Homework accompanying the lecture "Basics in Applied Mathematics"

Homework 12

Hand in: Tuesday, 21.01.2025, after the lecture in the mailbox at the Math Institut (Don't forget to put your name on your homework. Please hand in your solutions in groups of two.)

Exercise 1

(Convex sets; 2 points)

Which of the following sets $\mathcal{X} \subset \mathbb{R}^n$ or $\mathcal{A} \subset \mathbb{R}^{n \times n}$ are convex? Justify your answer.

a) $\mathcal{X} = \left\{ x \in \mathbb{R}^n \text{ such that } \sum_{i=1}^n |x_i| \le 1 \right\}$ b) $\mathcal{X} = \left\{ x \in \mathbb{R}^3 \text{ such that } x_1 = x_2 \cdot x_3 \right\}$ c) $\mathcal{A} = \left\{ A \in \mathbb{R}^{n \times n} \text{ such that } A = A^\top \right\}$ d) $\mathcal{A} = \left\{ A \in \mathbb{R}^{n \times n} \text{ such that } A = A^\top \text{ and } \forall x \in \mathbb{R}^n, \ x^\top A x \ge 0 \right\}$

Exercise 2

Exercise 3

(Convex functions; 2 points)

Which of the following functions $f : \mathbb{R}^2 \to \mathbb{R}$ are convex? Justify your answer.

a)
$$f(x, y) = xy$$

b) $f(x, y) = e^{2x-3y} + 4y$
c) $f(x, y) = \sin(x) + \cos(y)$
d) $f(x, y) = \max\{x, y\} = \begin{cases} x & \text{if } x \ge \\ y & \text{if } y > \end{cases}$

(Jensen Inequality; 3 points)

a) Let $\mathcal{X} \subset \mathbb{R}^n$ be a convex set. Let x_1, \ldots, x_m be some elements of \mathcal{X} . Show that the average point $\frac{x_1 + \cdots + x_m}{m}$ is also an element of \mathcal{X} .

<u>Hint 1:</u> prove this property via induction.

<u>Hint 2:</u> find some α such that: $\frac{x_1 + \dots + x_{m+1}}{m+1} = (1 - \alpha) \frac{x_1 + \dots + x_m}{m} + \alpha x_{m+1}$.

 $\frac{y}{x}$

b) Now let $f: \mathcal{X} \to \mathbb{R}$ be a convex function. Show the following inequality:

$$f\left(\frac{x_1 + \dots + x_m}{m}\right) \le \frac{f(x_1) + \dots + f(x_m)}{m} \tag{1}$$

c) Now show the following generalization:

$$f\left(\sum_{j=1}^{m} \alpha_j x_j\right) \le \sum_{j=1}^{m} \alpha_j f(x_j) \tag{2}$$

for any $\alpha_1, \ldots, \alpha_m \ge 0$ such that $\sum_{j=1}^m \alpha_j = 1$.

Exercise 4

(Minimizer of the Cross Entropy; 2 points)

Let \mathcal{P}_m be the set of probability distributions over the set $\{1, \ldots, m\}$, i.e.:

$$\mathcal{P}_m = \left\{ p \in \mathbb{R}^m \text{ such that } \forall j, \ p_j \ge 0, \text{ and } \sum_{j=1}^m p_j = 1 \right\}$$
(3)

a) Prove that for any $p, q \in \mathcal{P}_m$, the inequality holds:

$$\sum_{j=1}^{m} p_j \log\left(\frac{q_j}{p_j}\right) \le 0 \tag{4}$$

<u>Hint</u>: Apply the Jensen inequality (2) to the function $f(x) = -\log(x)$ (after proving that this is a convex function).

b) We define the cross entropy between two distributions as follows:

$$L(p,q) = -\sum_{j=1}^{m} p_j \log(q_j)$$
 (5)

Let p be an element of \mathcal{P}_m . Show that q = p is a minimizer of:

$$\min_{q \in \mathcal{P}_m} L(p,q) \tag{6}$$

Note: You do not have to show that it is the unique minimizer.

Exercise 5

(Mean and variance estimation; 5 points)

In this part, we consider a regression task where the dataset takes the following form: $(a_1, y_1), \ldots, (a_m, y_m)$ with $a_i \in \mathbb{R}$ and $y_i \in \mathbb{R}$ (single input and single ouput problem). The goal is to identify a model of the form:

$$y_j \approx \theta a_j + b$$

Furthermore, we also want to estimate the standard deviation of the model, i.e. the scale σ of the errors $y_j - (\theta a_j + b)$.

For that purpose, we propose the following problem:

$$\underset{\theta,b,\sigma>0}{\text{minimize}} \underbrace{\frac{1}{m} \sum_{j=1}^{m} \frac{(y_j - (\theta a_j + b))^2}{\sigma} + \sigma}_{=:f(\theta,b,\sigma)}$$

We will define the parameter vector $x := (\theta, b, \sigma) \in \mathbb{R}^3$, and define the feasible set \mathcal{X} as follows:

$$\mathcal{X} = \left\{ x = (\theta, b, \sigma) \in \mathbb{R}^3 \text{ such that } \sigma > 0 \right\}$$

a) Prove that the set \mathcal{X} is convex.

b) Let us define the function $g: \mathbb{R} \times \mathbb{R}_{>0} \to \mathbb{R}$ defined as:

$$g(e,\sigma)=\frac{e^2}{\sigma}+\sigma$$

Prove that the function g is convex.

- c) Use the previous question to show that the function $f(\cdot, \cdot, \cdot)$ is convex over \mathcal{X} .
- d) Using the previous questions and results from the lectures, write down the equations that are necessary and sufficient for a point $x^* = (\theta^*, b^*, \sigma^*)$ to be a minimizer of the problem (these equations should be explicit for this problem, *not* the generic equation from the lecture).
- e) Express the solution $x^{\star} = (\theta^{\star}, b^{\star}, \sigma^{\star})$ explicitly.

Note: You might want to simplify the expressions by defining the following variables:

$$\bar{y} \coloneqq \frac{1}{m} \sum_{j=1}^{m} y_j \qquad \bar{a} \coloneqq \frac{1}{m} \sum_{j=1}^{m} a_j$$
$$\bar{c} \coloneqq \frac{1}{m} \sum_{j=1}^{m} a_j y_j \qquad \bar{h} \coloneqq \frac{1}{m} \sum_{j=1}^{m} a_j^2$$

<u>Note</u>: You can first express θ^* in terms of the other variables, then b^* as a function of θ^* , and then express σ^* as a function of θ^* and b^* .

Exercise 6

(Programming exercise; 4 points)

Open the jupyter notebook, and fill in the missing parts of the code.