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1. What is an optimization problem? Objective, degrees of freedom, constraints. Feasible set?
Standard form of NLP.

An optimization problem consists of the following three ingredients:

• An objective function x 7→ f(x) ∈ R that shall be maximized or minimized.

• Some decision variables, typically lying in a vector space Rn: x ∈ Rn

• A feasible set Ω ⊂ Rn, typically defined by equality and inequality constraints:

Ω =
{
x ∈ Rn

∣∣ g(x) = 0 and h(x) ≥ 0
}

(1)

The problem is then written as follows:

minimize
x ∈ Rn

f(x) (2a)

subject to g(x) = 0, (2b)

h(x) ≥ 0. (2c)

2. Definition of global and local minimum.

We say that x? is a global minimizer when it is feasible, i.e. x? ∈ Ω and optimal, i.e.
∀x ∈ Ω : f(x) ≥ f(x?).
We say that it is the strict global minimizer when x? ∈ Ω and ∀x ∈ Ω \ {x?} : f(x) > f(x?).
We say that it is a local minimizer when there exists a neighborhoodN of x? (e.g. an open ball
around x?) such that it is optimal within that neighborhood, i.e. ∀x ∈ Ω∩N : f(x) ≥ f(x?).

3. State a condition under which there exists at least one minimizers.

If the feasible set is compact, i.e. bounded and closed, and the objective function is continuous,
then there exists at least one global minimizer (this is called the Theorem of Weierstrass)

4. Types of optimization problems: Linear / Quadratic programming (LP/QP), convex,
smooth, mixed-integer, ...
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• LP:

minimize
x ∈ Rn

c>x (3a)

subject to Ax− b = 0, (3b)

Cx− d ≥ 0. (3c)

• QP:

minimize
x ∈ Rn

c>x+
1

2
x>Bx (4a)

subject to Ax− b = 0, (4b)

Cx− d ≥ 0. (4c)

• Convex problem: in the following form: f(·) a convex function, each component hj(·)
has to be concave, and g(·) has to be affine

minimize
x ∈ Rn

f(x) (5a)

subject to g(x) = 0, (5b)

h(x) ≥ 0. (5c)

• Smooth problem: the functions f(·), g(·) and h(·) are continuously differentiable in
the following problem

minimize
x ∈ Rn

f(x) (6a)

subject to g(x) = 0, (6b)

h(x) ≥ 0. (6c)

• Mixed-integer program: some of the variables are restricted to integers:

minimize
x ∈ Rn, z ∈ Zn′

f(x, z) (7a)

subject to g(x, z) = 0, (7b)

h(x, z) ≥ 0. (7c)

5. When is a function convex? Gives the definition and a characterization when it is twice
differentiable. Definition. If it is twice differentiable?
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A function f : Ω→ R is convex,if Ω is convex and if:

∀x, y ∈ Ω, t ∈ [0, 1] : f(x+ t(y − x)) ≤ f(x) + t(f(y)− f(x)) (8)

i.e. all secants are above graph.
When f(·) is twice continuously differentiable and Ω convex, then it is convex if and only if
the Hessian is positive semi-definite at all point, i.e.

∀x ∈ Ω : ∇2f(x)< 0 (9)

6. When is a set convex? Definition.

A set Ω ⊂ Rn is convex,if:

∀x, y ∈ Ω, t ∈ [0, 1] : x+ t(y − x) ∈ Ω (10)

i.e. all connecting lines lie inside set.

7. What is a “stationary” point in the the case of unconstrained smooth optimization?

In the case of unconstrained optimization a stationary point is a point x̄ where the gradient
is zero: ∇f(x̄) = 0.

8. How are gradient and Hessian of a function f : Rn → R defined?

The gradient of f(·) is defined to be the vector field whose components are the partial
derivatives of f , i.e.:

∇f(x) :=


∂f
∂x1
...
∂f
∂xn

 (11)

The Hessian of f(·) is the matrix containing the second derivatives of f :

∇2f(x) :=


∂2f
∂x2

1

∂2f
∂x1∂x2

· ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· ∂2f
∂x2

n

 (12)

9. What are the first order necessary conditions for optimality (FONC) in the case of
unconstrained optimization problems?
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The theorem states that if f(·) is continuously differentiable, and x? is a solution of the
problem:

minimize
x ∈ Rn

f(x). (13)

Then x? is a stationary point, i.e.
∇f(x?) = 0 (14)

10. What are the second order necessary conditions for optimality (SONC) in the case of
unconstrained optimization problems?

The theorem states that if f(·) is twice continuously differentiable, and x? is a solution of the
problem:

minimize
x ∈ Rn

f(x). (15)

Then x? is a stationary point and the Hessian is positive semi-definite at this point, i.e.

∇f(x?) = 0,∇2f(x?)< 0. (16)

11. What are the second order sufficient conditions for optimality (SOSC) in the case of
unconstrained optimization problems?

The theorem states that if f(·) is twice continuously differentiable, and x? is a stationary
point and the Hessian is positive definite at this point, i.e.

∇f(x?) = 0,∇2f(x?)� 0, (17)

then x? is a local minimizer to the problem:

minimize
x ∈ Rn

f(x). (18)

12. Basic idea of iterative descent methods?

It is an iterative algorithm where at iteration k, the iterate xk ∈ Rn is the current best guess
to the solution, and we look for the next iteration xk+1 such that a sufficient decrease of the
value will be produced:

f(xk+1) ≤ f(xk)− . . . . (19)

13. Definition of local convergence rates: q/r-linear, superlinear, quadratic?
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Let (xk)k∈N be a sequence in Rn that converges to x?. We say that the convergence is:

• Q-linear: if there is a constant r ∈ (0, 1) such that for k sufficiently large:

‖xk+1 − x?‖ ≤ r ‖xk − x?‖ , (20)

e.g. xk = 1
2k

• R-linearly: if it is upperbounded by another sequence itself convering Q-linearly:

yk+1 ≤ ryk, (21a)

‖xk − x?‖ ≤ yk. (21b)

• Q-superlinear: if there is a sequence rk such that rk → 0 and:

‖xk+1 − x?‖ ≤ rk ‖xk − x?‖ , (22)

e.g. xk = 1
k!

• Q-quadratic: if there is a constant M > 0 such that:

‖xk+1 − x?‖ ≤M ‖xk − x?‖2 . (23)

14. What is a locally convergent algorithm? What is a globally convergent algorithm? What
does the term “globalization” usually mean for optimizers?

An algorithm is locally convergent when it converges to a solution under the condition that
it is initialized closed enough to a solution.
An algorithm is globally convergent when it converges to a solution no matter how it is
initialized.
The term “globalization” is a component of an algorithm to ensure convergence even for bad
initialization of the algotithm.

15. What is the Armijo condition? Why is it used in line-search algorithms?

The Armijo condition is a condition on the new iterate xk+1, making sure that it induces a
sufficient decrease of the objective function:

f(xk+1) ≤ f(xk) + γ∇f(xk)>(xk+1 − xk). (24)

Using this condition in a backtracking line-search algorithm often ensures global convergence
of the optimization algorithm (given some condition on the chosen descent direction).

16. Why is satisfaction of Armijo condition alone not sufficient to guarantee convergence towards
stationary points? Give a counterexample.
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If one choses xk+1 = xk + tkpk with pk being a descent direction, and the tk a sequence
that converges very quickly to zero, the algorithm might get stuck, even though the Armijo
condition will be satisfied.
Example: f(x) = x2 and xk+1 = xk− xk

(k+2)2
satisfies the Armijo condition for k large enough,

and yet it is does not converge to the solution:

xk =
k∏

i=2

(
1− 1

i2

)
x0, (25a)

=
1

2

k + 1

k − 1
x0 −→

k→+∞

x0
2
6= 0. (25b)

17. What is backtracking?

In backtracking, the candidates for the next iterate is xk+1 = xk + tkpk, and we shrink the
step size tk ← βtk with β ∈ (0, 1) until a condition is satisfied.
Usually, the condition is the Armijo condition, we start at tk = 1 and we choose β = 0.8.

18. Define the the steepest descent method. What is the local convergence rate?

The steepest descent method is the following iterative algorithm:

xk+1 = xk − α∇f(xk), (26)

with α > 0 being the learning rate.
If the learning rate α is small enough to ensure convergence, the steepest descent method
converges Q-linearly to a stationary point, i.e.:

‖xk+1 − x?‖ ≤ r ‖xk − x?‖ ≤ · · · ≤ rk+1 ‖x0 − x?‖ , (27)

where r is a constant in (0, 1).

19. What is Newton’s method for solution of nonlinear equations F (x) = 0? How does it iterate,
what is the motivation for it. How does it converge locally?

It is a numerical method for finding a solution to some nonlinear equation F (x) = 0. It is an
iterative method where at each step, we linearize the function F (·) at the current iterate xk
and solve the linearized equation. The iteration is given by:

xk+1 = xk −∇F (xk)−1F (xk). (28)

This locally converges very fast for smooth functions, i.e. the convergence rate is quadratic,
i.e.:

‖xk+1 − x?‖ ≤M ‖xk − x?‖2 , (29)

where M is a constant that depends on the function F (·) and the point x?.
A limitation is that the method is guranteed to converge only if the initial guess x0 is close
enough to some solution x?.
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20. How works Newton’s method for unconstrained optimization?

In Newton’s method for unconstrained optimization, we apply Newton’s method to the
nonlinear root-finding equation:

F (x) := ∇f(x) = 0. (30)

The resulting iteration is:

xk+1 = xk −∇2f(xk)−1∇f(xk). (31)

21. What are Newton-type / approximate Newton methods?

In Newton-type methods, we apply tyhe same idea, but replace the Hessian ∇2f(xk) by some
approximation Bk of the Hessian, i.e.:

xk+1 = xk −B−1k ∇f(xk), (32)

where Bk replaces the Hessian ∇2f(xk).

22. What is the idea behind Quasi-Newton methods?

In Quasi-Newton methods, the Hessian is approximated in such a way that the approximation
and the exact Hessian match eventually:

Bk −→
k→+∞

∇2f(xk). (33)

This is useful because it ensures superlinear convergence, often almost as good as the exact
Newton method.

23. What is the secant condition? How is it motivated?

The secant condition is a condition on the Hessian approximation that would justify the latest
change in the gradient. More precisely, it is the following condition:

Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk). (34)

This formula can be retrieved by linearizing the gradient.

24. What is the BFGS formula? Under which condition does it preserve positive definiteness?
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Write sk := xk+1 − xk the latest change in the solution point, and yk := ∇f(xk+1)−∇f(xk)
the latest change in the gradient.
The BFGS update formula is given by:

Bk+1 = Bk +
yky
>
k

y>k sk
−
Bksks

>
k Bk

s>k Bksk
. (35)

This preserves positive definiteness of the Hessian approximation Bk when y>k sk > 0.

25. Prove that the latter condition is necessary for any update formula satisfying the secant
condition to stay positive definite.

Multiplying on both side of the secant condition by s>k gives:

0 < s>k Bk+1sk = s>k yk, (36)

which proves that the condition was necessary.

26. What is a linear least squares problem (unconstrained)? What is a a nonlinear least squares
problem (unconstrained)?

• Linear least squares problem:

minimize
x ∈ Rn

1

2
‖Ax− b‖2 . (37)

• Nonlinear least squares problem:

minimize
x ∈ Rn

‖F (x)‖2 . (38)

where F : Rn → Rm is a nonlinear function.

27. How does the Gauss-Newton method iterate? When is it applicable?

Gauss-Newton method is an iterative method for solving nonlinear least squares problems.
It iterates by solving the linear least squares problem induced by a linearization of the inner
function F (·) at each iteration:

minimize
x ∈ Rn

1

2
‖F (xk) +∇F (xk)(x− xk)‖2 . (39)

28. When does the Gauss-Newton method perform well? What local convergence rate does it
have?
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In general, the Gauss-Newton method performs well when the nonlinear components of the
function F (·) are small at the solution. In general, the convergence rate is Q-linear, but it
might become superlinear when at the solution x?:

for j = 1, . . . ,m : ∇2Fj(x
?) = 0 or Fj(x

?) = 0. (40)

29. Statistical motivation of least squares terms in estimation problems?

Assume that some measurements ηj ∈ R are available, and modeled as follows:

ηj ≈Mj(x̄). (41)

where the model Mj : Rn → R is a function that depends on some parameters x̄ ∈ Rn. Then
a good estimate of the parameters x̄ is given by solving the least squares problem:

minimize
x ∈ Rn

m∑
j=1

(ηj −Mj(x))2. (42)

This is motivated statistically by assuming that the noise is normally distributed:

ηj = Mj(x̄) + εj , (43a)

εj ∼ N (0, σ2). (43b)

In this case, the maximum likelihood problem is equivalent to the least squares problem, i.e.:

minimize
x ∈ Rn

− log p(measurements | x) =
m∑
j=1

1

2σ2
(ηj −Mj(x))2. (44)

30. What are the differences and similarities between line search and trust region methods?

These two methods are for ensuring global convergence by preventing the algorithm from
taking too large steps.
In trust-region algorithm, the next iterate is restricted to be in a trust region around the
current iterate xk, so the step is constrained before computing it.
In line-search algorithm, after computing a descent direction, the algorithm searches for the
right size of step to take in this direction.

31. List two ways to compute derivatives with help of computers.

• Finite differences;

• Automatic differentiation;

32. What errors occur when computing derivatives with finite differences? Do you know a rule
of thumb of how large to choose the perturbation?
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In finite differences, for computing the derivative w.r.t. one direction, we use:

∇f(x)>p ≈ f(x+ εp)− f(x)

ε
. (45)

If ε is too small the derivative will suffer from numerical noise (round-off error). On the
other hand, if ε is too large the linearization error will be dominant.
A good rule of thum is to use t =

√
εmach which ensures an error on the scale of

√
εmach.

For example, if the computer computes f(x) with a precision of ±10−10 (i.e. 10 digits of
accuracy), then the derivatives will be computed with an error of about ±10−5 (i.e. 5 digits
of accuracy.)

33. What is the idea behind Automatic Differentiation (AD)? What is its main advantage?

Automatic Differentiation takes a function as a list of elementary operations to computes,
where each of the elementary operations has a known derivative. Then, it computes the
derivative of the function by applying the chain rule to each elementary operation, and
combining the results.
The advantage is that it computes derivatives with machine precision and that the
computational cost scales nicely with the dimension of the function.

34. Can AD be applied to compute second order derivatives?

Yes, by applying twice the AD principle, second-derivatives are seamlessly computed.

35. There are two ways of AD. Describe briefly. What are the advantages / disadvantages of
the two?

There are two modes of AD:

• Forward mode: Applying the chain rule from the input to the output. This can be
done while computing the value of the function itself. The cost of this algorithm scales
nicely with the number of outputs. Hence this is useful when the function has a small
number of inputs and a large number of outputs.

• Reverse/Backward mode: Applying the chain rule from the output to the input.
For this, the algorithm needs the value of all of the intermediate variables, so a forward
sweep is needed first (i.e. what we do when we evaluate the function). The disadvantage
is that one needs to save in memory all of the intermediate variables before computing
the derivative. The advantage is that the computational cost of this algorithm scales
nicely with the number of inputs. Hence this is useful when the function has a large
number of inputs and a small number of outputs. Note that this is typically the case
when one is required to compute the gradient of the objective function.

36. Write a nonlinear program (NLP) in its standard form. How is the lagrangian function
defined?
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The standard form of a nonlinear program (NLP) is typically:

minimize
x ∈ Rn

f(x) (46a)

subject to g(x) = 0, (46b)

hj(x) ≥ 0. (46c)

The Lagrangian function of this NLP is defined as:

L(x, λ, µ) = f(x)− λ>g(x)− µ>h(x), (47)

where λ is a vector with the same dimension as the number of equality constraints, and µ is
a vector with the same dimension as the number of inequality constraints.

37. What is the constraint qualification (CQ)? What is the linear independence constraint
qualification (LICQ) at some point x̄?

CQ refers to some regularity conditions on the active constraints at some point x̄. One
of the most common CQ is the linear independence constraint qualification (LICQ), which
states that the gradients of the active constraints at x are linearly independent, i.e. the
vectors ∇gj(x̄) (for all index j) and ∇hk(x̄) (for indices k such that hk(x̄) = 0) are linearly
independent.

38. What are the Karush-Kuhn-Tucker (KKT) conditions for optimality? Why is it useful?

The KKT conditions are necessary conditions for a point to be a minimizer when LICQ holds.
More formally, if x ∈ Rn is such that LICQ holds, and is a local minimizer, then there exists
some Lagrange multiplier vectors λ and µ,such the following conditions hold:

∇f(x)− λ>∇g(x)− µ>∇h(x) = 0, (48a)

g(x) = 0, (48b){
h(x) ≥ 0,

µ = 0,
or

{
h(x) = 0,

µ ≥ 0.
(48c)

39. What are the first order necessary conditions for optimality (FONC) (constrained)?
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FONC (variant 1):

i. x? ∈ Ω,

ii. ∀p ∈ F(x?), it holds: ∇f(x?)>p ≥ 0.

FONC (variant 2):
There exists a λ? ∈ Rm and µ? ∈ Rq such that the KKT conditions hold:

∇f(x?)−∇g(x?)λ? −∇h(x?)µ? = 0, (49a)

g(x?) = 0, (49b)

h(x?) ≥ 0, (49c)

µ? ≥ 0, (49d)

µ?ihi(x
?) = 0, i = 1, . . . , q. (49e)

40. What are the second order necessary conditions for optimality (SONC) (constrained)?

SONC:

i. ∃λ?, µ? so that KKT conditions hold;

ii. ∀p ∈ C(x?, µ?) holds that p>∇2
xL(x?, λ?, µ?)p ≥ 0;

where C(x?, µ?) ⊂ F(x?) is the critical cone.

41. What are the second order sufficient conditions for optimality (SOSC) (constrained)?

SOSC:

i. ∃λ?, µ? so that KKT conditions hold;

ii. ∀p ∈ C(x?, µ?), p 6= 0, holds that p>∇2
xL(x?, λ?, µ?)p > 0;

where C(x?, µ?) ⊂ F(x?) is the critical cone.

42. What is the “active set of constraints”?

This is the set of indices of inequality constraints such that the inequality is asctually an
equality. More precisely:

A(x) :=
{
k ∈ {, . . . ,m}

∣∣ hk(x) = 0
}
. (50)

43. Give a standard form of a QP.
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minimize
x ∈ Rn

c>x+
1

2
x>Bx (51a)

subject to Ax− b = 0, (51b)

Cx− d ≥ 0. (51c)

44. When is a QP convex?

A QP is convex whenever its Hessian B is positive semi-definite, i.e. B< 0.

45. What is the main idea of an active set strategy?

An active set strategy tries to identify the active set of constraints at each iteration such
that thez problem that is solved is equivalent to an equality constrained optimization problem
(instead of an inequality constrained optimization problem).

46. What is the main idea behind an SQP method (for inequality constrained problems)?

In SQP, at each iteration, the constaints are linearized, and the objective function is
approximated by a quadratic function.

47. What is the L1-penalty method for equality-constrained problems? Under which condition
is it “exact”, i.e. has the same local minima as the original NLP?

The L1-penalty method approximates the constrained problem:

minimize
x ∈ Rn

f(x) (52a)

subject to g(x) = 0, (52b)

with:

minimize
x ∈ Rn

f(x) + ρ ‖g(x)‖1 = f(x) + ρ
m∑
i=1

|gi(x)| . (53)

The approximation yields the exact solution whenever:

ρ ≥ ‖λ?‖∞ = max
i=1,...,m

|λ?i | , (54)

where λ? is the vector of Lagrange multipliers of the original problem at the solution x?.

48. How works Newton’s method for equality constrained optimization?



14

Newton’s method for equality constrained optimization involves iteratively solving a system
of equations derived from the first-order optimality conditions:

∇f(xk) + λ>k∇g(xk) = 0, (55a)

g(xk) = 0 (55b)

At each iteration, the method updates the current solution xk together with the associated
multipliers λk by solving the linearized version of the KKT conditions:[

∇2f(xk)− λ>k∇2g(xk) ∇g(xk)>

∇g(xk) 0

] [
x− xk
λ− λk

]
+

[
∇f(xk) + λ>k∇g(xk)

g(xk)

]
= 0. (56)

49. What local convergence rate does an SQP method with exact Hessian usually have?

It usually has a quadratic convergence rate under reasonable assumptions (i.e. LICQ, second
order sufficient conditions).

50. What is the basic idea of interior point methods? Gives two views this class of method.

Interior point methods are method to solve problems with inequality constraints. They
basically gives guideline to treat these inequalities in order to use tools from unconstrained
or equality-constrained optimization. In this method, the iterates should always be feasible
for the inequality constraints, and the inequalities have to be fulfilled in a strict sense.
There are two similar kinds of interior point methods (they are kind of equivalent, even
though they produce different iterates):

• In the primal-dual interior point method, we modify slightly the KKT conditions to
make them them less illed-conditionned, then we apply Newton’s method to iteratively
solve them. More precisely, in the KKT conditinos, the complementarity equations
µjhj(x) = 0 are replaced with µjhj(x) = τ with τ > 0 quite small. To ensure consistency
of the method, the parameter τ decreases and converges to 0 (or to some tolerance
value).

• In the logarithmic barrier interior point method: we add a barrier function −τ log h(x)
to the objective that pushes the solution to stay within the inequality constraints. More
precisely, we solve the following problem using the Newton’s method:

minimize
x ∈ Rn

f(x)− τ
m∑
j=1

log hj(x) (57a)

subject to g(x) = 0. (57b)

The parameter τ > 0 is chosen as above.

In both of the variations, the parameter τ > 0 is chosen quite small. To ensure consistency
of the method, the parameter τ decreases and converges to 0 (or to some tolerance value).
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51. What is the Lagrangian dual function of a general NLP?

The Lagrangian dual function is defined as follows:

q(λ, µ) := min
x∈Rn

L(x, λ, µ) = min
x∈Rn

f(x)− λ>g(x)− µ>h(x). (58)

52. What is the dual problem of a general NLP?

maximize
λ ∈ Rp, µ ∈ Rq

q(λ, µ) = min
x∈Rn

L(x, λ, µ) (59a)

subject to µ ≥ 0. (59b)

53. What is weak duality? To which problems does it apply?

Weak duality always hold, and it states that the optimal value of the dual problem is a lower
than the optimal value of the original (or primal) problem.

54. What is strong duality? Under which sufficient conditions does it apply?

Strong duality states that the optimal value of the dual problem is equal to the optimal value
of the original (or primal) problem.
It holds for convex problems under Slater’s condition, which states that there exists a feasible
point for which the nonlinear inequality constraints are inactive.

55. What is a semidefinite program (SDP)? Give a standard form.

An SDP is an optimization problem where the constraints are affine are Linear Matrix
Inequalities (LMI), and the objective is linear. More precisely, it takes the following form:

minimize
x ∈ Rn

c>x (60a)

subject to Ax− b = 0, (60b)

B0 +
n∑

i=1

Bixi< 0. (60c)

56. How would you reformulate the following eigenvalue optimization problem into an SDP for
A0, A1, A2 three symmetric matrices?

minimize
x ∈ R2

λmax(A0 + x1A1 + x2A2). (61)

minimize
s ∈ R, x ∈ R2

s (62a)

subject to A0 + x1A1 + x2A24 sI. (62b)


