
i
i

“ex3” — 2025/5/15 — 17:04 — page 1 — #1 i
i

i
i

i
i

Exercises for Lecture Course on Numerical Optimization (NUMOPT)
Albert-Ludwigs-Universität Freiburg – Summer Semester 2025

Exercise 3: Unconstrained Newton-type Optimization
Léo Simpson, Prof. Dr. Moritz Diehl, with contributions from previous teaching assistants

The solutions for these exercises will be given and discussed during the exercise session on May 27th.
To receive feedback on your solutions, please hand it in during the exercise session on May 27th, or by
e-mail to leo.simpson@imtek.uni-freiburg.de before the same date.

I Root finding of a convex function 1D function
Let F : R → R be a strictly monotonically increasing convex differentiable function such that F (x⋆) = 0
for some x⋆ ∈ R.
Show that Newton’s method applied to the root-finding problem F (x) = 0 is converges x⋆.

II Regularization
Consider a regularized Newton-type step:

xk+1 = xk − (Bk + λI)−1∇f(xk)

where xk ∈ Rn, Bk ∈ Rn×n is a (symmetric) Hessian approximation, λ is a positive scalar and I is the
identity matrix of suitable dimension.
Prove that when λ → ∞, this is similar to a small gradient step:

xk+1 = xk −
1

λ
∇f(xk) +O

(
1

λ2

)
Hint: You can use the following formula for the matrix geometric series:

I + A+ A2 + A3 + . . . = (I − A)−1

for any matrix A ∈ Rn×n such that ρ(A) < 1.

1



i
i

“ex3” — 2025/5/15 — 17:04 — page 2 — #2 i
i

i
i

i
i

III Unconstrained minimization
In this task we will implement different Newton-type methods for solving the problem

minimize
x, y ∈ R

1

2
(x− 1)2 +

1

2
y2 + ρ

1

2
(y − cos(x))2︸ ︷︷ ︸

=:f(x,y)

.

where ρ > 0 is a parameter. In the coding parts, we will set ρ = 5.
You can use the first part of the provided Python script plot objective fn.py to get an idea of the
shape of the function.

1. Derive (on paper) the gradient vector and the Hessian matrix of the function f(x, y).

2. Write the function in the form of the squared-norm of some nonlinear function, i.e.

f(x, y) =
1

2
∥R(x, y)∥2 (1)

for some function R : R2 → R3 (often called the residual function).

3. Derive the Gauss-Newton Hessian approximation.

4. Under which condition(s) on the point (x, y) for the Gauss-Newton Hessian approximation coincide
with the exact Hessian? Interpret the result.

5. Complete the file unconstrained newton.py to implement your own Newton method with
the three following Hessian approximations:

• The exact Hessian;

• The Gauss-Newton Hessian;

• The steepest descent Hessian: αI with α = 10.

The initial guess will be (x0, y0) = (0, 10) and the termination condition is ∥∇f(xk, yk)∥∞ ≤ 10−6

(but the algorithm also stops if the maximum number of iterations Nmax = 50 is reached). Use the
option plot="3D" to visualise the iterations on the 3D plot.

6. Use the option plot="values" and complete the corresponding code to plot the function values
as a function of the number of iterations for each Hessian approximation.

Compare the convergence of the algorithms.

2



i
i

“ex3” — 2025/5/15 — 17:04 — page 3 — #3 i
i

i
i

i
i

IV Hanging chain, revisited
We revisit the hanging chain problem from the previous exercise sheet.
So far, we assumed that the springs had a rest length L = 0, which might have been an assumption that
was too strong.
When we have L > 0, the potential energy takes the more complicate following form:

Vchain(y, z) =
D

2

N∑
i=0

(∥∥∥∥[yizi
]
−
[
yi+1

zi+1

]∥∥∥∥
2

− Li

)2

+ gm
N+1∑
i=0

zi (2)

Here, the decision variables are y1, . . . , yN and z1, . . . , zN while the extremities of the chain are fixed:

y0 = 0, yN+1 = 2, z0 = 0, zN+1 = 1 (3)

In this task, we will solve the unconstrained minimization problem of the hanging chain using a Newton
type method, with backtracking line-search for globaliation. More preciesly:

• the function and gradient evaluation is already manually implemented in hanging chain functions.py.

• for the Hessian approximation, you will start with B0 = 100I . Then, you should implement a BFGS
update at each iteration, and compare the results.

• for the line-search, you should use β = 0.9 and stop when the Armijo criterion is satisfied with
γ = 0.1.

• The algorithm should stop either when the maximum number of iterations Nmax = 1000 is reached,
or when ∥∇V (y, z)∥∞ < 10−3.

Complete the file hanging chain next episode.py to solve the problem and visualize the so-
lution at each iteration. Compare the convergence speed with or without BFGS updates.

3


