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Exercises for Lecture Course on Numerical Optimal Control (NOC)
Albert-Ludwigs-Universität Freiburg – Winter Term 2024 / 25

Exercise 10: Model Predictive Control with acados

Prof. Dr. Moritz Diehl, Florian Messerer

In this exercise, we will implement a model predictive control (MPC) based controller, which re-
peatedly solves optimal control problems (OCP) as part of a feedback loop. The controller will be
implemented using acados, and as control task we consider the swing-up of a pendulum mounted
on top of a cart. We will then further speed up the controller sampling time by using the real time
iteration scheme (RTI).
acados is a software package providing fast embedded solvers for nonlinear optimal control. Pro-
blems are formulated based on CasADi symbolics and the acados OCP interface. Among others,
acados provides numerical integrators for ordinary and differential algebraic equations (ODE resp.
DAE), based on both implicit and explicit Runge-Kutta methods, as well as sequential quadratic
programming (SQP) type OCP solvers. The acados core library is implemented in C, but can be
accessed via interfaces to Python, Octave, and Matlab. Given an OCP description, acados generates
self-contained C code, which – after compilation – can be executed efficiently to solve the problem.
For more information, see https://docs.acados.org/.

1. Install acados by following the instruction at https://docs.acados.org/installation/i
ndex.html and the Python or Matlab interface by following https://docs.acados.org/in

terfaces/index.html.

To ensure everything works properly, execute getting started/minimal example ocp.* from
the corresponding examples folder. This should run without error.

As control task, we consider the swing-up of a pendulum mounted on a cart, as illustrated below:
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The state consists of the horizontal position of the cart center px, the angle of the pendulum θ, as
well as the respective velocities vx and ω. The pendulum has length l with a mass m mounted at its
tip. The cart has mass M and can be actuated by applying a horizontal force F , i.e., u = F . The
corresponding dynamics are

x =
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 , ẋ =


vx
ω

−ml sin θω2+mg cos θ sin θ+F
M+m(1−cos2 θ)

−ml cos θ sin θω2+F cos θ+(M+m)g sin θ
l(M+m(1−cos2 θ))

 := f(x, u). (1)

where g is the gravitational acceleration.
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By penalizing deviations of state and control from the origin, the swing-up task can be expressed
by the OCP

min
x(·), u(·)

∫ T

0

1

2
x(t)⊤Qx(t) +

1

2
u(t)Ru(t)dt+

1

2
x(T )⊤Qx(T ) (2a)

s.t. x(0) = x̄0, (2b)

ẋ(t) = f(x(t), u(t)), t ∈ [0, T ], (2c)

−Fmax ≤ u(t) ≤ Fmax, t ∈ [0, T ], (2d)

with cost matrices Q ⪰ 0, R ⪰ 0.

2. Formulating and solving the OCP with acados.

(a) Complete the templates cartpole model.* and cartpole ocp.* in order to solve OCP
(2) with acados. A detailed overview of the acados OCP interface can be found at
https://github.com/acados/acados/blob/master/docs/problem_formulation/pr

oblem_formulation_ocp_mex.pdf. Specifically, note that:

i. In general, acados expects dynamics defined in implicit form via fimpl(x, ẋ, u) = 0.
Thus, in our case we have fimpl(x, ẋ, u) = ẋ− f(x, u).

ii. We use a stage cost of the form ’NONLINEAR LS’ (nonlinear least squares), i.e.,
l(x, u) = 1

2
∥y−yref∥W , with y = F (x, u) a (possibly) nonlinear expression depending

on x and u. In our case, y = (x, u) is simply the concatenation of state and controls,
and W = blockdiag(Q,R), i.e., the blockdiagonal concatenation of Q and R. Similar
considerations hold for the terminal cost.

(b) Take a detailed a look at the above templates files. On a high level, describe the steps
acados takes to discretize and solve the OCP. Refer to the concepts learned in the course.

3. Model predictive control (MPC). Since we can now successfully solve the OCP, we are able
to construct an MPC loop around the OCP. For this purpose, we read the first discretized
control value u0 from the OCP solution and apply it to the simulation of the controlled system
(when deploying the controller in the real world, this would be the actual physical system).
After one simulation step, this results in a new state. We resolve the OCP for this new state,
and again employ the resulting u0, and so on.

(a) Complete and run the template cartpole closed loop.*. How long does it take for the
MPC controller to return a control input after receiving the current state?

(b) The provided template uses the exact same dynamics for the simulation of the ‘real’
system as are used in the OCP. This is clearly unrealistic, since in reality our model will
never be perfect. Create some model-plant mismatch by perturbing the simulation. For
this purpose, add some noise at every time step of the simulation, e.g., w ∼ N (0,Σ) with
Σ = diag(σ2

p, σ
2
θ , σ

2
v, σ

2
ω) and σp = σθ = 10−3 and σv = σω = 10−2. You can also create

some bias by using a nonzero mean. Alternatively, or additionally, you can add strong
perturbations at specific time points, corresponding to some one suddenly kicking the
pendulum tip. For this purpose, after half the simulation horizon has passed, add π/10
to the state θ. Play around with the disturbances and see how the controller responds.

Hint: If you perturb the system too strongly, acados will not be able solve the OCP in
the given number of maximum iterations. This results in warning referring to ‘status 2’
(generated by checking the OCP solver return status). The returned control u0 will then
correspond to a nonconverged solution.
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4. Real-time iteration scheme (RTI). Due to model-plant mismatch, it is in general desirable to
control systems at a high frequency, in order to be able to quickly react to deviations between
prediction and reality. Considering computational delay, there is a trade-off between taking
time to fully solve the OCP or quickly returning a non-converged, suboptimal, solution. The
main ideas of the real-time iteration scheme (RTI) can be summarized as:

• After receiving the current system state x̄0, only perform a single SQP iteration before
returning u0.

• While waiting for the updated system state x̄0, already perform as many computations as
possible without knowing x̄0 (“preparation phase”). Then, only few computations need
to be performed after receiving x̄0 (“feedback phase”).

(a) Consider a discrete-time OCP in simultaneous formulation (multiple shooting), solved
with an SQP method. Assume we are currently at iteration i, with current solution
guess yi, where y collects all optimization variables. Which computations can already be
performed while the initial state x̄0 is still unspecified?

(b) Run the template cartpole closed loop.* with RTI turned on. How long does it take
for the RTI controller to return a control input after receiving the current state? How
does this compare to the fully converged MPC from the previous task? How do the
resulting trajectories compare? Why is the latter comparison not fully fair?
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