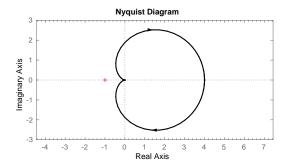

Prüfung zur Systemtheorie und Regelungstechnik I, Universität Freiburg, SoSe 2025 (Prof. Dr. M. Diehl)

Mikrok	lausur 4	4 am	22.	07	.2025

Mikroklausur 4 am 22.07.2025			
Übungsgruppe: 1 Patrick Wirbel	2 Felix Weyel	3 Kilian Deichner	4 Thomas Spoegler
Name:	Matrikeln	nummer:	Punkte: /9
Füllen Sie bitte Ihre Daten ein und machen echnungen nutzen, aber bitte geben Sie an Kreuze () Punkte.			
1. Der geschlossene Kreis eines geregel sitivitätsfunktion $T(j\omega)$ beschrieben		ch die Sensitivitätsfunktionen $S(j\omega)$ un	nd die komplementäre Ser
0 (gp -10 -20 -30 -10		ncy (rad/sec)	
Dieses System hat ein gutes Verhalte	en für		
(a) Störungen mit Frequenz ω	$v = 60 \frac{\text{rad}}{\text{s}}$	(b) Messrauschen mit Frequenz	$\omega = 1 \frac{\text{rad}}{\text{s}}$
(c) Referenzsignale mit Frequenz $\omega = 100 \frac{\rm rad}{\rm s}$		(d) Referenzsignal mit Frequen	$z \omega = 1 \frac{\text{rad}}{\text{s}}$
2. Welche der folgenden Aussagen über	r das Wind-Up ist falsch?		
(a) Durch das I-Glied im PID lerinduzierten Oszillationen komme		(b) Für den P- und den D-Regle marginales Problem.	er ist die Saturation ein
(c) Der Integrationsanteil be Regler kann im ungünstigsten Fall		(d) Wind-Up kann durch die ged meters $K_{\rm D}$ verhindert werden.	eignete Wahl des Para-
Betrachten Sie das folgende Nyquist	Diagramm einer stabilen	offenen Kette.	

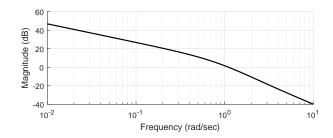
Das System hat die folgende Phasenreserve:

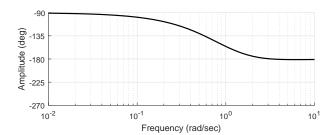

(a) 180° (b) 70°	(c) 20°	(d)
------------------	---------	-----

4. Ein LTI-System wird durch die Übertragungsfunktion $G(s)=\frac{2s+1}{(s+4)(s+5)}$ beschrieben. Wenn der Regler K(s)=s benutzt wird, ist die komplementäre Sensitivitätsfunktion T(s) gegeben durch

(c) $\frac{2s+1}{3s^2+10s+20}$	(d) $\frac{2s^2+s}{(s+4)(s+5)}$
----------------------------------	---------------------------------

5. Betrachten Sie das folgende Nyquistdiagramm.

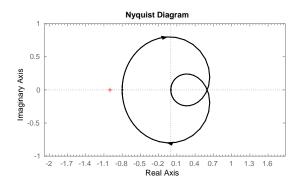

	••		entspricht es?
XX7-1-1	T 11	.C 1 - 4 :	
weicher	Lineriragiings	HIINKHAN	enienrichi ee /
***************************************	Cocinagango	i unikuon	chitaphichit ca.


(a) $\frac{s+4}{s^2+s}$	(b) $\frac{8}{(s+1)(s+2)}$	$(c) \qquad \frac{4s}{s^2 + s + 1}$	$(d) \qquad \frac{s+4}{s^2+s+1}$

6. Welche der folgenden Aussagen bezüglich der Ortskurve ist falsch?

(a) Die Ortskurve ist symmetrisch zur reellen Achse.	(b) Ortskurve is ein anderer Begriff für Nyquist- Diagramm
(c) Die Ortskurve enthält die gleiche Informationen wie das Bode-Diagramm.	(d) \square Es gibt lineare Systeme, bei denen die Ortskurve für $\omega \to 0$ beliebig grosse Werte annimmt.

7. Betrachten Sie das folgende Bode Diagramm.



Das System hat die folgende Statische Verstärkung:

= J			
(a) 0 dB	(b) 45 dB	(c) _ ∞	(d) <u></u> −∞

8. Betrachten Sie das folgende Nyquist Diagramm einer stabilen offenen Kette.

Das System hat die folgende Amplitudenreserve:

(a) 1.25 (b) -0.8	(c) 0.8	(d) <u></u> ∞	
-------------------	---------	---------------	--

9. Ein LTI-System wird durch die Übertragungsfunktion $G(s) = \frac{2s+1}{(s+3)(s-2)}$ beschrieben. Betrachten Sie den Regler $K(s) = \frac{s-2}{s+1}$. Was können wir über die Eingang/Ausgangs (E/A) Stabilität und die innere (I) Stabilität des geschlossenen Kreises sagen?

(a) E/A-stabil, I-stabil	(b) E/A-stabil, I-instabil
(c) E/A-instabil, I-instabil	(d) E/A-instabil, I-stabil

