade section relative to the apparent wind)

� the Reynolds number (a dimensionless ratio of inertial forces to viscous forces)

4
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Good wings are designed to produce high lift and low drag. A typical example is CL = 1.5
and CD = 0.05.

The lift-over-drag ratio CL

CD
has an important interpretation in sailplanes: it determines

how far a sailplane can glide, depending on its initial altitude. Because of this, the ratio
CL

CD
is also called the "gliding number".

Figure 1.5: For a sailplane, the distance traveled equals the gliding number CL

CD
times the

altitude.

For our rotor blade we obtain an analogous picture:

Figure 1.6: Illustration of lift and drag forces acting on the rotor blade tip.

For the rotation of the wind turbine, we are �rst interested only in the force component
in the direction of motion of the wing, F ∥ [N], since its product with the blade speed VB

[ms−1] gives the mechanical power production:

PB = F ∥ · (VB) (1.7)

Here F ∥ represents the component of aerodynamic force parallel to the blade's movement
direction.

5
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We decompose this as:

F ∥ = F
∥
L + F

∥
D = FL · V

VA

− FD · VB

VA

where FL and FD are the lift and drag forces on the blade section, and the fractions V
VA

and VB

VA
project these forces onto the direction of motion.

Bringing these together yields:

PB =
1

2
ρAB V 2

A VB

(
CL

V

VA

− CD
VB

VA

)
(1.8)

To simplify further, we introduce the tip speed ratio

λr =
VB(r)

V
, (1.9)

where VB(r) [ms−1] is the local blade speed at radius r [m], and V [ms−1] is the free-
stream wind speed.

At the blade tip (at radius R), this simpli�es to

λ =
VB

V
.

Thus,

VB = λV

and

VA =
√
1 + λ2 V.

Substituting these into Equation 1.8 simpli�es the power expression to:

PB =
1

2
ρAB V 3λ2

√
1 +

1

λ2
(CL − CD · λ)︸ ︷︷ ︸

:=ζ (Power Harvesting Factor)

(1.10)

This is often expressed in terms of the power harvesting factor ζ:

ζ = λ
1√

1 + λ2
(CL − CDλ) ,

so that the power can be written compactly as:

6
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PB =
1

2
ρABV

3ζ.

At λ = CL

CD
, no power is generated. This value CL

CD
represents the maximum possible tip

speed ratio � it is realized if the generator is switched o�, meaning there is no torque
acting on the rotor.

Example: For a typical tip speed ratio of λ = 7, with CL = 1.5 and CD = 0.05,
we can calculate the power harvesting factor ζ by evaluating the underbraced term in
Equation 1.10.

ζ = λ2 1√
1 + λ2

(CL − CDλ)

Plugging in the values:

ζ ≈ 49× 1× (1.5− 0.05× 7) ≈ 57.

(For λ = 20, we would even get ζ ≈ 400× 0.5 = 200.)

This is a remarkably high number. The factor ζ shows how many times more power a
blade area can harvest compared to the energy in the wind which would pass through
the �window� of the same size as the blade area.

Compared to the energy in the air, for ζ = 50 and V = 10 m/s, we thus get a power
density of

PB

A
= 50× 600 Wm−2 = 30 kWm−2.

For the inner parts of the blade we can calculate the local speed ratio

λr =
VB(r)

V
.

As the inner parts of the blade move slower, their λr is smaller and therefore also their
harvesting factors. This is one major reason why blades become thicker toward the center,
as shown by Figure 1.7:

1.4 Components of a modern wind turbine

With its �ve joints (yaw, rotor, and three pitch joints), a wind turbine can be regarded as
a gigantic robot arm, comparable to the six-joint robot arms used in car manufacturing.
However, it is an �energy-harvesting robot.�

For an illustration of the components of a modern wind turbine, refer to Figures 1.8, 1.9,
and 1.10.

7
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Figure 1.7: Blades become thicker toward the root because the local speed ratio λr is
smaller there.

Figure 1.8: Wind turbine components.

1.5 Blade & airfoil nomenclature

Note: the chordwise direction is along the chord line. The spanwise direction is
orthogonal, along the radial direction of the turbine.

The surface area of a blade element, dA, by de�nition, is the chord length c(r) [m]
multiplied by the span increment dr [m] (see Figure 1.12). Therefore, the whole blade
area A [m2] can be found by:

A =

∫ R

0

c(r) dr (1.11)

8
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Figure 1.9: Rotor details.

Figure 1.10: Inner details of the nacelle.

Figure 1.11: The parts of an airfoil.

9
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Figure 1.12: Surface area of a blade element.
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Chapter 2

The Wind Resource

2.1 Origins

The movement of air that we experience as wind begins with heating from the sun. Solar
energy warms di�erent parts of the Earth's surface unevenly, and this imbalance sets the
atmosphere in motion.

� Air is heated up (by the sun, directly or indirectly).

� The air density drops as it warms.

� The lighter, warmer air rises and creates a low-pressure region.

� Cooler, denser air rushes in to �ll the gap � this �ow of air is what we call "wind."

The contrast between land and water plays a major role in shaping local wind patterns.
The heat capacity1 of land is lower than that of water, meaning land heats up and cools
down much faster than oceans or lakes.

During a sunny day, the ground temperature rises quickly. Air over land warms rapidly,
becomes lighter, and begins to rise, creating a zone of lower pressure. Over water, the
temperature rises more slowly, and the cooler, denser air remains closer to the surface.
The warmer air from land can be cooled by the ocean and eventually sinks back down.
This process is illustrated in Figure 2.1.

At night, the situation reverses. Land cools down much faster than water, so air over
land becomes colder and denser. Over the water, the air remains relatively warmer and
continues to rise, drawing the cooler air from land toward the sea. This reversal of air
movement is shown in Figure 2.2.

2.2 Global patterns

Air in the atmosphere does not move randomly � it follows large-scale circulation pat-
terns driven by solar heating, the Earth's rotation, and the shape of the planet. Within
the troposphere, which extends from about 5�15 km above the Earth's surface, air moves

1Heat capacity is the amount of energy it takes to increase the temperature of 1 kg of a substance by
1 kelvin.

11
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Figure 2.1: Sunny day at the coast: warm air rises over land, cooler air �ows in from over
the water.

Figure 2.2: Clear night at the coast: the situation reverses, and cooler air �ows out
toward the water.

in three major "cells" per hemisphere: the Hadley cell near the equator, the Ferrel cell
in the mid-latitudes, and the Polar cell closer to the poles (Figure 2.3).

Note 1: The Ferrel cell is indirectly driven by the Hadley cell and the Polar cell.

Note 2: The distance along the surface of the Earth between the North Pole and the
equator is about 10,000 km. In comparison, the troposphere's thickness is only 5�15 km
� very thin relative to the Earth's diameter.

Due to the Coriolis force, winds are diverted to the right in the northern hemisphere
(relative to their direction of travel), and to the left in the southern hemisphere (Fig-
ure 2.4).

Closer to the Earth's surface, strong wind shear exists in the Atmospheric Boundary
Layer (ABL). Both the magnitude and the direction of wind can change with altitude,
and friction with the ground plays a signi�cant role (Figure 2.5).

2.3 Mechanics of wind

Four main in�uences determine the movement of wind:

� pressure di�erences;

� Coriolis force;

12
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Figure 2.3: Air movement within the troposphere (5�15 km altitude), organized into
three large circulation cells per hemisphere.

Figure 2.4: The Coriolis e�ect diverts winds to the right in the northern hemisphere and
to the left in the southern hemisphere.

� centrifugal force; and

� friction.

2.3.1 Pressure gradient

To understand how pressure di�erences drive wind, consider a simple control volume: a
cylindrical slice of air with length L [m] and cross-sectional area A [m2].

The volume of this slice is:

Volume = L · A,

and its mass m [kg] is:

m = ρLA,

13
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Figure 2.5: Strong wind shear in the Atmospheric Boundary Layer (ABL): magnitude
and direction change with altitude, with ground friction having a major in�uence.

where ρ [kgm−3] is the air density.

Figure 2.6: A cylindrical control volume used to illustrate the e�ect of a pressure gradient.

Pressure in the atmosphere varies in both space and time, and is denoted P (x, t) [Pa].
Recall that:

1 Pa = 1 N/m2 and 1 millibar = 1 hectopascal = 100 Pa.

The standard atmospheric pressure at sea level is about 101.325 kPa.

Because pressure di�ers across the two ends of our control volume, there is a net force
on the air:

F =
(
force on the left side

)
−
(
force on the right side

)
.

Expressing this mathematically:

F = AP (x0)− AP (x0 + L) (2.1)

≈ AP (x0)− A
[
P (x0) +

∂P

∂x
(x0)L

]
(2.2)

= −A
∂P

∂x
(x0)L. (2.3)

This simpli�ed expression shows that a pressure gradient creates a force directed from
high pressure toward low pressure.

From Newton's second law, the acceleration a [ms−2] of the air mass is:

14
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Figure 2.7: Pressure varies across space and time, creating di�erences that drive the
motion of air.

a =
F

m
=

−A∂P
∂x
L

ρLA
= −1

ρ

∂P

∂x
. (2.4)

This �nal equation shows that the acceleration of air is directly proportional to the
pressure gradient and inversely proportional to air density: the steeper the pressure
di�erence, the stronger the resulting motion of the air.

2.3.2 Coriolis force

The Coriolis force arises from the rotation of the Earth.

Consider a point on the surface of the Earth in Freiburg. This point is moving eastward
because of the Earth's rotation. Now consider another point much closer to the North
Pole: it too is moving east, but because it is closer to the Earth's axis of rotation, it
moves eastward more slowly than Freiburg.

Now imagine air moving from the North Pole toward the south. As it moves farther south,
the ground below is moving eastward faster and faster. From the air's perspective, the
ground "slides away" underneath it. When viewed from the ground's frame of reference,
it appears as though the wind is curving or accelerating to the right (Figure 2.8). This
phenomenon is called the Coriolis E�ect.

This rightward acceleration applies to air moving in all horizontal directions in the North-
ern Hemisphere. In the Southern Hemisphere, the acceleration is to the left.

The Coriolis e�ect can be described as either a virtual force or as an acceleration. At
the North Pole, it is given by:

15
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Figure 2.8: As viewed from above the North Pole, with the Earth's rotation ω0, an air
current traveling southward appears to curve to the right.

FCoriolis = 2mω0VGEO (2.5)

If we divide this Coriolis force FCoriolis [N] by the mass, we get a speci�c-force fCoriolis

[ms−2] which is just an acceleration:

fCoriolis = aCoriolis = 2ω0VGEO (2.6)

where:

� VGEO [ms−1] is the geostrophic wind velocity,

� ω0 [rad s
−1] is the Earth's angular rotation speed,

� FCoriolis [N] is the Coriolis force,

� fCoriolis [N] is the Coriolis force-per-unit-mass, and

� aCoriolis [ms−2] is the resulting Coriolis acceleration.

On a �at rotating body, the above would su�ce. But, the Earth is a sphere. So, the
Coriolis e�ect depends on the latitude φ. There is no Coriolis force at the equator
(sinφ = 0). Accounting for latitude, the acceleration becomes:

aCoriolis = 2ω0 sinφVGEO = fCoriolis (2.7)

E�ect of pressure gradient and Coriolis force

Geostrophic wind represents the balance between the pressure gradient force and the
Coriolis e�ect.

In a simple case with straight isobars, for example running east�west as shown in Fig-
ure 2.9, the pressure gradient pushes the air northward, while the Coriolis force de�ects
the air southward. The result is that the wind �ows parallel to the isobars, where the
two accelerations are in balance.

16
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Note: the geostrophic wind velocity VGEO is proportional to the pressure gradient but
�ows parallel to the isobars.

In a geostrophic balance, the Coriolis force would exactly balance out the pressure gra-
dient:

−∂p

∂x

1

ρ︸ ︷︷ ︸
pressure gradient

= 2 sinφω0VGEO︸ ︷︷ ︸
Coriolis e�ect

⇔ VGEO =

(
1

2ρω0 sinφ

)(
−∂p

∂x

)
(2.8)

where ρ [kgm−3] is air density and ∂P
∂x

[Pam−1] is the horizontal pressure gradient.

Figure 2.9: Geostrophic wind �ows parallel to isobars: the pressure gradient force (to-
wards low pressure) is balanced by the Coriolis e�ect (opposite direction).

Weather maps often show isobars - lines of constant pressure. The concept of geostrophic
wind explains why, in many real cases, the wind direction follows the isobars instead of
cutting straight across them (Figure 2.10).

Figure 2.10: Weather maps depict isobars; geostrophic wind tends to �ow parallel to
these lines.

2.3.3 Centrifugal acceleration

Geostrophic wind considers the pressure gradient and the Coriolis force. However, when
the isobars are curved � which is almost always the case � there is a third e�ect that

17
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in�uences the wind: the centrifugal force, which arises whenever an object travels along
a circular path.

A re�nement of the geostrophic wind VGEO is called the gradient wind, denoted VG.
Figure 2.11 illustrates a situation where there is a circular isobar and the wind is traveling
along the isobar.

Figure 2.11: The gradient wind: wind �owing along curved isobars experiences centrifugal
acceleration in addition to Coriolis and pressure-gradient forces.

Any rotating motion - with an angular speed ω [rad s−1] at a radial distance R [m] from
the center of rotation - has a centripetal acceleration a [ms−2]. Since the angular speed
ω could also be written in terms of the tangential speed v = ωR [ms−1], we can write
the centripetal acceleration a in di�erent ways:

actrpl = ω2R =
v2

R
= ωv

And, since this acceleration represents the actual path of the rotating object, we know
that the resultant (net) force acting on the object must be:

Fctrpl = mactrpl(−r̂), (2.9)

where m [kg] is the mass of the object, and (−r̂) is a vector pointing radially inwards
towards the center of rotation. If we're talking in a speci�c sense, then the resultant (net)
force per unit mass fctrpl [ms−2] of the rotating object must be:

fctrpl =
Fctrpl

m
= actrpl(−r̂) =

v2

R
(−r̂). (2.10)

Now, we saw in the previous section a geostrophic wind (from the previous section) that
is moving along an isobar when the pressure gradient is horizontal. But, on a globe,
we're very likely to have curved isobars, circling around regions of high pressure, and also
around regions of low pressure. Either type of pressure (with corresponding direction of
rotation), the basic fact of saying that an air masses is 'circling around' something, implies
that the resultant (net) force acting on the air mass must match the centripetal force given
in (2.10). And this means that the sum of the pressure gradient and the Coriolis force
acting on our air-mass must be equal (in the vector sense) to our centripetal force.

So, the de�ning characteristic of the gradient wind VG [ms−1] is that:

fctrpl = fp + fCoriolis. (2.11)
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High Pressure

(Northern Hemisphere)

Low Pressure

pressure gradient fp = cp

Coriolis force fCoriolis = cCoriolisv

centripetal force fctrpl = cctrplv
2

Figure 2.12: The force balance acting on the �uid elements in a gradient wind must lead
to a resultant (net) force acting radially inwards. (The shown vectors are not-to-scale.)

The centripetal force is proportional to V 2
G:

fctrpl ∝ V 2
G, fctrpl = cctrplV

2
G with cctrpl =

1

R
. (2.12)

The speci�c Coriolis force (2.5) happens to be proportional to the velocity VG:

fCoriolis ∝ VG, fCoriolis = cCoriolis with cCoriolis = 2 sinφω0. (2.13)

The pressure gradient is a constant:

fp = cp with cp =
∂p

∂x

1

ρ
, (2.14)

where we've dropped the negative sign in order to make determining the direction of the
force easier.

Let's consider what this looks like in the northern hemisphere, in Fig. 2.12. Here,
we've imagined a high pressure and a low pressure center in some line. In the northern
hemisphere, the Coriolis force pushes the �ow around these centers in the clockwise and
anticlockwise directions, respectively. As we've already mentioned, the Coriolis force
pushes the air mass to the right (in the northern hemisphere) of it's path, the pressure
gradient pushes the air mass from high pressure to low pressure, and the resultant (net)
centripetal force must be radially towards the center-of-pressure.

So, let's treat these two centers in order.

Low pressure center Around the low pressure center, (2.11) becomes:

fctrpl = fp − fCoriolis ⇒ cctrplV
2
G + cCoriolisVG − cp = 0. (2.15)

By the quadratic formula, this means that:

VG =
−cCoriolis ±

√
c2Coriolis + 4cctrplcp
2cctrpl

(2.16)
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When both terms are the same sign, the �nal velocity ends up negative. So, we will
choose the '+' option:

VG =
−cCoriolis +

√
c2Coriolis + 4cctrplcp
2cctrpl

= R

√
∂p

∂x

1

ρR
+ ω2

0 sin
2(φ)−Rω0 sin(φ) (2.17)

High pressure center Around the high pressure center, (2.11) becomes:

fctrpl = fCoriolis − fp ⇒ cctrplV
2
G − cCoriolisVG + cp = 0. (2.18)

By the quadratic formula, this means that:

VG =
cCoriolis ±

√
c2Coriolis − 4cctrplcp
2cctrpl

(2.19)

If both signs are positive, the speeds found are far too large. So, we'll chose the '-'
option:

VG =
cCoriolis −

√
c2Coriolis − 4cctrplcp
2cctrpl

= −R

√
−∂p

∂x

1

ρR
+ ω2

0 sin
2(φ) +Rω0 sin(φ). (2.20)

Combined It turns out, that if we de�ne a sign s, which takes values depending on
whether it's a high-pressure or low-pressure center being rotated,

s =

{
+1 if high pressure

−1 if low pressure,
(2.21)

then we have a de�ning equation:

sfctrpl = fp − fCoriolis ⇒ scctrplV
2
G + cCoriolisVG − cp = 0. (2.22)

Then we can combine (2.17) and (2.20) into one expression:

VG =
−cCoriolis +

√
c2Coriolis + 4cctrplcps

2cctrpls
(2.23)

= s

(
R

√
∂p

∂x

s

ρR
+ ω2

0 sin
2(φ)−Rω0 sin(φ)

)
.

Example Let's follow2 an example.

Suppose the pressure gradient ∂p
∂x

is:

∂p

∂x
=

∆p

∆x
=

1 · 103Nm−2

1 · 106m
= 1 · 10−3Nm−3, (2.24)

2from Fovell, Robert. 'Some gradient wind examples' in 'ATM 210: Atmospheric Structure, Ther-
modynamics, and Circulation' (Fall, 2023). State Uni. of New York at Albany. https://www.atmos.

albany.edu/facstaff/rfovell/ATM210/ATM210_gradient_wind.pdf.
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Figure 2.13: Whether the geostrophic wind or the gradient wind is faster, depends on
the radius of curvature and the direction of the �ow. Figure from: Kendall, G. R., "A
Slide Rule for Computing Gradient Winds". Bulletin American Meteorological Society.
Vol 26. Jan, 1945.

and the air density is 1kgm−3 so that the pressure coe�cient cp = 1 · 10−3Nkg−1. Also,
at 43 deg. North, the Coriolis proportionality factor cCoriolis ≈ 1 · 10−4Hz.

Then, a �uid element rotating about a low pressure center s = +1 at a radius of R =
1 · 106m, will have a centripetal-force proportionality factor cctrpl = 1 · 10−6m−1. This
gives a gradient wind of:

VG =
−cCoriolis +

√
c2Coriolis + 4cctrplcps

2cctrpls
(2.25)

=
−10−4 +

√
(10−4)2 + (4)(10−6)(10−3)(+1)

2(10−6)(+1)

= −50 + 5 · 105
√

10−8 + 4(10−9)

= −50 + 5 · 105
√
1.4 · 10−8

= −50 + 5 · 105(1.1832 · 10−4)

= 9.1608m s−1

And, what happens if it's a high-pressure center? Then, the only thing we have to do, is
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to switch the sign of s = −1.

VG =
−cCoriolis +

√
c2Coriolis + 4cctrplcps

2cctrpls
(2.26)

=
−10−4 +

√
(10−4)2 + (4)(10−6)(10−3)(−1)

2(10−6)(−1)

= 50− 5 · 105
√

10−8 − 4(10−9)

= 50− 5 · 105
√
6 · 10−9

= 50− 5 · 105(7.7459 · 10−5)

= 11.2702m s−1

(2.27)

(The other ± alternatives give, respectively, -109ms−1 and 88ms−1, which seem de�ni-
tively implausible.)

We could, in this example, �gure out what the geostrophic wind VGEO [ms−1] would
be, by setting the radius to in�nity (R = ∞), or the centripetal coe�cient to zero
(cctrpl = 0):

cCoriolisVGEO − cp = 0, ⇒ VGEO =
cp

cCoriolis

=
∂p

∂x

cscϕ

2ρω0

= 10m s−1 (2.28)

Since R = ∞ is the case when the geostrophic wind and the gradient wind are the
same, the example demonstrates the following trend: when the �ows rotate anticlockwise
(low pressure in the northern hemisphere, high pressure in the southern hemisphere, also
labelled as 'cyclonic') the geostrophic wind VGEO > VG. The opposite is true for �ows
rotating clockwise!

Assessing the importance of centrifugal force. To evaluate when the centrifugal

term matters, we compare the Coriolis term 2 sinφω0 VG with the centrifugal term
V 2
G

R

by computing their ratio:

Coriolis

Centrifugal
=

2ω0 sinφR

VG

.

For typical values:

φ = 50◦ ⇒ sinφ ≈ 0.75, VG ≈ 50 km/h, R ≈ 500 km,

the ratio becomes:

Coriolis

Centrifugal
≈ 2× 0.75× 2π × 500 km

24× 50 km
≈ 4.

Thus, in this scenario, the centrifugal term contributes about one-quarter of the Coriolis
force. Under strong circular wind conditions, this contribution is signi�cant and cannot
be neglected.
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2.3.4 Friction

Figure 2.14: In the Atmospheric Boundary Layer (ABL), friction slows down the wind.
At the Earth's surface, wind speed goes to zero.

Figure 2.15: The logarithmic wind pro�le in the ABL: wind speed increases with height
according to surface roughness.

Friction is complex and depends on the surface properties of the Earth, but it generally
slows down the air � and this e�ect is con�ned to the Atmospheric Boundary Layer
(ABL)3. This slowing of air also reduces the Coriolis and centrifugal forces. As a result,
very low-altitude winds tend to align more directly with the direction of the pressure
gradient. At the Earth's surface, the wind speed drops to zero (Figure 2.12).

The change in wind speed with altitude is called wind shear. A common way to describe
the long-term, time-averaged wind shear is with a logarithmic pro�le (Figure 2.13):

3The Atmospheric Boundary Layer (ABL) is the thin part of the atmosphere closest to the ground
where friction e�ects are signi�cant.
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V (z) = V0

log
(

Z
Zr

)
log
(

Z0

Zr

) (2.29)

where:

� V (z) [ms−1] is the wind speed at height z,

� V0 [ms−1] is the wind speed at reference height Z0,

� Zr [m] is the �roughness length� (a few millimeters for �at ground).

2.4 Stable and unstable atmospheric strati�cation

Figure 2.16: Stable and unstable atmospheric strati�cation: how the temperature gradi-
ent a�ects rising air.

A hot parcel of air becomes lighter than the surrounding air and begins to rise. However,
as this air rises, it expands due to lower pressure and therefore cools. This cooling follows
the dry adiabatic lapse rate, which is about 1◦C per 100 m � meaning that rising air
cools by roughly 1◦C for every 100 m it rises in altitude due to its own expansion.

If the surrounding (ambient) air cools more slowly than 1◦C per 100 m, the atmosphere is
considered stable: the rising air will become cooler than its surroundings and stop rising.
If the ambient air cools faster than 1◦C per 100 m, the atmosphere is considered unstable:
the rising air remains warmer than its surroundings and continues to rise.

The standard atmospheric lapse rate is about 0.66◦C per 100 m, which corresponds
to a generally stable strati�cation. Even more stable is an inversion, where the air
actually becomes hotter with height.

Generally, the wind shear is stronger under stable conditions. "Stronger" means a larger
change in wind speed over a change in altitude, often with a thinner Atmospheric Bound-
ary Layer (ABL). Under stable conditions, there is less mixing between air layers. There-
fore, for a given high-altitude wind speed, there is less momentum transferred downward
within the �ow than under neutral conditions (i.e. when the atmospheric lapse rate equals
the dry adiabatic lapse rate).
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"Normal" or
dist. Gaussian Weibull Rayleigh

accepts U ∈ R U ∈ [0,∞) U ∈ [0,∞)

1st param mean Ū [ms−1] scale λ [ms−1] scale s [ms−1]

2nd param variance σu [ms−1] shape k [-] �

f(U) 1√
2πσ2

u

e

(
− (U−Ū)2

2σ2
u

)
k
λ

(
U
λ

)k−1
e

(
−(U

λ )
k
)

U
s2
e

(
− U2

2s2

)

F (U) 1
2

(
1 + erf

(
U−Ū
σu

√
2

))
1− e(−(U/λ)k−1) 1− e

(
− U2

2s2

)
mean Ū λΓ

(
1 + 1

k

)
s
√

π
2

variance σ2
u λ2

(
Γ
(
1 + 2

k

)
−
(
Γ
(
1 + 1

k

))2) 4−π
2
s2

notes typically used to
describe measure-
ment errors and
gusts

typically used to model long-
term averaged wind speeds at
sites

a special case of
Weibull distribution,
with k = 2 and
λ = s

√
2. It corre-

sponds to the PDF of
the vector magnitude
of a two-dimensional
Gaussian distribution

Table 2.1: Typical distributions for wind data, where erf() is the error function and
Γ(x) =

∫∞
0

e−ttx−1dt is the Gamma function. Some useful values are Γ(n) = (n − 1)!,
Γ(1) = 1, Γ(2) = 1, etc.

2.5 Statistics of wind

At any given site, wind speed and direction vary with time. If we consider only the
wind speed, we can plot time series data similar to Figure 2.15. From such data, we can
compute quantities like the mean wind speed Ū and the variance σ2

u using hourly averages
over a year.

From the same data we can construct a histogram (see Figure 2.17a), which shows how
often each wind speed occurs. Di�erent statistical distributions can be used to describe
f(U), the probability density function (PDF) of wind speeds. Closely related is its
integral, F (U), the cumulative distribution function (CDF).

The PDF satis�es the normalization condition:

∫ ∞

0

f(U) dU = 1 (2.30)

The CDF is de�ned as:

F (U) =

∫ U

0

f(U) dU, (2.31)

meaning that the PDF can also be obtained as the derivative of the CDF:

f(U) =
d

dU
F (U). (2.32)
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(a) Hourly average wind speeds over one year.

0 5 10 15 20 25
u0.00

0.02

0.04

0.06

0.08

p

(b) Histogram of wind speeds over all time.
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(c) Example of a Gaussian (Normal) probabil-

ity density function (PDF) for wind speeds.
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(d) Example of a Weibull probability density

function (PDF) for wind speeds.
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(e) Example of a Rayleigh probability density

function (PDF), which is a special case of the

Weibull distribution.

Figure 2.17: The wind measurements taken over a long period of time can be plotted in a
histogram, and the occurance vs wind speeds can be used to �t a probability distribution
function.
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The mean wind speed Ū and the variance σ2
u of the probability density function f(U) are

de�ned as:

Ū =

∫ ∞

0

U f(U) dU (2.33)

σ2
u =

∫ ∞

0

(U − Ū)2 f(U) dU (2.34)

=

(∫ ∞

0

U2 fU dU

)
− Ū2. (2.35)

There are a couple of types of distributions that are typically used to describe wind
speeds:

� the Gaussian distribution;

� the Weibull distribution; and

� the Rayleigh distribution.

The most important information about these distributions is included in Table 2.1.

2.5.1 How to determine 'What is the average power per year?'
from a wind speed probability density function

Question: What is the average power output of a wind turbine over a year?

To determine this, we combine two pieces of information:

� The power curve of the turbine, P (U), which shows how much power the turbine
produces at each wind speed U .

� The wind speed PDF, f(U), which shows how often each wind speed occurs at
the site.

Answer:

The average power output P̄ [W] over a year is obtained by integrating the turbine's
power curve weighted by the wind speed probability density function:

P̄ =

∫ ∞

0

P (U)f(U) dU (2.36)

In other words, the contribution of each wind speed to the annual energy production is its
occurrence probability multiplied by the power the turbine generates at that speed. Sum-
ming (integrating) these contributions across all wind speeds yields the annual average
power.

2.6 Spectral properties of wind

2.6.1 Power Spectral Density

When a Fourier series is taken of wind speed data, the power spectral density S(f)
is obtained. The power spectral density describes how the variance of wind speed is

27



Lecture Notes Wind Energy Systems

Figure 2.18: Combining a turbine power curve with the site's wind speed distribution
allows calculation of the average annual power output.

distributed across di�erent frequencies.

Turbulence is most relevant at time scales shorter than about 10 minutes. The turbu-
lence intensity in a 10-minute window is de�ned as:

I =
σu

U
,

where U is the 10-minute mean wind speed [ms−1] and σu is the standard deviation of
the wind speed (e.g., computed from 1-second samples).

For a dataset of N samples Ui, the mean and variance are computed as:

U =
1

N

N∑
i=1

Ui (2.37)

σ2
u =

1

N − 1

N∑
i=1

(Ui − U)2 (2.38)
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Figure 2.19: Autocorrelation and spectral analysis concepts for wind data.

Figure 2.20: Example of a wind speed power spectral density S(f) from a Fourier trans-
form.

2.6.2 Autocorrelation

Another important quantity is the autocorrelation function r(t), which helps charac-
terize repeating patterns, such as periodic wind �uctuations.

For discrete time steps, the autocorrelation at lag time t = k∆t is computed as:

r(k∆t) =
1

σ2
u(N − k)

N−k∑
i=1

(Ui − U)(Ui+k − U), (2.39)

where:

� ∆t is the sampling time,

� k is the lag number,

� k∆t is the lag time.

Between these discrete lag values, r(t) can be interpolated to provide a continuous auto-
correlation function for all t > 0.

Figure 2.22 shows a typical autocorrelation function: wind speeds are strongly autocor-
related at very short lag times and progressively less correlated at longer lag times. This
is expected because wind conditions one second ago strongly in�uence the current wind,
while wind from a day ago has very little impact.
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Figure 2.21: Typical autocorrelation function for wind speed: high autocorrelation at
short lags, decaying at longer lags.

An important quantity derived from r(t) is the integral time scale T , de�ned as:

T =

∫ ∞

0

r(t) dt. (2.40)

Related to it is the integral length scale L, which links turbulence to a physical
length:

L = U · T ≈ size of turbulent eddies or interruptions.

Note: The Fourier transform of the autocorrelation function equals (up to scaling factors)
the power spectral density (PSD).
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Chapter 3

Aerodynamics of Wind Turbines

3.1 Wakes

Like a boat passing through water and leaving a wake, a wind turbine also disturbs
the �ow of air blowing across it. The air downstream of the rotor is slower and more
turbulent, forming what is called the wake.

Figure 3.1: Photo of wakes forming behind turbines in a wind park. Source: Vattenfall.

The wake expands and mixes with surrounding air as it moves downstream. This phe-
nomenon is crucial for wind farm planning, because turbines positioned downstream in
another turbine's wake will experience reduced wind speed and increased turbulence,
leading to lower power production and higher mechanical stresses.

In this chapter we're going to meet two non-dimensional values (the axial induction factor
a [-] and the tangential induction factor a′ [-]) that describe the change in the �ow �eld.
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These values are functions of the radial position at which they're located, and we care
about them for three reasons:

1. The turbine harvests power, conceptually, by pulling kinetic energy out of the wind,
with a describing the amount removed. More practically, the turbine harvests power
by transmitting the aerodynamic torque applied by the �ow to the blades (which
depends on a′) down a shaft into a generator. So, without understanding how
these processes work, we won't be able to determine how much power the system
produces.

2. We will later (see Chapter 4) talk about some of the structural aspects of wind
turbine design. But, that process will need an as-yet-unknown load-distribution
along the beam-like elements of the turbine, including along the length of the blades.
But, to �nd that load-distribution, we need to know what the �ow is at radial-
position along the blades (a and a′) and what the corresponding forces are.

3. Not all of the blade-shape is determined by stuctural reasons, some of it is deter-
mined by aerodynamic arguments. It turns out, that some of the work we do to
address the previous questions, will give us insight into these aerodynamic consid-
erations.

3.2 Actuator Disc Model and Betz' Limit (Momentum

Theory)

The wind slows down as it approaches the turbine, at the turbine rotor itself, and even
further downstream. Figure 3.2 shows a side view of a wind turbine and the surrounding
�ow �eld. A stream tube is de�ned as a tube whose boundaries are parallel to the local
�uid velocity.

Figure 3.2: Side view of a wind turbine and its stream tube. Position 0 is in�nitely far
upstream of position 1; position 3 is in�nitely far downstream of position 2.

First guess (not achievable): The power in the air that would �ow through the
actuator disc area if the turbine were not there would be:
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Pair =
1

2
ρAu3

0,

where Pair is the theoretical power of the undisturbed wind, ρ is the air density [kg/m3]
(which we will assume is constant), A is the area of the actuator disc [m2], and u0 is the
undisturbed upstream wind speed [m/s].

Figure 3.3: Axial wind velocity slows down as it approaches the turbine and is slowed
further as it passes through the rotor disk.

We de�ne four positions along the wind direction x and the corresponding wind speeds
u(x):

� x0: far upwind of the turbine (u(x0) = u0),

� x1: just before the turbine (u(x1) = u1),

� x2: just after the turbine (u(x2) = u2),

� x3: very far downstream of the turbine (u(x3) = u3).

Note: We assume the stream tube does not interact with surrounding air outside of the
tube, but that - still somehow - the pressure within the �ow recovers to its freestream
value in�nitely far downstream of the actuator at x3. That is: p3 = p0.

The in�ow through the actuator disc equals the out�ow, and the cross-sectional area of
the stream tube at the rotor plane equals the rotor area A. Then, the mass �ow through
the turbine can be determined:

ṁ1 = ρAu1, ṁ2 = ρAu2 (3.1)

Since the density and the area are the same, conservation of mass (ṁ = ṁ1 = ṁ2) means
that the speed has to be continuous across the rotor:

u1 = u2.

Thrust of the turbine

The thrust can be expressed in two equivalent ways. Either, from the pressure drop
across the disc:

T = A(p1 − p2) (3.2)

or from the change of momentum:

T = ṁ(u0 − u3) (3.3)

Notice that the pressure has to drop over the actuator (as opposed to rise), because
energy is being pulled out of the �ow.
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Figure 3.4: Pressure builds up as the wind approaches the wind turbine, and drops after
passing through the turbine.

Power extraction

Similiarly, we can �nd two ways to express the instantaneous power. First, from the
thrust:

P = Tu1 (3.4)

or from the change of kinetic energy of the air:

P = ṁ
1

2

(
u2
0 − u2

3

)
(3.5)

Governing equations

Remember, that we have u1 = u2 and p3 = p0 and 'known' values u0 and p0. The things
we don't know are: u1, p1, and p2.

Luckily, we can assemble a number of relationships from above.

From (3.2) and (3.3), we have a thrust equation:

T = A(p1 − p2) = ṁ(u0 − u3). (3.6)

By a similar token as (3.6), we can relate (3.4) and (3.5) to give a power equation:

P = Tu1 = ṁ(u0 − u3)u1 = ṁ
1

2

(
u2
0 − u2

3

)
. (3.7)

Bernoulli's principle (valid in regions where no energy is extracted, where the �ow is adi-
abatic, inviscid, incompressible, and with a negligible altitude di�erence) says that:

p(x) +
1

2
ρu(x)2 = constant.

If we apply Bernoulli before the actuator, we get:

p0 +
1

2
ρu2

0 = p1 +
1

2
ρu2

1 (3.8)

and, after the actuator:

p3 +
1

2
ρu2

3 = p2 +
1

2
ρu2

2. (3.9)
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Average speed

I propose to you that the �ow crossing the annulus has a speed u1 exactly average of the
far-upstream and far-downstream speeds u0 and u3.

We have two di�erent ways to demonstrate this.

First, from (3.7), we could notice that:

ṁ(u0 − u3)u1 = ṁ
1

2

(
u2
0 − u2

3

)
⇒ (u0 − u3)u1 =

1

2
(u0 − u3)(u0 + u3) (3.10)

⇒ u1 =
1

2
(u0 + u3).

Alternatively, we can subtracting the Bernoulli pressure equations from each other, and
substitute in the known pressure and speed relations (p3 = p0, u1 = u2):

p0 +
1

2
ρu2

0 − p3 −
1

2
ρu2

3 = p1 +
1

2
ρu2

1 − p2 −
1

2
ρu2

2 (3.11)

1

2
ρ(u2

0 − u2
3) = p1 − p2

Applying this pressure di�erence into the thrust equation (3.6)

A
1

2
ρ(u2

0 − u2
3) = ṁ(u0 − u3) ⇒ Aρ

1

2
(u0 + u3)(u0 − u3) = ṁ(u0 − u3) (3.12)

⇒ Aρ
1

2
(u0 + u3) = ṁ = ρAu1 ⇒ u1 =

1

2
(u0 + u3).

Whichever derivation we like, we can further de�ne a helpful value a [-], the axial induction
factor, as the nondimesional, axial-direction speed loss at the annulus:

u1 = (1− a)u0 ⇔ a =
u0 − u1

u0

, (3.13)

and use this induction factor a to help us say something about the far downstream speed
u3. Then, starting with the u1 = (u0 + u3)/2 relation:

(1− a)u0 =
1

2
(u0 + u3) ⇒ u3 = (1− 2a)u0. (3.14)

Which means that, as we step from position 0 to position 1 to position 3, we're each time
losing the same amount of �ow speed.

Power and thrust as a function of the induction factor a

Let's recall that that power which was (not-acheivably) o�ered by the wind was (1/2)ρAu3
0.

Now, if we return to the power relationship of (3.4):

P = ṁ(u0 − u3)u1 (3.15)

= ρAu2
1(u0 − u3)

= ρA(1− a)2u2
0(u0 − (1− 2a)u0)

= ρAu3
0(1− a)2(2a),
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Figure 3.5: Velocities de�ned for the actuator disc: upstream u0, at the disk u1, and far
downstream u3. The axial induction factor a relates them.

and divide this value by the amount of power which was (not-achievably) in the wind,
we get a non-dimensional power coe�cient CP [-].

That is:

CP (a) =
P

1
2
ρAu3

0

=
ρAu3

0(1− a)2(2a)
1
2
ρAu3

0

= 4a(1− a)2. (3.16)

So, we can describe how much power can be harvested, proportionally, from the wind
with this power coe�cient. This means that we can compare between di�erent systems,
designs, operating modes, etc. with this nondimensional power coe�cient CP .

P = CP

(
1

2
ρAu3

0

)
= 4a(1− a)2

(
1

2
ρAu3

0

)
. (3.17)

We can do a similar thing with the thrust -

T = ṁ(u0 − u3) (3.18)

= ρAu1(u0 − u3)

= ρAu0(1− a)(u0 − u0(1− 2a))

= ρAu2
0(1− a)(1− 1 + 2a)

= ρAu2
02a(1− a)

- dividing the thrust we can actually achieve considering our induction factor by the
product of the dynamic pressure at the actuator and the area of the actuator, to create
a thrust coe�cient CT [-] that we can compare.

CT (a) =
T

1
2
ρu2

0A
=

ρAu2
02a(1− a)
1
2
ρu2

0A
= 4a(1− a). (3.19)

Where telling someone a system's thrust coe�cient e�ectively tells them what the in-
stantaneous thrust is, under the environmental conditions.

T = CT

(
1

2
ρu2

0A

)
= 4a(1− a)

(
1

2
ρu2

0A

)
(3.20)

You can see that the two nondimensional coe�cients are related:

CP (a) = (1− a)CT (a). (3.21)

which happens to be consistent with the relationship we'd expect from Eq. (3.4).
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Maximize power extraction

The goal is to �nd the value of the axial induction factor a that maximizes the power
coe�cient CP (a).

Figure 3.6: Power coe�cient CP as a function of induction factor a. The maximum occurs
at the Betz limit.

We di�erentiate the power coe�cient:

dCP

da
= 2(1− a) · 4a+ (1− a)2 · 4.

Setting the derivative to zero:

dCP

da
= 0 ⇔ 2a = 1− a ⇒ a∗ =

1

3
.

This value a∗ = 1
3
is the optimal induction factor.

Substituting a∗ into CP (a):

CP (a
∗) =

(
2

3

)2

· 4 · 1
3
=

16

27
≈ 0.59.

This upper limit is known as the Betz limit � meaning that, at most, about 59% of
the kinetic energy in the wind can be extracted by an ideal wind turbine.

Because CT (a) = 4a(1−a), the thrust coe�cient at the optimal induction factor is:

CT (a
∗) = 4 · 1

3

(
1− 1

3

)
=

8

9
.

For comparison, if we substitute a = 1
2
into CT (a) we get:

CT

(
1

2

)
= 4 · 1

2

(
1− 1

2

)
= 1.
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Figure 3.7: The Betz limit: theoretical maximum e�ciency for an ideal wind turbine.

3.3 Wake Rotation & Rotor Disc Theory

Remember our approach in the previous section: we found the power-due-to-thrust and
set this equal to the power-due-to-changing-the-�ow's-momentum. We can do this in the
tangential direction as well as in the axial direction.

Figure 3.8: Blade tip speed and speed at radius r for a rotor spinning with angular
velocity Ω.

That is, we don't just know the power from (3.17), we also know that the power should
be the rate of change of angular momentum (ṁ(L2 − L0)) times the angular speed Ω
[rad s−1]. Here L is the angular momentum [kgm2 s−1] of the �ow.

Now, far upstream of the turbine, the angular velocity ω0 has to be whatever the angular
velocity would have been if the turbine'd never been built or turned on. So:

ω0 = 0. (3.22)

When we determine how much angular velocity the actuator adds (ω2−ω0 = ω2), we will
decide that this angular velocity will be added half on the upstream-side of the actuator at
position 1 and the other half on the downstream-side of the actuator at position 2:

ω2 = 2ω1. (3.23)
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After this, the inviscid (friction-less �ow) model assumes that the angular momentum
stays constant in the �ow forever. So:

ω3 = ω2 (3.24)

This is sketched in Figures 3.9 and 3.10, as well as philosophically motivated in Figure
??.

Figure 3.9: Tangential velocity induction: downstream air rotates opposite to the blade's
direction of rotation.

get the first half of the 
angular momentum on the
front side of the actuator

collect the second half of the angular momentum 
on the back side of the actuator

no angular momentum
far upstream of 
the actuator

...after that, nothing changes!

Figure 3.10: The actuator adds angular momentum to the �ow: half of the ultimate value
at the upstream side of the actuator and the other half immediately afterwards, at the
downstream side. After this, the inviscid model assumes that the angular momentum
stays inde�nitely.

Either way, if we de�ne some helpful tangential induction factor a′ as the change in
�ow speed in the indicated direction divided by the main velocity in that direction, this
gives:

a′ =
ω1

Ω
=

ω2

2Ω
⇔ ω2 = 2a′Ω (3.25)
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Here, Ω = 2π
T

is the angular velocity of the rotor [rad/s], where T is the period of one
rotation.

Now, let's consider just one thin annular slice of the actuator disk (an actuator annulus),
at radius r from the center of the disk. If the annulus has a thickness dr, then the area
of the annulus is dA = 2πrdr. (You'll notice that integrating

∫ R

0
2πrdr = πR2.)

The torque applied by the annulus to the �ow must be equal to the change in angular
momentum.

(Remember, also, that the moment of inertia I [kgm2] of a thin circular loop of radius r
and mass m is I = mr2.)

So, since the �uid didn't have any angular momentum before position 1, the torque on
the in�nitessimal annulus must be:

dQ(r) = dṁr2ω2 = ρu1(dA)r
2ω2. (3.26)

Substitute in u1 = (1− a)u0 and ω2 = 2a′Ω:

dQ(r) = ρ(1− a)u0(2a
′Ω)r2(dA) (3.27)

And since power is torque times angular speed, the power harvested by our thin actuator
annulus is:

dP (r) = ΩdQ = 2a′(1− a)ρu0Ω
2r2dA. (3.28)

But, remember, we already know how much power our system is supposed to be harvest-
ing: we found it in (3.17). Recall:

dP = 2a(1− a)2ρu3
0dA. (3.29)

So, in rotor disk theory, we're going to set these two estimates of the power are equal.

2a′(1− a)ρu0Ω
2r2dA = 2a(1− a)2ρu3

0dA (3.30)

a′Ω2r2 = a(1− a)u2
0

a′ = a(1− a)
( u0

Ωr

)2
But wait... Haven't we seen this ratio Ωr/u0 somewhere before?

Yes, this is the local tip speed ratio λr = Ωr/u0 [-] that we used in (1.9)!

a′ = a(1− a)λ−2
r ⇔ a(1− a) = a′λ2

r. (3.31)

And returning to our de�nition of the tangential induction factor (3.25)

ω2(r) = 2a(1− a)
u2
0

Ωr2
, (3.32)

which means that if the axial induction factor stays (roughly) similar at all radial po-
sitions, then our wake's angular velocity is proprtional to 1/r2. Considering that the
radius can become quite small near the hub, this means that the wake should be rotated
substantially more near the hub than near the blade tips.
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3.4 Blade Element Momentum Theory (BEM)

Figure 3.11: Rotor divided into annular elements for blade element momentum theory.

The blade element momentum (BEM) theory combines actuator disc momentum theory
with two-dimensional airfoil aerodynamics to predict turbine performance.

Figure 3.12: Each annulus of the rotor is treated like a small actuator disk.

Geometry and Speeds

Before anything else, we should remind outselves that the axial and tangential induction
both vary with radius:

a = a(r), a′ = a′(r).

At a given element, we de�ne:

� β(r): the pitch angle at radius r,

� α: the angle of attack,

� ϕ = α + β: the �ow angle.

The e�ective wind speed at the element is:

W = u∞
√
(1− a)2 + λ2

r(1 + a′)2, (3.33)

where λr =
rΩ
u∞

is the local speed ratio.

Element Forces

The area of a thin slice of a blade dAB [m2] is:

dAB = c(r)dr, (3.34)
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Figure 3.13: Blade element geometry: annular section at radius r.

Figure 3.14: Blade element top view showing pitch angle β, angle of attack α, and �ow
angle ϕ.

where c is the pro�le's chord-length [m].

This thin slice is e�ectively a 2D airfoil sliced out of a much-longer wing. That means
that we have lift and drag force contributions dL [Nm−1] and dD [Nm−1], as well as the
nondimensional 2D lift and drag coe�cients cℓ(α) and cd(α).

dL = cℓ
1

2
ρW 2dAB, dD = cd

1

2
ρW 2dAB. (3.35)

The directions that these force components are oriented depend on the local �ow angle
ϕ(r):

sinϕ =
(1− a)u∞

W
, cosϕ =

rΩ(1 + a′)

W
. (3.36)

This gives an angle of attack α [rad]:

α = ϕ− β, (3.37)
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Figure 3.15: Lift and drag on a blade element.

with the blade pitch angle β [rad].

We can resolve the forces into axial and tangential components over all blades: an axial
force dFA [Nm−1]:

dFA = B(dL cosϕ+ dD sinϕ). (3.38)

and a tangential force:
dFT = B(dL sinϕ− dD cosϕ). (3.39)

Momentum Balance

The same axial and tangential forces can be written from momentum theory.

Figure 3.16: The axial and tangential force, imposed by the annulus.

Recall that we said in (3.3), that the thrust is the product of the mass �ow rate and the
di�erence in speed between the far downstream and the far upstream. Remember, also,
that we'd determined in the Betz analysis (3.14) that the far-downstream �ow speed is
(1− 2a)u∞. That means:

dFA = dṁu∞(1− (1− 2a)) = dṁu∞(2a) (3.40)

= ρ (2πrdr)u∞(1− a)(2au∞)

=
1

2
ρu2

∞ (2πrdr) (4a(1− a)).

The tangential force is exactly the same, it just depends on the tangential speed after the
actuator disk (which we'd previously called ω2r) and relies on the fact that the upstream
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tangential speed is zero. Refering back to (3.25), we have:

dFT = dṁ(2a′Ωr) (3.41)

= ρ (2πrdr)u∞(1− a)(2a′Ωr)

=
1

2
ρu∞(rΩ) (2πrdr) (4a′(1− a))

If we now set the two axial force equations (3.38) and (3.40) equal, and then set the
two tangential force equations (3.39) and (3.41) equal, we obtain two equations for the
unknowns (a and a′), which have to be solved numerically.

Setting the force from the blades' perspective equal to the force from the
annulus' perspective

From Eq. 3.38 and Eq. 3.40:

1

2
ρW 2Bc(cℓ cosϕ+ cd sinϕ)dr =

1

2
ρu2

∞(2πrdr)(4a(1− a)) (3.42)

From Eq. 3.39 and Eq. 3.41:

1

2
ρW 2Bc(cℓ sinϕ− cd cosϕ)dr =

1

2
ρu∞rΩ(2πrdr)(4a′(1− a)) (3.43)

Using nondimensional parameters to simplify

We're already met the local speed ratio λr. The other nondimensional parameter that
might end up being useful here is the local 'solidity' a radius r. This is de�ned as:

σr =
Bc(r)

2πr
, (3.44)

which means that as we follow the circumpherence of an annulus, we compare the 'amount
of blade' we 'walk over' to the total path length. Here:

� B [-] is the number of blades,

� c(r) [m] is the chord length at radius r [m].

The overall rotor solidity is the total blade planform area divided by the rotor disc
area:

σ =
B
∫ R

0
c(r)dr

πR2
. (3.45)

So, returning to (3.42) and (3.43), we can substitute in this local solidity σr = Bc
2πr

and
express terms using the local speed ratio λr =

rΩ
U∞

.

The e�ective wind speed simpli�es to:

W =
√

U2
∞(1− a)2 + U2

∞λ2
r(1 + a′)2 = U∞

√
(1− a)2 + λ2

r(1 + a′)2 (3.46)
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with:

sinϕ =
u∞(1− a)

W
=

1− a√
(1− a)2 + λ2

r(1 + a′)2
,

cosϕ =
λru∞(1 + a′)

W
=

λr(1 + a′)√
(1− a)2 + λ2

r(1 + a′)2
.

Figure 3.17: Trigonometric relations in the velocity triange.

Starting from (3.42) and plugging in the above non-dimensional parameters gives:

1

2
ρW 2σr(2πr)

(
cℓ

(
λru∞(1 + a′)

W

)
+ cd

(
u∞(1− a)

W

))
dr = (3.47)

1

2
ρu2

∞(2πrdr)(4a(1− a)).

If we divide each side by πrρu2
∞(dr) and simplify, we get:

σr

√
(a− 1)2 + (a′ + 1)2λ2

r(−acd + (a′ + 1)cℓλr + cd) = 4(1− a)a. (3.48)

Doing the same thing from (3.43), gives �rst:

π(dr)rρσru
2
∞

√
(a− 1)2 + (a′ + 1)2λ2

r((1− a)cℓ − (a′ + 1)cdλr) = (3.49)

4π(1− a)a′(dr)λrrρu
2
∞,

which divides and simpli�es to:

1

λr

(
σr

√
(a− 1)2 + (a′ + 1)2λ2

r((1− a)cℓ − (a′ + 1)cdλr)
)
= 4(1− a)a′. (3.50)

Solving via quadratic formula!

Dividing (3.48) by (3.50), gives:

λr ·
clλr(1 + a′) + cd(1− a)

cl(1− a)− cdλr(1 + a′)
=

a

a′
(3.51)

Now, let's multiply both sides by the denominators, move everything to one side of the
equality, and collect the terms:

−a2cℓ + a(cℓ − cdλr)− a′λr ((a
′ + 1) cℓλr + cd) = 0 (3.52)

(a′)2cℓλ
2
r − a′

(
−cdλr − cℓλ

2
r

)
+ a2cℓ − a(cℓ − cdλr) = 0,
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which happens to be the quadratic relationship H2(a
′)2 +H1a

′ +H0 = 0 if

H2 = cℓλ
2
r, H1 = cdλr + cℓλ

2
r, H0 = a2cℓ − a(cℓ − cdλr). (3.53)

This means that:

a′ =
−H1 ±

√
H2

1 − 4H0H2

2H2

(3.54)

=
−cdλr − cℓλ

2
r ±

√
(cdλr + cℓλ2

r)
2 + 4acℓλ2

r((1− a)cℓ − cdλr)

2cℓλ2
r

(and, the ± sign has to be a positive sign to keep the value of a′ reasonable.)

So, we're left with:

a′ =
−cdλr − cℓλ

2
r +

√
(cdλr + cℓλ2

r)
2 + 4acℓλ2

r((1− a)cℓ − cdλr)

2cℓλ2
r

(3.55)

Special case when cd = 0

a′ = −1

2
+

√
1

4
+

a(1− a)

λ2
r

(3.56)

= −1

2
+

1

2

√
1 +

4a(1− a)

λ2
r

(3.57)

= −1

2
+

1

2

[
1 +

1

2

4a(1− a)

λ2
r

+O
(
λ−4
r

)]
(3.58)

=
a(1− a)

λ2
r

+O
(
λ−4
r

)
(3.59)

Recalling that by Taylor series:

√
1 + x = 1 +

1

2
x+O(x2).

So, it turns out that - for vanishing drag coe�cients and small values of λ−4
r , we get the

same result as we found in rotor-disk theory

a′ =
a(1− a)

λ2
r

.

BEM example

Let us now assume a few typical values: λr ∈ [1, 7] and B = 3. For λR = 7, we assume
the induction factor a = 1

3
for all r (extracting maximum power according to Betz'

limit).
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Figure 3.18: Considering one particular slice of the blade...

Assume that the 2D lift and drag coe�cients of each radial airfoil section can be chosen
as:

cl = 1 cd = 0.01

The tangential induction factor a′ is approximated as:

a′ ≈ a(1− a)

λ2
r

Substituting a = 1
3
gives:

a′ ≈
1
3
· 2
3

λ2
r

=
2

9

1

λ2
r

Local solidity σr From Eq. (3.48) we have:

σr =
4a(1− a)

clλr(1 + a′) + cd(1− a)
· 1√

λ2
r(1 + a′)2 + (1− a)2

With a = 1
3
we simplify:

4a(1− a) = 4 · 1
3
· 2
3
=

8

9

Given that cd ≪ cl and a′ ≪ 1 for large λr, we approximate:

cd(1− a) ≈ 0, (1 + a′) ≈ 1
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Thus the local solidity simpli�es to:

σr ≈
8

9

1

λ2
r

Figure 3.19: Relationship between local speed ratio λr and tangential induction factor
a′, showing that a′ decreases rapidly as λr increases.

Figure 3.20: Local solidity σr as a function of λr, demonstrating the 1/λ2
r dependency

derived above.

What does this mean for chord length c? Since we have derived that:

σr =
8

9

1

λ2
r

and we know the de�nition of local solidity:

σr =
B c(r)

2πr

we can solve for the chord length c(r):

c(r) =
2πr

B
σr

Substituting σr =
8
9

1
λ2
r
:

c(r) =
2πr

B
· 8
9

1

λ2
r
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Recall that the local tip speed ratio is:

λr =
r

R
λR

where µ = r
R
is the nondimensional radius fraction. Substituting λr = µλR:

c(r) =
2πr

B
· 8
9

1

(µλR)2

Simplify:

c(r) =
2πR

B λ2
R

· 8
9
· 1
µ

This shows that the chord length is inversely proportional to µ (the radial fraction).

We substitute λR = 7 and simplify further. Using 8
9

1
λ2
R
≈ 2%:

c(r) ≈ 2πR

B
· 2% · 1

µ
≈ 4%R

µ

This shows that the chord length is roughly 4% of the radius divided by the nondimen-
sional radius µ.

In our speci�c example, with R = 50m, B = 3 blades, and λR = 7:

c(R) = 2m and c(10m) = 10m.

Figure 3.21: Resulting chord length distribution c(r) along the blade radius, illustrating
the 1/µ dependency and showing wider chords near the hub.
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The most important equation to remember

Assumptions The following simplifying assumptions are made for the optimal chord
derivation:

λr =
r
R
· λ ≫ 1

CL

CD
≫ 1

}Assumptions

This includes:

� the local tip speed ratio λr is large. This means the blades are operating at a
high enough speed that cross-�ow dominates, and the in�ow angle is small.

� Drag is neglected (high CL/CD).

� Axial momentum balance holds.

� Steady �ow conditions.

Axial momentum balance The force on the blade area -

FB =
1

2
ρAB (λrU∞)2︸ ︷︷ ︸

W 2

CL

- equals the thrust on the annulus:

FA = ρAAU∞(1− a) (2aU∞) =
1

2
ρAAU

2
∞ 4a(1− a)︸ ︷︷ ︸

CT (a)

Figure 3.22: A conceptual sketch: the aerodynamic forces must equal the annulus thrust.

Local solidity The local solidity is de�ned as:

σr =
AB

AA

=
B c(r)

2πr
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Optimal chord By equating the blade lift force to the annular thrust, we obtain:

1

2
ρU2

∞ABCLλ
2
r =

1

2
ρU2

∞AA4a(1− a)

This simpli�es to:

σrCL =
4a(1− a)

λ2
r

For the Betz-optimal induction factor a = 1
3
:

σrCL =
8

9

1

λ2
r

Thus:

B c(r)

2πr
CL(r) =

8

9

1

λ2
r

c(r) =
1

B CL(r)

2πR2

9λ2

8

r

Or more neatly:

c(r) ∝ 1

r

This shows that, for a �xed CL (and under the stated assumptions), the optimal chord
is inversely proportional to radius.

Figure 3.23: The outer portions of the inverse-radius rule seem give a close-to-linear
taper.

Practical blade design

In practice, linear taper is often used (see Figure 3.23), meaning that the chord length
is treated as an a�ne function of the radius, which avoids the excessive chord growth
that the theoretical c(r) ∝ 1/r law would predict very close to the hub.

To compensate for the lower solidity in the inner part of the blade, the angle of attack
can be increased to raise CL(r) accordingly. Here the extra drag in the inner part of the
blade is considered less critical.
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Figure 3.24: Linear taper approximation for chord length, avoiding excessive chord growth
near the hub.

Pitch, twist, and the �ow angle

The �ow angle ϕ [rad] is the angle between the e�ective velocity W and the blade's path
(ie, the tangential direction). This means that it ranges from ϕ = 0 (if momentum keeps
the rotor turning while a gust momentarily drops the wind speed to zero or the rotor is
turning in�nitely fast) to ϕ = 90deg (while the rotor is not turning or at the blade root).
This angle is the angle that we use, when we try to �gure out how to project the lift and
drag forces into the axial and tangential directions.

With a range of ϕ ∈ (0, 90), we notice that this range is too large for the chord-line to
always lay along the tangential direction: because that would make the angle of attack
α too large, and the blades would stall.

(The angle of attack, remember, is the angle between the chord-line and the tangential
direction, and is one of the main inputs that determine the 2D lift and drag coe�cients
cℓ(α) and cd(α). It's very important for �nding the optimal cℓ/cd value.)

So, we're going to use two di�erent ways to reduce the angle of attack:

� by pitching the blade by an angle β [rad]. 'Pitching' is the deliberately controlled
rotation of the entire blade around the blade's socket in the hub. In almost all
cases, the same β is applied to all of the blades at the same time.

� by twisting the blade when we construct it. That is, the twist angle θ(r) [rad]
doesn't have to be, and usually isn't, constant over the whole blade length. But, of
course, since it's literally �ber-glassed into the blade, it can't be changed once the
turbine is operational.

When we substract the combined pitch and twist angles β and θ(r) from the �ow angle
ϕ, whatever angle is left is the angle of attack α. You can see this in Figure 3.25:

ϕ = α + β + θ(r) ⇔ α = ϕ− β − θ(r)

Remember that from the de�nitions of the trigonometic functions, we know that:

sinϕ =
u∞(1− a)

W
=

1− a√
(1− a)2 + λ2

r(1 + a′)2
=

1− a

λr(1 + a′)

√
1 +

(1− a)2

λ2
r(1 + a′)2
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u∞(1− a)

ϕ

α

combined pitch and twist angle β + θ

Ωr(1 + a′)

tangential direction t̂

axial direction x̂

W

chord-line

Figure 3.25: De�nition of the �ow angle ϕ, twist θ, and angle of attack α.

If we now assume that (1 − a)2 ≪ λ2(r/R)2(1 + a′)2, then the thing inside the square
root drops away. That is:

sinϕ ≈ 1− a

λr(1 + a′)

By the small-angle approximation:

ϕ ≈ 1− a

λr(1 + a′)

so in the case of Betz-optimal induction factor a = 1
3
(from axial momentum theory) and

a small tangential induction function a′ → 0, this give:

ϕ ≈ 2

3

R

λr

This would argue that, towards the blade tips (where our simplifying assumption (1 −
a)2 ≪ λ2(r/R)2(1 + a′)2 is most likely to hold) the �ow angle ϕ must be inversely pro-
portional to the radius. (See Figure 3.26).

So, if we know what angle of attack will give us the desired cℓ/cd value, then we can
achieve this by pitching and twisting the blade.

The power harvesting factor ζ

The power harvesting factor, denoted as ζ, is de�ned as the ratio between the power
actually harvested by the blade and the total power available in the wind passing through
the blade area. This can be written mathematically as

ζ =
P

1
2
ρABU3

0

,

where P is the mechanical power extracted by the rotor, ρ is the air density, AB is the
blade area, and U0 is the free-stream wind speed.
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with a'=
a (1 - a)

λr
2

assuming (1-a)2 ≪ λr
2
(1+a')2

μ [-]

π

8

π

4

π

3

ϕ [rad]

Figure 3.26: Flow angle ϕ under Betz optimal a = 1
3
and the corresponding zero-drag

BEM a′ = a(1 − a)/(λµ)2 value (blue) �ts quite nicely with the approximation of ϕ ≈
(2/(3λµ)) on the outer part of the blade. Shown at λ = 7.

Because the solidity and aerodynamic loading vary along the radius of the blade, ζ can be
considered as a function of radius. We therefore de�ne a local power harvesting factor,
ζ(r), which can be expressed in terms of the local power coe�cient CP and the local
solidity σr:

ζ(r) =
CP

σr

.

Neglecting blade drag and other aerodynamic losses, the power coe�cient can be written
in terms of the axial induction factor a as

CP (a) = 4a(1− a)2.

From earlier momentum balance derivations, we know that the local solidity, lift coe�-
cient, and local tip-speed ratio are related by

σrCLλ
2
r = 4a(1− a),

which can be rearranged to isolate the local solidity:

σr =
4a(1− a)

CLλ2
r

.

Substituting this expression for σr into the de�nition of ζ gives

ζ =
4a(1− a)2

4a(1−a)
CLλ2

r

.

After simplifying, the result becomes
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ζ = (1− a)CLλ
2
r.

This equation shows that the power harvesting factor increases with both the lift coef-
�cient and the square of the local tip-speed ratio, but decreases as the axial induction
factor a approaches one.

At the Betz-optimal induction factor, a = 1
3
, the expression simpli�es further:

ζ =
2

3
CLλ

2
r.

This optimal case provides a clear scaling law: the power harvesting factor grows propor-
tionally to CL and to λ2

r, the square of the local tip-speed ratio.

Examples

� Case A � outer blade element (tip): For λ2
r ≈ 7 and CL ≈ 1, we get:

ζ ≈ 2

3
× 1× 7 ≈ 4.7

� Case B � half radius: For a smaller λ2
r (about half of Case A's value), ζ ≈ 8.

At a position halfway along the blade radius, where the local tip-speed ratio is lower, the
value of ζ is substantially reduced, showing how the harvesting factor diminishes quickly
as one moves inwards toward the hub.

55



Lecture Notes Wind Energy Systems

56



Chapter 4

Mechanics & Dynamics of Wind

Turbines

4.1 Loads and Forces

Wind turbines experience a variety of loads from di�erent sources. These include:

� Aerodynamic loads, which arise from lift and drag forces acting on the blades.

� Gravity, which produces constant weight forces on all structural components.

� Inertial loads, which include both gyroscopic e�ects from yawing and pitching
motions and centrifugal forces from rotation.

� Electromechanical loads, such as the torque generated by the electrical genera-
tor.

� Operational loads, coming from actuators including brakes, the yaw system, and
blade pitch mechanisms.

The loads acting on the turbine can be classi�ed by type:

� Steady loads, which are static or rotational and do not �uctuate signi�cantly over
time.

� Cyclic loads, which occur as harmonics of the rotation frequency:

� 1P: loads occurring once per revolution.

� 3P: loads occurring three times per revolution.

� B.P: the blade passing frequency, which occurs B times per revolution where
B is the number of blades.

� Resonant loads, which are associated with vibrations of the tower and blades.

� Transient loads, which arise during events such as start-up, shut-down, or yaw
maneuvers.

� Stochastic loads, which result from the random and turbulent nature of the wind.
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4.2 Steady loads in normal operation

When a wind turbine operates at constant speed and power, it is subject to steady
loads that do not �uctuate signi�cantly with time. Two important steady loads are the
aerodynamic thrust on the rotor and the gravitational load from the nacelle.

The aerodynamic thrust force FT [N] can be estimated from the mechanical power P [W]
produced by the turbine and the free-stream wind speed U∞ [ms−1] as

FT ≈ 2P

3U∞
.

The gravitational force FG [N] acting on the nacelle is given by

FG = mNg,

where mN [kg] is the mass of the nacelle and g [ms−2] is the gravitational accelera-
tion.

Figure 4.1: Illustration of steady loads on a wind turbine, showing aerodynamic thrust
FT acting on the rotor and gravitational force FG from the nacelle mass.

As an example, consider a turbine producing P = 6MW at a wind speed of U∞ = 9m s−1,
with a nacelle mass of mN = 360 t.

The thrust force is calculated as:

FT ≈ 2× 6MW

3× 9m s−1
= 1MN.

The gravitational force on the nacelle is:

FG = 360 t× 9.81m s−2 = 3.6MN.

4.3 Stress and strain

When a material is subjected to tension, it experiences both stress and strain. Figure 4.2
illustrates a material sample under tension.

Stress, denoted by σ [Pa], is de�ned as the internal force F [N] acting per unit cross-
sectional area A [m2]:
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Figure 4.2: A material sample under tension, showing the applied force F and elongation
∆L.

σ =
F

A
.

Strain, denoted by ε [�], is the relative elongation of the material, calculated as the change
in length ∆L [m] divided by the original length L [m]:

ε =
∆L

L
.

Figure 4.3 shows a typical stress�strain curve.

Figure 4.3: A stress�strain curve showing the elastic region, yield point, and plastic
deformation region.

For example, consider a steel material with a Young's modulus E = 200GPa, a yield
strength Y = 250MPa, and an ultimate tensile strength U = 500MPa.

At which strain does steel start to deform plastically/permanently? Hooke's
law relates stress and strain in the elastic range:

σY = E εY ,

where σY [Pa] is the stress at the yield point and εY [�] is the corresponding strain. Since
at yielding σY = Y , we can solve for the strain:
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εY =
Y

E
.

This equation shows that the yield strain is simply the yield strength divided by Young's
modulus.

When does a beam start to deform? Figure 4.4 illustrates the geometry of a bent
beam. The strain at the outermost �ber can be expressed in terms of curvature:

Figure 4.4: Relationship between strain ε and beam curvature, with outer �bers at a
distance d from the neutral axis and radius of curvature ρ.

εY =
d

ρ
,

where d [m] is the distance from the neutral axis to the outermost �ber, and ρ [m] is the
radius of curvature of the bent beam.

4.4 (Static) beam bending (Euler-Bernoulli theory)

Hooke's law Hooke's law relates stress, strain, and the sti�ness of a material. It is
written as

σ = E ε,

where σ [Pa] is the stress, E [Pa] is the Young's modulus of the material, and ε [�] is the
strain (deformation).
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Figure 4.5: Conceptual illustration of bending beam's cross-section

Figure 4.6: Schematic showing displacement of a bending beam

Strain In a bent beam, the strain ε [�] at a distance z [m] from the neutral axis is
related to the radius of curvature ρ [m] by

ε =
z

ρ
.

Because curvature is de�ned as the reciprocal of the radius, we can also write

1

ρ
=

d2w(x)

dx2
,

where w(x) [m] is the beam de�ection as a function of position x [m]. Substituting this
curvature relation into the strain expression gives

ε = z
d2w(x)

dx2
.

Bending moment The bending momentM(x) [Nm] along the beam can be calculated
by integrating the stress distribution:

M(x) =

∫ d

−d

z σ(z) dA,

where d [m] is the half-depth of the beam cross section and dA [m2] is an in�nitesimal
cross-sectional area.

Substituting σ(z) = Ez d2w(x)
dx2 into the integral yields:

M(x) =

∫ d

−d

z E z

(
d2w(x)

dx2

)
dA.
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Figure 4.7: Illustration of strain variation across the cross section of a beam.

The terms E and d2w(x)
dx2 are constant over the cross section and can be taken outside the

integral:

M(x) = E
d2w(x)

dx2

∫ d

−d

z2dA.

The integral

∫ d

−d

z2dA

is de�ned as the second moment of area I [m4]. Thus we can write:

M(x) = E I
d2w(x)

dx2
.

Alternatively, using the curvature notation 1
ρ
, this relationship is often written as:

M = E I
1

ρ
.

62



Lecture Notes Wind Energy Systems

Static beam equation (Euler�Bernoulli) The Euler�Bernoulli beam equation con-
nects the applied load to beam de�ection:

d2

dx2

[
E(x)I(x)

d2w(x)

dx2

]
= q(x),

where q(x) [Nm−1] is the distributed load along the beam.

The related de�nitions are:

� The shear force Q(x) [N] is the �rst derivative of the bending moment:

Q(x) =
dM(x)

dx
.

� The distributed load q(x) [Nm−1] is the derivative of the shear force:

q(x) =
dQ(x)

dx
.

4.4.1 Examples

Let's try this on two examples:

� a cantilevered beam with an end load, and

� a cantilevered beam with constant loading.

Cantilever beam with end load

Consider a cantilever beam with a point load applied at its free end. Figure 4.8 illustrates
the setup.

Figure 4.8: Cantilever beam with a force F applied at its free end, length L, and �xed
boundary on the left side.
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The bending moment M(x) [Nm] along the beam is given by

M(x) = E I
d2w(x)

dx2
= F (L− x),

where E [Pa] is the Young's modulus of the beam material, I [m4] is the second moment
of area, w(x) [m] is the de�ection at position x [m], F [N] is the applied force, and L [m]
is the beam length.

The shear force Q(x) [N] is the derivative of the bending moment:

Q(x) =
dM(x)

dx
= −F.

Because Q(x) is constant, the derivative of Q(x) with respect to x is zero:

dQ(x)

dx
= 0.

This re�ects the fact that there is no distributed load on the beam (q(x) = 0) and gravity
of the beam itself is neglected.

Since E and I are constant and there is no distributed load, the Euler�Bernoulli equation
simpli�es to:

EI
d2w(x)

dx2
= F (L− x).

Integrating twice with respect to x yields the de�ection:

w(x) =
F

6EI

(
Lx2 − x3

3
+ c0 + c1x

)
,

where c0 and c1 are integration constants determined by boundary conditions. For a
cantilever beam with the root clamped at x = 0, both de�ection and slope are zero at
that point, which sets c0 = 0 and c1 = 0.

Substituting these values simpli�es the de�ection to:

w(x) =
F

6EI
x2 (3L− x) .

At the free end (x = L), the displacement becomes:

w(L) =
FL3

3EI
.

This �nal expression can be interpreted as a spring relationship:

w(L)︸ ︷︷ ︸
displacement

=
FL3

3EI
= F︸︷︷︸

force

· L3

3E I︸ ︷︷ ︸
spring constant
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where the e�ective spring constant k is:

k =
3EI

L3
.

Cantilever beam with constant loading

Now consider a cantilever beam of length L [m] with a constant distributed load q [Nm−1].
Figure 4.9 illustrates this loading case.

Figure 4.9: Cantilever beam with a constant distributed load q.

With constant Young's modulus E [Pa] and second moment of area I [m4], the Eu-
ler�Bernoulli beam equation becomes:

q = EI
d4w(x)

dx4
.

Integrating four times with respect to x gives the general de�ection:

w(x) =
q

24EI
x4 + c3x

3 + c2x
2 + c1x+ c0,

where c0, c1, c2, and c3 are integration constants to be determined by boundary condi-
tions.

Let's step-quickly to the side, and list the derivatives of w(x):

d0w

dx0 = w(x) (4.1)

d1w

dx1 =
q
(
3c3x

2 + 2c2x+ c1 +
x3

6

)
EI

(4.2)

d2w

dx2 =
q (x (12c3 + x) + 4c2)

2EI
(4.3)

d3w

dx3 =
q (6c3 + x)

EI
(4.4)
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Boundary conditions If you have a cantilevered beam clamped at x = 0, then the
clamped side should be unde�ected (i.e., 'clamped'), and it should not be moving:

w(0) = 0 ⇒ c0 = 0,

dw

dx
(0) = 0 ⇒ c1 = 0.

The bending moment M(x) [Nm] is related to the curvature:

M(x) = EI
d2w(x)

dx2
=

1

2
q (x (12c3 + x) + 4c2) .

And the shear force Q(x) [N] is the derivative of the moment:

Q(x) =
dM(x)

dx
= q (6c3 + x) .

At the free end (x = L), the moment and shear force must vanish, because there's no
force acting past that end:

M(L) = 0 ⇒ q

(
6c3L+ 2c2 +

L2

2

)
= 0 (4.5)

Q(L) = 0 ⇒ q (6c3 + L) = 0 (4.6)

Determining constants This means, we have four independent equations with four
variables [c0, c1, c2, c3]:

c0q

EI
= 0 (4.7)

c1q

EI
= 0 (4.8)

q

(
6c3L+ 2c2 +

L2

2

)
= 0 (4.9)

q (6c3 + L) = 0. (4.10)

Since E and I are positive real values, they aren't zero! So, we can solve (4.7), (4.8),
(4.10) right away, and then plug the solved c3 into (4.9):

c0 = 0, c1 = 0, c3 = −L

6
, ⇒ q

(
2c2 −

L2

2

)
= 0 (4.11)

↪→ c2 =
L2

4
. (4.12)
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We can plug these constants back into the forms we de�ned for the de�ection, the moment,
and the shear force:

w(x) =
q

24EI
x4 + c3x

3 + c2x
2 + c1x+ c0 =

qx2 (6L2 − 4Lx+ x2)

24EI
(4.13)

M(x) = EI
d2w(x)

dx2
= EI

(
q (x (12c3 + x) + 4c2)

2EI

)
= q

(
L2

2
− Lx+

x2

2

)
(4.14)

=
1

2
q(L− x)2

Q(x) =
dM(x)

dx
= q (6c3 + x) = q(x− L) (4.15)

These expressions describe the internal forces and de�ections in a cantilever beam un-
der a constant distributed load, and are shown (in nondimensionalized form) in Figure
4.10.

w

w (x = L)
[-]M

M (x = 0)
[-]

Q

Q (x = 0)
[-]

x

L

[-]

1

Figure 4.10: The de�ection, moment, and shear-force distribution for the cantilever beam
with a constant distributed load q.

4.4.2 Moment at the blade root

The maximum bending moment at the blade root can be derived using the Euler�Bernoulli
beam equation:

d2

dx2

[
E(x)I(x)

d2w(x)

dx2

]
= q(x), (4.16)

where E(x) [Pa] is the Young's modulus of the blade material, I(x) [m4] is the second
moment of area, w(x) [m] is the blade de�ection as a function of the spanwise coordinate
x [m], and q(x) [Nm−1] is the distributed load.

In this context: - The bending moment M(x) [Nm] is de�ned by

M(x) = E(x)I(x)
d2w(x)

dx2
.

- The shear force Q(x) [N] is the derivative of the moment:

Q(x) =
dM(x)

dx
.
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Maximum strain The maximum strain in the blade, εmax [�], is related to the blade
curvature:

εmax =
d

ρ
,

where d [m] is the distance from the neutral axis to the outermost �ber and ρ [m] is the
local radius of curvature.

Using the curvature form of the Euler�Bernoulli relation, this strain can be written in
terms of the bending moment:

εmax =
d(0)M(0)

I(0)E(0)
, (4.17)

where M(0) [Nm] is the bending moment at the blade root, I(0) [m4] is the second
moment of area at the root, and E(0) [Pa] is the Young's modulus at the root.

Maximum bending moment Rearranging Equation (4.17) to solve for the maximum
moment that the blade can support gives:

Mmax = εmax
IY

d
, (4.18)

where Y [Pa] is the yield strength of the blade material.

Equation (4.18) shows that the maximum bending moment scales with the material's
yield strain and sti�ness, and with the geometry of the blade root cross-section (via the
second moment of area I and the distance to the outer �ber d).

4.4.3 Loads at blade root (in �apwise direction)

For a blade in an ideal design, the distributed load q(r) [Nm−1] can be obtained from
the thrust of the corresponding annulus (see Figure 4.11).

The di�erential force dF [N] on the annulus is given by:

dF = 4a(1− a)
1

2
ρU2

∞ 2πr dr, (4.19a)

= CT (a)
1

2
ρU2

∞ 2πr dr, (4.19b)

where a [�] is the axial induction factor, ρ [kgm−3] is the air density, U∞ [ms−1] is the
free-stream wind speed, r [m] is the local radius, dr [m] is the annulus width, and CT (a)
[�] is the thrust coe�cient.

Since this load is shared between B blades, the distributed load per blade is:

q(r) =
CT (a)

B

1

2
ρU2

∞ 2πr. (4.20)
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Figure 4.11: Force distribution on an annular section of the rotor blade.

Bending moment at the blade root The bending moment M(0) [Nm] at the blade
root is computed by integrating q(r)r from r = 0 to the rotor radius R:

M(0) =

∫ R

0

q(r) r dr, (4.21a)

=
1

B
CT (a)

1

2
ρU2

∞ 2π

∫ R

0

r2dr, (4.21b)

=
1

B
CT (a)

1

2
ρU2

∞ πR3 2

3
, (4.21c)

=
1

B

2

3
RCT (a)

1

2
ρU2

∞ (πR2). (4.21d)

The term (πR2) represents the swept area of the rotor disk, and the force acting on it is
the total thrust FT [N].

FT︸︷︷︸
total force on actuator disk

= CT (a)
1

2
ρU2

∞(πR2).

Thus, the bending moment at the blade root can be interpreted simply as:

M(0) =
2

3
R

FT

B
.

Approximate thrust The thrust force FT can also be approximated from the mechan-
ical power P [W] and the wind speed U∞:

FT ≈ P

(1− a)U∞
. (4.22)
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Example For a turbine producing 6MW at a wind speed U∞ = 9m s−1 with rotor
radius R = 75m and FT ≈ 1MN, the blade root bending moment is:

M(0) =
2

3
R
FT

B
≈ 50m× 1MN

3
≈ 16MNm.

Figure 4.12: Illustration of total thrust FT and blade root bending moment M(0).

Maximum bending stress at the blade root Consider the annular cross-section of
the blade root shown in Figure 4.13, with outer radius r2 [m] and wall thickness b [m].
The second moment of area I [m4] is:

I =
π

4
r42 −

π

4
r41 ≈ πr32b,

assuming the inner radius r1 = r2 − b and that b ≪ r2.

Figure 4.13: Cross-section of the blade root, showing outer radius r2 and shell thickness
b.

The maximum bending stress σmax [Pa] is given by:
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σmax =
r2M(0)

I
=

M(0)

πr22b
.

Example thickness calculation If r2 = 1m, σmax = 250MPa, and M(0) = 5MNm,
the required shell thickness b is:

b =
M(0)

πr22σmax
=

5MNm

π(1)2 × 250MPa
≈ 0.02m = 2 cm.

4.5 Oscillations & eigenmodes

4.5.1 Intro: spring�mass�damper system

The dynamics of a wind turbine blade, tower, or drivetrain component can often be
approximated by the classical spring�mass�damper model. The governing di�erential
equation is:

mẍ+ βẋ+ kx = F (t), (4.23)

where x [m] is the displacement,m [kg] is the mass, F (t) [N] is the external force, k [Nm−1]
is the spring constant, and β [Nsm−1] is the viscous (linear) damping coe�cient.

Figure 4.14: The spring�mass�damper model: a mass m connected to a spring with
sti�ness k and a damper with damping coe�cient β, subject to external force F (t).

Harmonic forcing Assume a harmonic external force of the form:

F (t) = F0e
jωt,

where F0 [N] is the force amplitude and ω [rad s−1] is the forcing frequency. In design,
we consider the real part of the solution.

We assume a solution of the form:
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x(t) = x0e
jωt, x0 ∈ C, (4.24)

where x0 [m] is a complex amplitude.

Di�erentiating this assumed solution gives:

ẋ(t) = (jω)x0e
jωt, (4.25)

ẍ(t) = −ω2x0e
jωt. (4.26)

Substituting Equations (4.24)�(4.26) into Equation (4.23):

−mω2x0e
jωt + βjωx0e

jωt + kx0e
jωt = F0e

jωt. (4.27)

Canceling ejωt throughout, we get:

x0 (k −mω2)︸ ︷︷ ︸
real

+x0 (jβω)︸ ︷︷ ︸
imaginary

= F0. (4.28)

The magnitude of x0 is given by:

|x0| =
F0√

(k −mω2)2 + (βω)2
, (4.29)

where the denominator combines the real sti�ness term (k − mω2) and the imaginary
damping term (βω).

Natural frequency The maximum response |x0| occurs approximately at the natural
(resonant) eigenfrequency ωNR:

k −mω2
NR = 0 ⇔ ωNR =

√
k

m
. (4.30)

How much can F0 be ampli�ed? The spring force is:

F0,spring = kx.

At steady state, its amplitude is:

|F0,spring| = k|x0| =
F0√(

1−
(

ω
ωNR

)2)2

+
(
βω
k

)2 , (4.31)

which shows how the spring force depends on frequency.
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At resonance (ω = ωNR), the expression simpli�es to:

|F0,spring|
F0

=
k

β ωNR

, (4.32)

which indicates that the ampli�cation factor is inversely proportional to the damping
coe�cient.

Figure 4.15: Bode diagram showing ampli�cation of the spring force relative to applied
force F0 as a function of frequency. Ampli�cation factors can reach 5�10 if damping β is
low, so resonance should typically be avoided.

At very low forcing frequencies, the spring force equals the applied force, meaning static
analysis is su�cient (as discussed in Section 4.3).

4.5.2 Eigenmodes

For spring�mass�damper systems with more than one degree of freedom, the displacement
is described by a vector w(t) ∈ Rn. The equation of motion becomes:

Mẅ +Dẇ +Kw = F(t), (4.33)

where M [kg] is the mass matrix (n× n), D [Nsm−1] is the damping matrix, K [Nm−1]
is the sti�ness matrix (n× n), and F(t) [N] is the external force vector.

If damping is neglected (D = 0), the natural resonance modes must satisfy the condition
that the solution takes the form:

w(t) = w̄ejωt, (4.34)

where w̄ ∈ Rn is the mode shape vector and ω [rad s−1] is the angular frequency.
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Figure 4.16: Multi�degree of freedom spring�mass�damper system. The displacement is
described by vector w(t).

Substituting Equation (4.34) into the equation of motion (4.33) with D = 0 gives:

Mẅ +Kw = 0. (4.35)

This leads to the algebraic condition:

−ω2Mw̄ +Kw̄ = 0 ⇔ (M−1K− ω2I)w̄ = 0. (4.36)

This is an eigenvalue problem for the matrix M−1K ∈ Rn×n. There are n eigenvalues,
each with an associated eigenvector w̄ (the eigenmode). Because both M and K are
positive de�nite, the eigenvalues of M−1K are real and positive.

In practice, we are often most interested in the eigenmode with the lowest eigenfrequency,
because this mode typically dominates the system's dynamic response.

4.5.3 Rayleigh's method

Assume we have a good guess of an eigenmode vector w̄ ∈ Rn. To �nd the corresponding
eigenfrequency ω2 [rad2 s−2], we start with the eigenvalue equation:

Kw̄ = ω2Mw̄, (4.37)

where K [Nm−1] is the sti�ness matrix and M [kg] is the mass matrix.

Equation (4.37) is overdetermined if w̄ is �xed. To proceed, we multiply Equation (4.37)
on the left by 1

2
w̄T :

1

2
w̄TKw̄︸ ︷︷ ︸

elastic/potential energy at max. displacement

= ω21

2
w̄TMw̄︸ ︷︷ ︸

kinetic energy at max. speed

, (4.38)

Notice, this becomes an expression of energy conservation, one that we can rearrange to
give us the natural frequency ω:

ω =

√
w̄TKw̄

w̄TMw̄
:= f(w̄). (4.39)

If the guess of w̄ is good, this method can give a surprisingly accurate estimation of ω.
(To check, one can insert ω and w̄ into Equation (4.37).)
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What is the error of Rayleigh's method? Assume ω0 [rad s−1] and w0 ∈ Rn are
the true eigenpair, i.e., they satisfy:

Kw0 = ω2
0Mw0. (4.40)

Let our guess be w̄ = w0 + ∆w, where ∆w is the error in the guess. Substituting this
into the Rayleigh quotient:

f(w̄)︸ ︷︷ ︸
:=ω2

= f(w0)︸ ︷︷ ︸
=ω2

0

+∇f(w0)
T∆w +O(∥∆w∥2), (4.41)

where the gradient is:

∇f(w0) =

(
1
2
wT

0 Mw0

)
Kw0 −

(
1
2
wT

0 Kw0

)
Mw0(

1
2
wT

0 Mw0

)2 , (4.42a)

=
Kw0 − ω2

0Mw0

1
2
wT

0 Mw0

. (4.42b)

Since w0 satis�es Equation (4.40), the numerator in (4.42b) vanishes, and we see that
the error in Rayleigh's method is second-order:

ω2 = ω2
0 +O(∥∆w∥2). (4.43)

We're going to try out Rayleigh's method on some examples -

� a simple pendulum, and

� a two-mass system

- before moving on to wind energy system components in Sections 4.5.4 and 4.5.5

A simple pendulum

mθ

x̂

ẑ

L

g

Figure 4.17: A very simple test problem to see how Rayleigh's method �nds natural
frequencies, imagines a simple pendulum.
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We already know that the natural frequency of a simple pendulum - a mass m [kg]
hanging from the end of a massless, frictionless, rigid string-or-rod of length L [m], under
the acceleration of gravity g [ms−2] - will be ω =

√
g/L. So, now let's use Rayleigh's

method to get the same result1.

The harmonic displacement here, is the angle θ [rad] between the pendulum and the
vertical-line-of-symmetry:

θ(t) = θmax sin(ωt), (4.44)

where we're pretending not to know the angular speed and natural frequency ω [rad s−1]
so that we can try to �nd it again.

Then, the amplitude θmax is the literally the maximum displacement of the pendulum:
θU,max = θmax. This gives the potential energy of the system as

U(t) = mgL(1− cos(θ)) = mgL

(
θ2

2
− θ4

24
+

θ6

720
+O(θ8)

)
, (4.45)

using a series expansion.

Now, assuming θ is small enough that the contribution of it's higher-order power terms
doesn't overwhelm the expansion (θ4 ≪ 12θ2), we can �nd the potential energy at maxi-
mum displacement Umax [J] as:

Umax ≈ mgL
θ2max

2
. (4.46)

The maximum kinetic energy Tmax [J] occurs at the bottom of the swing when cos θT,max =
cos θ(ωtT,max) = 1. Since the kinetic energy depends on the angular speed of the pendulum

(̇θ), we'll di�erentiate �rst:

θ̇(t) = θmaxω cos(ωt), ⇒ T (t) =
1

2
m(Lθmaxω cos(ωt))2, (4.47)

⇒ Tmax =
1

2
m(Lθmax)

2ω2

So, when we set the maximum kinetic energy equal to the maximum potential energy, we
get:

Tmax = Umax ⇒ 1

2
m(Lθmax)

2ω2 = mgL
θ2max

2
. (4.48)

When we cancel terms, we �nd a natural frequency that matches our expectations.

Lω2 = g ⇒ ω =

√
g

L
(4.49)

1this follows the example given in Irvine, T. "Rayleigh's Method", Revision D. https://citeseerx.
ist.psu.edu/document?repid=rep1&type=pdf&doi=9ce169da44f898d8688599a4a1c946e0f59b1b74
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Two-mass system

Now, let's take a slightly more complicated example. Consider a simple system with two
masses m1 [kg] and m2 [kg], and two springs with sti�ness k1 [Nm−1] and k2 [Nm−1].
The equations of motion are:

m2ẍ2 + k2(x2 − x1) = 0,

m1ẍ1 + k1x1 − k2(x2 − x1) = 0,

where x1 [m] and x2 [m] are displacements.

De�ne the displacement vector:

w =

[
x1

x2

]
∈ R2.

The system can be written in matrix form:

[
m1 0
0 m2

]
︸ ︷︷ ︸
M ∈ R2×2

ẅ +

[
(k1 + k2) −k2

−k2 k2

]
︸ ︷︷ ︸

K ∈ R2×2

w = 0. (4.50)

Figure 4.18: Two-mass, two-spring system for Rayleigh's method Example 1.

Now, let's assume m2 ≫ m1 and k1 ≈ k2. An approximate eigenvector guess is:

w̄ =

[
1
2

]
, w(t) =

[
ejωt

2ejωt

]
.

The kinetic energy is:

Ekin =
1

2
w̄TMw̄ω2A2

0 =
1

2
(m1 + 4m2)ω

2A2
0, (4.51)

and the potential energy is:
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Figure 4.19: Approximate eigenvector for Example 2, showing relative displacements of
the two masses.

Epot =
1

2
w̄TKw̄A2

0, (4.52a)

=
1

2
A2

0

[
1 2

] [(k1 + k2) −k2
−k2 k2

] [
1
2

]
, (4.52b)

=
1

2
A2

0(k1 − k2 + 2k2), (4.52c)

=
1

2
A2

0(k1 + k2). (4.52d)

From Rayleigh's quotient, the squared natural frequency is:

ω2 =
k1 + k2

m1 + 4m2

≈ k1 + k2
4

· 1

m2

≈ k1
2

· 1

m2

. (4.53)

4.5.4 Dynamic beam equation

Of course, if we want to use Rayleigh's method for the long beamlike components of
the wind turbine, we'll need some way to estimate the "potential energy at maximum
displacement" and "kinetic energy at maximum speed" terms.

For this purpose, we look at the equation that Euler�Bernoulli and Lagrange derived
for a beam, known as the Dynamic Beam Equation. Unlike the static case, this
formulation includes time dependence, which is why it is referred to as the �dynamic�
beam equation:

∂2

∂x2

[
E(x)I(x)

∂2w

∂x2

]
= q(x, t)− µ(x)

∂2w

∂t2
, (4.54)

where: - µ(x) [kgm−1] is the mass density per unit length, - q(x, t) [Nm−1] is the dis-
tributed load along the beam, and - w(x, t) [m] is the time-varying de�ection of the beam
(assuming no damping).
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Figure 4.20: The dynamic beam equation describes a beam with spatially variable sti�ness
E(x)I(x), mass density µ(x), and a time-varying de�ection w(x, t).

Note that Equation (4.54) is a linear partial di�erential equation. After spatial
discretization, it becomes:

Kw = −Mẅ,

where K is the sti�ness matrix and M is the mass matrix.

The result of the dynamic beam equation, is that we can �nd the energies of beam-like
components (the tower and blades) that we will next apply into Rayleigh's method. That
is, the kinetic energy of the beam is given by:

Ekin =
1

2

∫ L

0

µ(x)

(
∂w

∂t

)2

dx, (4.55)

and the elastic (strain) energy is:

Eela =
1

2

∫ L

0

E(x)I(x)

(
∂2w

∂x2

)2

dx, (4.56)

where L [m] is the beam length, E(x) [Pa] is Young's modulus, and I(x) [m4] is the
second moment of area.

4.5.5 Rayleigh's method applied to a wind turbine tower

Let's make a more wind-energy speci�c example of Rayleigh's method, than we'd previ-
ously given. Speci�cally, let's consider the tall slender beam topped with a point-mass
that we call the "tower".

Both the tower and the nacelle have signi�cant mass. For example, the MHI�Vestas
V164 (9.5 MW) has a heavy nacelle mounted on top of a tall �exible tower (see Fig-
ure 4.21).

Because of the large mass imbalance, the eigenmodes of the tower must be computed for
a very unequal mass distribution. Remember that we looked at a demonstration example
for this sort of situation in the "two-mass" example, and - there - we had to guess at the
eigenmodes. Here, we happen to be able to make decent guesses about what the main
eigenmodes look like, because the tower is so beam-like and beams have very typical
ways of deforming. The lowest two eigenmodes look approximately as shown in Figure
4.22.
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Figure 4.21: Example of a heavy nacelle on a tall �exible tower: MHI�Vestas V164 (9.5
MW).

Determine the kinetic and potential energies The kinetic energy of the tower
is:

Ekin =
1

2

∫ L

0

µ(x)

(
∂w(x, t)

∂t

)2

dx, (4.57)

and the elastic (potential) energy is:

(a) Lowest eigenmode of the

tower.

(b) Second-lowest eigenmode

of the tower.

Figure 4.22: Eigenmodes of tower deformation. Notice that these shapes look like in-
creasing fractions of a sinusoid.
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Eela =
1

2

∫ L

0

E(x)I(x)

(
∂2w(x, t)

∂x2

)2

dx, (4.58)

where: - µ(x) [kgm−1] is the mass per unit length of the tower, - E(x) [Pa] is Young's
modulus, - I(x) [m4] is the second moment of area, - and w(x, t) [m] is the time-dependent
displacement.

After assuming a particular displacement (eigen)mode Assume for this example
that the displacement is approximated by:

w(x, t) = w̄(x)ejωt, w̄(x) = A0
x2

L2
,

for a rough approximation of the lowest eigenmode. Assume constant mass density µ(x),
Young's modulus E(x), and moment of inertia I(x) along the tower.

Applying the energy equations derived with dynamic beam theory, we write the kinetic
energy as:

Ekin = ω2

(
1

2

∫ L

0

mtower

L
A2

0

x4

L4
dx+

1

2
mnacelleA

2
0

)
, (4.59a)

= ω2A2
0

(
mtower

2L5

∫ L

0

x4dx+
mnacelle

2

)
, (4.59b)

= ω2A2
0

(mtower

5
+mnacelle

)
, (4.59c)

where mtower [kg] is the total mass of the tower and mnacelle [kg] is the mass of the
nacelle.

The elastic energy is:

Eela =
1

2

∫ L

0

EI

(
∂2

∂x2

(
A0

x2

L2

))2

dx, (4.60a)

=
1

2

∫ L

0

EI

(
2A0

L2

)2

dx, (4.60b)

=
1

2
A2

0

4EI

L4
L, (4.60c)

where E [Pa] and I [m4] are assumed constant.

Eigenfrequency estimate Now, equating Ekin = Eela yields an expression for the
square of the eigenfrequency:

ω2
(mtower

5
+mnacelle

)
=

4EI

L3
. (4.61)

This result provides an estimate for the tower's lowest eigenfrequency using Rayleigh's
method, given the tower mass, nacelle mass, sti�ness, and geometry.

81



Lecture Notes Wind Energy Systems

4.6 Site and weight of wind turbines

This section provides examples of the size and weight of modern wind turbines.

Example 1: Vestas V90 (1.8 MW)

� Tower height: 120m

� Blade length: R = 45m

� Nacelle weight: 75 t

� Weight of 3 blades: 40 t

� Total nacelle + blades: 115 t

� Tower weight: 152 t

Figure 4.23: Example weights and dimensions of a Vestas V90 1.8 MW wind turbine.

Example 2: MHI�Vestas V164 (9.5 MW)

� Tower height: 105m

� Blade length: R = 82m

� Nacelle weight: 390 t

� Weight of 3 blades: 105 t (approximately 150 t total including hub)

� Tower weight: 400 t

� Base diameter: 6.5m
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Figure 4.24: Example weights and dimensions of an MHI�Vestas V164 9.5 MW wind
turbine.

4.6.1 Sti� & soft towers

The tower's dynamic behavior is strongly in�uenced by its lowest excitation frequen-
cies.

Lowest excitation frequencies Two key excitation frequencies come from the ro-
tor:

� 1P: the rotor rotation frequency, which can cause excitation due to blade asymme-
tries.

� B.P: the blade passing frequency, where B is the number of blades.

Given the rotor radius R [m] and wind speed U∞ [ms−1], and with the tip speed ratio
de�ned as

λ =
RΩ

U∞
,

the rotational frequencies can be written as:

ω1P = Ω =
λU∞

R
, (4.62)

ωB.P = B Ω = B
λU∞

R
. (4.63)

Note that we always have:

ωB.P = B ω1P .

The fundamental rotor frequency ω1P typically varies with wind speed.

Tower design considerations If ω1P or ωB.P coincide with the tower eigenfrequencies,
resonance can occur. This must be avoided through:

1. tower design, and
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2. controller design.

Given the range of operational speeds, the tower can be classi�ed into three frequency
domains (see Figure 4.25):

� �soft�soft� : if the lowest tower eigenfrequency ωtower is below the rotor frequency
range.

� �soft�sti�� : if ωtower lies between ω1P and ωB.P .

� �sti��sti�� : if ωtower is higher than ωB.P , i.e., all tower eigenfrequencies are above
the blade passing frequency.

Figure 4.25: Classi�cation of towers into �soft�soft�, �soft�sti��, and �sti��sti�� based on
their eigenfrequencies relative to rotor and blade passing frequencies.

Example: MHI�Vestas V164 For the MHI�Vestas V164 turbine:

� Tip speed ratio: λ = 8

� Rotor radius: R = 80m

� Wind speed: U∞ = 10m s−1

� Rotor speed: Ω = 1 rad s−1

Figure 4.26: Excitation frequency ranges and tower classi�cation for the MHI�Vestas
V164.

4.7 Blade oscillation & centrifugal sti�ening

Blade oscillations mostly occur �apwise, meaning forward�backward motion (see Fig-
ure 4.27).

Interestingly, due to rotation, the blades sti�en and have higher eigenfrequencies than
they would have without rotating. The following sections explain why.
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Figure 4.27: Flapwise blade oscillation mode.

4.7.1 Rotating, hinged beam (no elasticity)

Consider a beam rotating about a hinge.

The moment of inertia I [kgm2] about the hinge is:

I =

∫ R

0

µ(r)r2dr, (4.64)

where µ(r) [kgm−1] is the mass per unit length and R [m] is the blade length.

De�ne:

� ϕ [rad]: �apwise oscillation angle,

� Ω [rad s−1]: rotation frequency,

� M(ϕ) [Nm]: restoring moment.

The equation of motion is:

Iϕ̈ = M(ϕ). (4.65)

The restoring moment M(ϕ) comes from centrifugal forces:

M(ϕ) = −
∫ R

0

µ(r)Ω2r cos(ϕ) sin(ϕ)︸ ︷︷ ︸
≈ϕ

r dr, (4.66a)

≈ −ϕΩ2

∫ R

0

µ(r)r2dr, (4.66b)

= −ϕΩ2 I. (4.66c)
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Figure 4.28: Rotating, hinged beam model for �apwise blade oscillations.

Substituting into Equation (4.65) gives:

Iϕ̈ = −Ω2Iϕ ⇔ ϕ(t) = A sin(Ωt). (4.67)

Thus, the eigenfrequency equals the rotor frequency.

4.7.2 Rotating beam with torsional spring

Now assume the beam is attached to a torsional spring with sti�ness K [Nmrad−1] (see
Figure 4.29).

Figure 4.29: Rotating beam with torsional spring sti�ness K.

The natural resonance frequency due to the spring alone is:

ωNR =

√
K

I
, (4.68)
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and the moment becomes:

M(ϕ) = −Ω2Iϕ−Kϕ. (4.69)

The equation of motion is:

Iϕ̈ = −
(
Ω2I +K

)
ϕ. (4.70)

Dividing by I:

ϕ̈ = −
(
Ω2 +

K

I

)
ϕ, (4.71a)

= −
(
Ω2 + ω2

NR

)
ϕ, (4.71b)

where ω2
NR = K/I.

Finally, the total resonant frequency of the rotating beam is:

ω2
R = ω2

NR + Ω2, (4.72)

showing the e�ect of centrifugal sti�ening: rotation adds an extra Ω2 term, increasing
the overall eigenfrequency of the blade.
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Chapter 5

Control of Wind Turbines

There are two di�erent ways of controlling wind turbines:

1. Passive control by mechanical design. For example, some turbines rely on
passive elements such as tails and vanes to orient themselves into the wind.

Figure 5.1: Tail-rotor used for passive control of a wind turbine.

Figure 5.2: Vane used for passive orientation of a wind turbine.

2. Active control by sensor�actuator systems. This method typically uses digital
controllers and actuators to actively manage turbine operation.
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Figure 5.3: Example of an active control system using sensors and actuators.

5.1 Sensors and Actuators in wind turbines

Wind turbines rely on a variety of sensors and actuators to monitor their state and control
their operation.

Sensors Typical sensors found in a modern wind turbine include:

� Generator speed, rotor speed, wind speed, yaw rate

� Temperature of gearbox oil, generator winding, ambient air, etc.

� Blade pitch, blade azimuth, yaw angle, wind direction

� Grid power, current, voltage, and grid frequency

� Tower top acceleration, gearbox vibration, shaft torque, blade root bending mo-
ment, etc.

� Environmental sensors for icing, humidity, and lightning detection

Actuators Common actuators used in wind turbines include:

� Generator (acting as both actuator and energy conversion device)

� Electric motors for pitch and yaw systems

� Linear motors, magnets, and switches

� Hydraulic power units and pistons (for high-power and high-speed control)

� Resistance heaters and fans for temperature regulation

� Mechanical brakes for the rotor and yaw system

5.2 Control system architecture

Usually, the supervisory control operates at a high level, determining the turbine
operating status. The dynamic control operates at a lower level, handling fast-changing
variables such as torque, pitch, and power.

5.3 Control of variable speed turbines

For speed control, the main actuators are:
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Figure 5.4: Overview of control system architecture for a wind turbine.

� Blade pitch

� Generator torque (this is controlled slowly to avoid drive-train oscillations)

Figure 5.5: Rotation speed as a function of wind speed.

Because the wind speed on the rotor disc cannot be perfectly known, we must consider
what the maximum power production and power coe�cient CP (λ, β) can be.

The power function is given by:

P =
1

2
ρAU3

∞CP (λ, β), (5.1)

where:

� P [W] is the mechanical power,

� ρ [kgm−3] is air density,

� A [m2] is the swept area of the rotor,
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� U∞ [ms−1] is the free-stream wind speed,

� CP [�] is the power coe�cient,

� λ = ΩR
U∞

is the tip-speed ratio, and

� β [◦] is the collective blade pitch angle.

The power coe�cient CP is maximized at λ = λ∗ (e.g. λ∗ = 7) and β = β∗. The optimal
power coe�cient is denoted C∗

P = CP (λ
∗, β∗). (Note: The asterisk ∗ denotes the optimal

value.)

Figure 5.6: Pitch angle β, generator torque QGen, and tip-speed ratio λ as functions of
wind speed, in the di�erent control regions.

The generator torque is denoted QGen, and in equilibrium we have:

QGen = QAero.

Operating regions The turbine's operation is divided into several wind speed re-
gions:

� Region IIA: The tip-speed ratio λ is �xed to λIIA
fix = ΩminR

U∞
, and the blade pitch β

is maximized. The power coe�cient is then:

CP = CP (λ
IIA
fix , β).

� Region IIB (subrated): λ = λ∗ and β = β∗. The power coe�cient is optimal:

CP = C∗
P = CP (λ

∗, β∗).

This means that:
P ∝ U3

∞.

� Region IIC & III: The tip-speed ratio λ is again �xed to λIIC
fix = ΩmaxR

U∞
, and β is

regulated to control power. Region III is the maximum power region.
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The blade pitch β∗ is centered at 0 degrees because the blades are designed such that the
power coe�cient is maximized at that pitch.

5.4 Torque control at partial load (in region IIB)

The generator torque QGen [Nm] can be controlled directly and should counteract the
aerodynamic torque QAero [Nm].

Given the rotor inertia I [kgm2], the rotor speed Ω [rad s−1] satis�es the ordinary di�er-
ential equation:

IΩ̇ = QAero −QGen. (5.2)

The aerodynamic torque QAero depends on wind speed U∞, rotor speed Ω, and blade
pitch angle β.

The aerodynamic power is given by:

PAero = ΩQAero,

and since Ω = λU∞
R

we can express QAero as:

QAero =
PAero

Ω
=

1

2
ρ(πR2)U3

∞
CP (λ, β)

λU∞
, (5.3a)

=
1

2
ρπR3U2

∞
CP (λ, β)

λ︸ ︷︷ ︸
:=CQ(λ,β)

, (5.3b)

=
1

2
ρπR5Ω2CP (λ, β)

λ3
. (5.3c)

How to choose QGen when only Ω is measured? The goal is to �nd the function
QGen(Ω) that keeps the turbine at the optimal tip speed ratio λ∗ in Region IIB.

Intuitively:

� Apply a higher QGen if Ω is too high.

� Apply a lower QGen if Ω is too low.

At the optimal speed Ω∗ = λ∗U∞
R

we must have:

QAero(Ω
∗, U∞, β∗) = QGen(Ω

∗). (5.4)

Thus, the generator torque control law is de�ned as:
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QGen(Ω) := QAero

(
Ω,

RΩ

λ∗ , β∗
)
, (5.5a)

=
1

2
ρπR5CP (λ

∗, β∗)

(λ∗)3
Ω2, (5.5b)

where the term

1

2
ρπR5CP (λ

∗, β∗)

(λ∗)3︸ ︷︷ ︸
=:KGen

is a constant torque coe�cient.

Stability at Ω∗ From Equation (5.2) we write the rotor speed derivative:

Ω̇ = f(Ω) =
1

I
(QAero(Ω, U∞, β∗)−QGen(Ω)) . (5.6)

Question 1: Is f(Ω∗) = 0?

Yes. If Ω∗ = λ∗U∞
R

, then by construction:

QAero(Ω
∗, U∞, β∗) = KGen(Ω

∗)2,

so indeed f(Ω∗) = 0.

Question 2: Is the equilibrium stable?

We look at the derivative of f with respect to Ω:

df

dΩ
=

1

I

(
dQAero

dΩ
− dQGen

dΩ

)
.

At Ω = Ω∗, we evaluate:

dQGen

dΩ
= 2KGenΩ,

and similarly:

dQAero

dΩ
= 2KGenΩ,

but because QGen is actively controlled, the net slope is negative.

Simplifying:
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df

dΩ

∣∣∣∣
Ω∗

= −1

I

1

2
ρπR53C

∗
PΩ

∗

(λ∗)3
.

This derivative is strictly negative, meaning the control law is stable.

The settling time is inversely proportional to Ω∗ (or equivalently, proportional to 1
Ω∗ or

R
U∞

).

5.5 Thrust jump at nominal wind speed

Figure 5.7: Power and thrust as functions of wind speed.

The reason for the reduction in thrust for U0 > Unom is the reduction of the induction
factor a.

Recall some facts from Betz theory The power coe�cient and thrust coe�cient
are given by:

CP =
P

1
2
ρAU3

0

= 4a(1− a)2,

CT =
T

1
2
ρAU2

0

= 4a(1− a),

T =
P

(1− a)U0

.

The optimal power harvesting is achieved for induction factor a∗ = 1
3
.
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How does a depend on U0? At the Betz limit we have:

C∗
P := CP (a

∗) =
16

27
,

and

dCP

da

∣∣∣∣
a∗

= 0.

For U0 ≥ Unom we must ensure P = Pnom, which is only possible if we reduce CP .

In a pitch-controlled system, CP is reduced by reducing the induction factor a (alterna-
tively, one could also increase the induction factor to reduce the power).

For CP < C∗
P we have a < a∗. Applying a Taylor expansion:

CP = 4a(1− a)2 = C∗
P +

1

2

d2CP

da2
(a− a∗)2 + higher order terms. (5.7)

The derivatives are:

dCP

da
= 4(1− a)2 − 8a(1− a),

d2CP

da2
= −16(1− a) + 8a → d2CP

da2

∣∣∣∣
a∗

= −8.

Plugging this into Equation (5.7) gives:

CP = C∗
P − 4(a− a∗)2,

so that:

a− a∗ = −
√

C∗
P − CP

4
. (5.8)

How does T depend on U0 − Unom > 0? Starting from:

CP = C∗
P +

dCP

dU0

(U0 − Unom) + higher order terms. (5.9)

For P = Pmax and U0 = Unom:

CP =
Pmax

1
2
ρAU3

0

.

Di�erentiating:
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dCP

dU0

= − 3Pmax

1
2
ρAU4

0

→ dCP

dU0

= − 3C∗
P

Unom

.

Plugging into Equation (5.9):

CP = C∗
P − 3C∗

P

(U0 − Unom)

Unom

,

or equivalently:

C∗
P − CP = 3C∗

P

(U0 − Unom)

Unom

.

Substitute this result into Equation (5.8) to get the relationship between induction factor
and wind speed:

a− a∗ = −

√
3C∗

P

4Unom (U0 − Unom)
. (5.10)

E�ect on thrust The thrust is given by:

T = CT · 1
2
ρAU2

0 = 4a(1− a) · 1
2
ρAU2

0 .

Di�erentiating thrust with respect to U0:

dT

dU0

= Tnom +
Pmax

2Unom(1− a)
(U0 − Unom) + (a(U0)− a∗)

U0

(1− a)Unom

,

which simpli�es to:

T = Tnom

[
1− U0 − Unom

Unom

−
√

3C∗
P

4Unom

(U0 − Unom)

]
.
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Chapter 6

Alternative Concepts

6.1 Vertical axis wind turbines

There are two main di�erences between horizontal axis wind turbines (HAWTs), which
we have been studying so far, and vertical axis wind turbines (VAWTs):

� A VAWT's generator is mounted at ground-level, simplifying the structural require-
ments on the tower and also making construction easier.

� HAWT blades are always passing through similarly 'fresh' �ow, whereas VAWT
blades have a 'front pass' through fresh �ow, and a 'back pass' through a slowed
(and turbulent) �ow. This usually makes VAWTs less e�ecient (smaller CP) that
HAWTs.

Two main vertical axis wind turbine types are presented here: the Darrieus rotor and the
Savonius turbine.

There main di�erence between the two, is in how each system produces power. In the
case of the Savonius turbine, it's a drag force from the wind on the "cup" side of the
blades that causes the rotor to turn. In the case of the Darrieus turbine, the blades pass
perpendicular to the freestream (as they do in the 'normal' horizontal axis wind turbines
(HAWTs)), meaning that it's a lift force that drives rotation. But, di�erent from HAWTs
and Savonius rotors, when Darrieus rotors are not rotating, there generally is not enough
aerodynamic force pointed in the tangential rotation for the turbine to start on it's own.
Because of this, it's common practice to pair the two systems, with a more-e�cient
(higher CP) Darrieus turbine intended to produce power in normal operation mounted in
combination with a small Savonius turbine intended to start the system.

6.2 Airborne wind energy (AWE)

For further detail, see the lecture slides (link provided in the notes): https://www.

syscop.de/files/2018ss/WES/lectures/20180711WES-AWE.key.pdf

There are two main system concepts:

� In the �rst, there are generators and propellers on-board the kite, whose generated
electricity is sent down through an electri�ed tether to the ground. This concept is
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(a) Side view of a Darrieus vertical axis wind

turbine. (b) Top view of a Darrieus rotor.

(c) Side view of a Savonius wind turbine. (d) Top view of a Savonius rotor.

Figure 6.1: Typical vertical axis wind turbine system types

variously called: "drag-mode" or "ground-gen" or "on-board generation".

� In the second, the tether is wrapped around the generator drum, and the kite �ies
variable-lift trajectories, so that the tether unwinds the generator at high tension
before the tether gets re-wound at low tension. This concept is variously called:
"lift-mode" or "�y-gen" or "pumping-cycle".

Variant 2: Generator on ground (pumping cycle) We assume the following:

� The e�ect of gravity is neglected.

� The cable is parallel to the wind W .

� The kite �ies crosswind with high speed.

Where the variables are de�ned as:

� V = λ ·W

� W : real wind speed [ms−1]

� V : kite speed [ms−1]

� α: roll-out speed as a fraction of the real wind speed

6.2.1 Loyd's formula

Regard a kite or airfoil under idealized conditions:

� The tether is parallel to the wind.

� Gravity is neglected, steady wind W ≡ U∞.

� Steady crosswind �ight with downward components.
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Figure 6.2: Ground-based airborne wind energy concept with a pumping cycle.

Given CL, CD, roll-out speed αW , wing area A, and tip speed ratio λ, the wind and
motion vectors in the x�y frame are:

W =

[
−W
0

]
(6.1)

V =

[
−αW
λW

]
(6.2)

The e�ective wind is:

Ve = W −V =

[
(1− α)W
−λW

]
(6.3)

with magnitude:

∥Ve∥ = W
√

(1− α)2 + λ2.

Drag and lift forces The drag force is:

FD =
1

2
ρA∥Ve∥2CD

Ve

∥Ve∥
(6.4a)

=
1

2
ρAV 2

e CD

[
(1− α)

−λ

]
1√

(1− α)2 + λ2
(6.4b)
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Figure 6.3: Kite crosswind con�guration for Loyd's formula.

and the lift force is:

FL =
1

2
ρA∥Ve∥2CL

Ve

∥Ve∥
(6.5a)

=
1

2
ρAV 2

e CL

[
λ

(1− α)

]
1√

(1− α)2 + λ2
(6.5b)

Sum of forces

FL + FD =
1

2
ρAV 2

e

1√
(1− α)2 + λ2

[
CD(1− α) + CLλ
−CDλ+ CL(1− α)

]
. (6.6)

Force balance In steady state there is no acceleration, so the force in the y-direction
must be zero. This yields:

λCD = (1− α)CL. (6.7)

Rearranging:

λ =
CL

CD

(1− α). (6.8)

Power generation The generated power is equal to roll-out speed αW times the
x-component of tether tension FT :

P = αWFT (6.9a)

= αW · 1
2
ρAW 2

√
(1− α)2 + λ2 (CD(1− α) + CLλ) (6.9b)

=
1

2
ρAW 3α(1− α)2

(
C3

L

CD

)
(6.9c)

=
1

2
ρAW 3C

2
L

CD

(
1 + 2α(1− α)2

)
. (6.9d)
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Optimization The maximum power is reached when α(1− α)2 is maximized:

f(α) = α(1− α)2. (6.10)

Di�erentiating:

f ′(α) = (1− α)2 − 2α(1− α) = 0. (6.11)

From Equation (6.11), we �nd:

(1− α) = 2α ⇒ α∗ =
1

3
.

Evaluating at α∗:

f(α∗) =
4

27
.

Figure 6.4: Optimal reel-out factor α∗ and Loyd's formula derivation.

Loyd's formula The �nal Loyd's formula for maximum power is:

P =
1

2
ρAW 3 · 4

27
· C

2
L

CD

(
1 +

C2
D

C2
L

)
︸ ︷︷ ︸

≈1

(6.12)

Example Consider CL = 1, CD = 0.05, W = 10 m/s, and ρ = 1.2 kg/m3.

We compute:

C2
L

CD

=
12

0.05
= 20.

Substituting:

P

A
=

1

2
ρW 3 · 4

27
· CL

C2
L

CD

(
1 +

C2
D

C2
L

)
︸ ︷︷ ︸

ζ �Harvesting factor zeta�
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ζ =
4

27
· 400

(
1 +

1

400

)
≈ 59

This yields a harvesting factor (�zeta�) of approximately 59 and a maximum speci�c
power:

P/A ≈ 36 kW/m2.
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