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1. Given two convex functions f(x) and g(x), which of the following operations is NOT necessarily convex?

(a) affine input transformation: h(x) = f(Ax+ b) (b) sum: h(x) = f(x) + g(x)

(c) composition: h(x) = f(g(x)) (d) point-wise maximum: h(x) = max {f(x), g(x)}

1

2. Which of the following functions is strictly convex?

(a) f(x) = −5x2 (b) f(x) = log(x) (c) f(x) = 3x+ 1 (d) f(x) = ex

1

3. A point in the feasible set of an NLP that satisfies the KKT optimality conditions is

(a) the global minimum (b) a candidate for local minimum

(c) a boundary point (d) a local minimum

1

1WITHDRAWING FROM AN EXAMINATION: In case of illness, you must supply proof of your illness by submitting a medical report to the
Examinations Office. Please note that the medical examination must be done at the latest on the same day of the missed exam. In case of illness while
writing the exam please contact the supervisory staff, inform them about your illness and immediately see your doctor. The medical certificate must
be submitted latest 3 days after the medical examination. More information’s: http://www.tf.uni-freiburg.de/studies/exams/withdrawing exam.html

CHEATING/DISTURBING IN EXAMINATIONS: A student who disrupts the orderly proceedings of an examination will be excluded from the
remainder of the exam by the respective examiners or invigilators. In such a case, the written exam of the student in question will be graded as
’nicht bestanden’ (5.0, fail) on the grounds of cheating. In severe cases, the Board of Examiners will exclude the student from further examinations.
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4. Why is “globalization” used in the context of optimization?

(a) to make the iterations cheaper (b) to accelerate convergence

(c) to ensure convergence to a local minimum (d) to ensure convergence to the global minimum

1

5. Which of the following is NOT true for the fmincon solver that you used in the exercises

(a) It can be used through casadi (b) It can solve nonlinear programs

(c) It can be used through YALMIP (d) It can solve quadratic programs

1

6. The operation X = A\B in MATLAB, where A and B are matrices of appropriate dimensions, returns

(a) The solution to the equation BX = A (b) The solution to the equation AX = B

(c) The result of X = AB−1, if B is invertible (d) The point-wise division of the two matrices

1

7. How does one define a vector x ∈ Rn of optimization variables in YALMIP?

(a) x = optvar(n,1); (b) x = sdpvar(n);

(c) x = sdpvar(n,1); (d) x = optvar(n);

1

8. Define mathematically what is a strict local minimizer x∗ of the problem

min
x∈Rn

f(x) s.t. x ∈ Ω

2
9. Compute gradient ∇f(x) and Hessian∇2f(x) of the function f : R3 → R, (x1, x2, x3) 7→ f(x1, x2, x3) := x2

1 + x3
2 + x1x3.

3
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10. Duality: Regard the following equality constrained NLP (the primal problem)

min
x∈Rn

f(x) s.t. g(x) = 0

with global optimal solution x∗.

(a) Define the Lagrangian function L(x, λ) of this NLP.

2
(b) Define the Lagrangian dual function q(λ) of this problem. Is it convex or concave or none of the two?

2
(c) Regard now f(x) = 1

2x
TQx + cTx and g(x) = 1 − 1

2‖x‖
2
2 with an arbitrary symmetric matrix Q ∈ Rn×n and vector

c ∈ Rn. Define and explicitly compute, if possible, the Lagrange dual function. Depending on the eigenvalues of Q, for
which values of λ is q(λ) finite?

3
(d) Write down the dual problem and use weak duality to formulate a bound on the optimal objective value f(x∗). Is it a lower

or upper bound?

2
(e) For the case n = 1, c = 1, Q = −2, sketch the dual function q(λ) and compute the bound of the previous question explicitly.

2
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11. Line search: regard an iterative descent algorithm for unconstrained minimization of a differentiable function φ : Rn → R, at the
current iterate xk and with a search direction ∆xk.

(a) When does a trial point xk+1 = xk + αk∆xk with step length αk satisfy the “Armijo-Condition” ?

2
(b) For the same differentiable function φ, assume that there exists a global minimizer x∗ with f(x∗) > −∞. Regard now an

algorithm that generates an (infinite) sequence of points x0, x1, x2, x3, . . . such that each step satisfies the Armijo condition.
Will the sequence necessarily converge to a stationary point of φ? Justify your answer.

2

12. Convergence rates: You observe an iterative optimization algorithm while it converges towards a solution. In each iteration, it
gives you the norm of the current step.

(a) You see the sequence
iter |step|
1 1.067E-2
2 2.163E-3
3 4.275E-4
4 7.917E-5
5 1.678E-5
6 3.250E-6
7 6.436E-7

**** convergence achieved ****

What local convergence rate does the algorithm have?

1
(b) With another algorithm, you see the sequence

iter |step|
1 1.657E+2
2 2.123E+1
3 2.275E+0
4 7.917E-1
5 1.678E-2
6 3.250E-4
7 6.436E-8

**** convergence achieved ****

What local convergence rate does the algorithm have?

1
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13. Regard vectors s, y ∈ Rn and a symmetric matrix B ∈ Rn×n that satisfy Bs = y and sT y < 0. Is B positive definite? Justify
your answer.

2
14. Automatic differentiation: regard the task to compute the Jacobian of a function f : Rn → R2, x 7→ (f1(x), f2(x))T . If evaluating

f(x) uses one millisecond of CPU time and n = 1000, how much time do you need to compute ∂f
∂x (x) = ∇f(x)T using (a) the

forward and (b) the backward mode mode of automatic differentiation? Name one disadvantage of the backward mode compared
to the forward one.

3
15. Automatic Differentiation: regard the following algorithm to evaluate the function f : R3 → R2.

function [f1,f2]=myfunction(x1,x2,x3)
v1=x1*x2;
v2=log(v1);
f1=v2/v1;
f2=v1*x3;

Write an algorithm (by hand) that computes the directional derivative ∇f(x)T ẋ = ḟ in the direction ẋ ∈ R3 using the forward
mode of automatic differentiation. You can do this by adding extra lines to the following template function. Use the variables
v1dot, v2dot, f1dot, f2dot in the intermediate lines.

function [f1,f2,f1dot,f2dot] = my dir der func(x1,x2,x3,x1dot,x2dot,x3dot)

v1=x1*x2;

v2=log(v1);

f1=v2/v1;

f2=v1*x3;

end

4
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16. A three-page question: Regard the following optimization problem.

min
x∈R3

x3 s.t.

{
x2

1 + x2
2 ≤ 1
x3 ≥ (x1 − 1)4

(a) How many variables, how many equality, and how many inequality constraints does this problem have?

1
(b) Sketch the feasible set Ω ∈ R3 of this problem. (Hint: you may draw it from different sides.)

3
(c) Bring this problem into the inequality constrained NLP standard form:

min
x∈Rn

f(x) s.t. h(x) ≥ 0

by defining the functions f, h appropriately.

2
FROM NOW ON UNTIL THE END TREAT THE PROBLEM IN THIS STANDARD FORM.

(d) Is this optimization problem convex? Justify.

2
(e) An optimal solution of the problem is x∗ = (1, 0, 0)T . What is the active set A(x̄) at this point?

2
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(f) Is the linear independence constraint qualification (LICQ) satisfied at x? ? Justify.

3
(g) Write down the Lagrangian function of this optimization problem.

2
(h) Describe the tangent cone TΩ(x∗) (the set of feasible directions) to the feasible set at this point x∗, by a set definition formula

with explicitly computed numbers.

3
(i) Formulate the necessary optimality conditions of first order (also called Karush-Kuhn-Tucker (KKT) conditions) that a local

minimizer x∗ ∈ R3 of this problem must satisfy, both generally and specifically.

4
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(j) Find a multiplier vector µ∗ so that the above point x∗ satisfies the KKT conditions

3
(k) Describe the critical cone C(x∗, µ∗) at the point (x∗, µ∗) in a set definition using explicitly computed numbers.

3
(l) Formulate the second order necessary conditions for optimality (SONC) for this problem and test if they are satisfied at

(x∗, µ∗).

2
(m) Also formulate the second order sufficient conditions for optimality (SOSC) and test if they are satisfied at (x∗, µ∗).

2
(n) Can you prove that the point x∗ is a local (or even global) minimizer?

2
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17. Constrained Gauss-Newton: assume that you want to solve the following NLP

min
x∈R2

1

2
‖x‖22 s.t. (x1 − 4)2 + x2

2 − 9 = 0

and that the current iterate x[k] is given by x[k] = (1, 1)T . Using the Gauss-Newton Hessian approximation, formulate the
quadratic program (QP) that delivers the solution p[k], needed to compute the next iterate x[k+1] = x[k] + p[k]. Compute all
numbers in the matrices of the QP explicitly and use p = (p1, p2)T ∈ R2 as a variable.

4
18. Exact Hessian SQP: now we want to solve the same NLP as in Question 17, but with an exact Hessian SQP method. Assume

that the current primal iterate x[k] is again given by x[k] = (1, 1)T and the current multiplier guess by λ[k] = −1. Formulate
the QP that delivers the next step p[k] (and multiplier guess λ[k+1]). What is different in the exact Hessian QP compared to the
Gauss-Newton QP from Question 17?

4
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