
i
i

“ex4” — 2025/6/17 — 11:47 — page 1 — #1 i
i

i
i

i
i

Exercises for Lecture Course on Numerical Optimization (NUMOPT)
Albert-Ludwigs-Universität Freiburg – Summer Semester 2025

Exercise 4: Constrained Optimization
Léo Simpson, Prof. Dr. Moritz Diehl, with contributions from previous teaching assistants

The solutions for these exercises will be given and discussed during the exercise session on June 17th.
To receive feedback on your solutions, please hand it in during the exercise session on June 17th, or by
e-mail to leo.simpson@imtek.uni-freiburg.de before the same date.

I Simple equality constrained optimization
In this exercise, we discuss the following simple equality constrained example (already discussed in the
lecture):

minimize
x1, x2 ∈ R

x2

subject to x2
1 + x2

2 − 1 = 0.
(1)

1. Is this problem convex?

Solution: There is a nonlinear inequality constraint, hence the problem is not convex.

2. Write the Lagrangian L (x1, x2, λ) of the problem.

Solution:

L(x1, x2, λ) = x1 − λ(x2
1 + x2

2 − 1)

3. Derive the first order necessary conditions (FONC) of optimality for this problem.

Solution: FONC:

∇L(x1, x2, λ) = 0

Which implies:

−2λx1 = 0

1− 2λx2 = 0

x2
1 + x2

2 = 1

4. Solve the equations from the necessary conditions you derived.

Solution: We find two solutions, x̄ = (0, 1), λ̄ = 1/2 and x̃ = (0,−1), λ̃ = −1/2.

5. What does it imply for the global minimizer of (1)?

Solution: We know that there exists at least one global minimzer because the feasibility set is compact.
Hence, it is one of these two. Evaluating the function, we clearly see that x̃ is the minimizer.

1



i
i

“ex4” — 2025/6/17 — 11:47 — page 2 — #2 i
i

i
i

i
i

6. For all stationary points, write the second order necessary conditions. For which one is it satisfied?

Solution: Write the Hessian of the Lagrangian: ∇2L(x, λ) =
[
−2λ 0
0 −2λ

]
Hence:

• for the stationary point x̄ = (0, 1), λ̄ = 1/2, we have ∇2L(x, λ) =

[
−1 0
0 −1

]
, which is not

positive semi-definite

• for the stationary point x̃ = (0,−1), λ̃ = −1/2, we have ∇2L(x, λ) =
[
1 0
0 1

]
, which is positive

definite.

7. What does it imply for the local minimizer of (1)?

Solution: We already knew that x̃ was a local minimizer. Now we know that it is the only one.

8. Pick one of the stationary points. Invent an additional equality constraint, such that the linear inde-
pendence constraint qualification (LICQ) is violated at this point.

Solution: We can add the constraint x2
2 = 1 for example, which violates the LICQ condition for both

stationary points.

2



i
i

“ex4” — 2025/6/17 — 11:47 — page 3 — #3 i
i

i
i

i
i

II Lifted Newton method
In this exercise we compare two different approaches to solve the following nonlinear equation:

w16 = 10. (2)

The first approach is to use Newton’s method directly on the function F : R → R defined by:

F (w) = w16 − 10. (3)

The second approach is to use Newton’s method on the function F̃ : R4 → R4 defined by:

F̃ (ω) =


ω2 − ω2

1

ω3 − ω2
2

ω4 − ω2
3

2− ω2
4

 . (4)

1. Complete the file non lifted newton.py to implement approach 1.

Analyse the number of iteration for convergence with respect to the initial guess w[0].

Solution: See Python file non lifted newton sol.py
The number of iteration required for convergence for small values of w[0] is very large (can get to 700
iterations).

2. Complete the file lifted newton.py to implement approach 2.

Use initial values of the form ω[0] =


ω̄
ω̄
ω̄
ω̄

.

Analyse the number of iteration for convergence with respect to the initial guess ω̄.

Comment on the comparison of the two approaches

Solution: See Python file lifted newton sol.py
It seems that the second approach is more robust because it converges faster for a larger range of initial
values. One interpretation is that the lifted function has more components, but each component is less
nonlinear, so each linearization is more accurate.

3



i
i

“ex4” — 2025/6/17 — 11:47 — page 4 — #4 i
i

i
i

i
i

III Control of a dynamic system
A controlled dynamical system is a system that evolves with time, according to the following law:

s0 = s̄0

st+1 = ϕ(st, ut) for t = 0, . . . , N − 1
(5)

for some function ϕ(·, ·), some initial state s̄0 and some control sequence u0, . . . , uN . In this exercise, we
consider the following function ϕ : R× R → R:

ϕ(st, ut) = st +∆t((st + 1)3 + ut), (6)

with ∆t = 0.1.
Here, we study a so called optimal control problem, where the best control sequence u0, . . . , uN is deter-
mined by minimizing a cost function. More precisely, we will solve the following optimization problem:

minimize
(s0, . . . , sN), (u0, . . . , uN)

1

2

N∑
t=0

u2
t

subject to s0 = s̄0,

st+1 = ϕ(st, ut), t = 0, . . . , N − 1, ,

sN = s̄N

(7)

The objective and constraints express our aim to bring the terminal state sN to s̄N using the least amount
of effort in terms of control actions ut.

In this exercise, we will implement an algorithm to solve the optimization (7).

1. Transform the problem in the standard least-square form:

minimize
x ∈ Rn

1

2
∥F (x)∥2 =

1

2

p∑
j=1

Fj(x)
2

subject to g(x) = 0

(8)

where you have to define the dimensions n,m, p, the variable x, and the functions g(x) ∈ Rm and
F (x) ∈ Rp.

Solution: p = N + 1, n = 2(N + 1), m = N + 2, and:

x :=



s0
...
sN
u0
...
uN


, F (x) :=

u0
...
uN

 , g(x) :=


s0 − s̄0

s1 − ϕ(s0, u0)
...

sN − ϕ(sN−1, uN−1)
sN − s̄N


2. In the lecture, we saw a popular algorithm for solving (8): the Gauss-Newton algorithm. This is

an iterative algorithm, where at each iteration, the functions F (x) and g(x) are linearized around
the current guess x[k]. Write down the optimization problem that is solved at each iteration of the
algorithm in the general form.

4



i
i

“ex4” — 2025/6/17 — 11:47 — page 5 — #5 i
i

i
i

i
i

What kind of optimization problem is this?

Solution: If our current guess is x[k], we compute the next guess x[k+1] by solving the following
problem:

minimize
x ∈ Rn

1

2

∥∥∥F (
x[k]

)
+∇F

(
x[k]

)⊤
(x− x[k])

∥∥∥2

subject to g
(
x[k]

)
+∇g

(
x[k]

)⊤
(x− x[k]) = 0

This is a Quadratic Programming (QP) problem without any inequality constraints.

3. Write down first order the optimality conditions for the subproblem that is solved at each step in its
general form.

Hint: You may want to define J [k] := ∇F
(
x[k]

)
.

Solution: The first order optimality conditions are given by the following conditions:

J [k]F
(
x[k]

)
+ J [k]J [k]⊤(x− x[k])−∇g

(
x[k]

)
λ = 0

g
(
x[k]

)
+∇g

(
x[k]

)⊤
(x− x[k]) = 0

where λ ∈ Rm is the Lagrange multiplier associated with the equality constraint g(x) = 0.

4. Put the first order optimality conditions in the form of a linear system:

A[k]w[k] = b[k] (9)

where w[k] is the vector of unknowns (that you also need to define), and A[k] and b[k] are matrices
and vectors that depend on the current guess x[k].

Solution: [
J [k]J [k]⊤ −∇g

(
x[k]

)
−∇g

(
x[k]

)⊤
0

]
︸ ︷︷ ︸

=:A[k]

[
x− x[k]

λ

]
︸ ︷︷ ︸

=:w[k]

=

[
−J [k]F

(
x[k]

)
g
(
x[k]

) ]
︸ ︷︷ ︸

=:b[k]

5. Complete the code in the file control.py to implement the algorithm discussed in the previous
questions, and visualize the iterations of the algorithm using the code provided.

Hint: The function ϕ(·, ·) and its derivatives are already implemented in the file control phi.py.
The visualization code is already implemented in the file control animation.py.

We choose N = 100, s̄0 = 0, and s̄N = 1.

Solution: See Python file control sol.py.

6. For each sequence of control actions u0, . . . , uN−1, we can compute the corresponding sequence of
states ŝ0, . . . , ŝN using the equations (5). This is already implemented in the function rollout in
the file control phi.py.

Use that function to also compute, for each iteration of the algorithm, the sequence of states ŝ[k]0 , . . . , ŝ
[k]
N

that would be produced by the controls u[k]
0 , . . . , u

[k]
N−1 that are computed by the algorithm.

5



i
i

“ex4” — 2025/6/17 — 11:47 — page 6 — #6 i
i

i
i

i
i

Add these sequences of states to the visualization. Comment what you observe, and give an inter-
pretation of the results.

Hint: You can use the syntax

make animation(list s,list u, list other s=my other list s)

to visualize the trajectories of state and controls list s and list u, and the additional trajectory
of states list other s.

The additional trajectory of states will be plotted in purple.

Solution: See Python file control sol.py.
What we observe is that at the early iterations of the algorithm, the trajectory of states and the tra-
jectories of controls are very different. This is due to the fact that the equality constraints are not yet
satisfied.
We also see that the trajectory of states s[k]0 , . . . , s

[k]
N is much closer to the desired goal (reaching the

terminal state s̄N ) than the trajectory of states ŝ[k]0 , . . . , ŝ
[k]
N . This is because while the algorithm tries

to find a feasible solution, it is also considering the terminal constraint.

6


