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Intro

▶ Who has experience with python?

▶ Who has experience with CasADi?

▶ Who models their system in terms of an ordinary differential equation (ODE)?

▶ Who models their system in terms of an differential algebraic equation (DAE)?

▶ Who models their systems using a neural network?

▶ Who has installed the provided docker?
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Workshop Outline

▶ Part 1: Nonlinear Optimization

using CasADi

▶ Part 2: Direct Optimal Control

using CasADi and acados

Most of the theory part of this talk is based on slides by Armin Nurkanović.
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Outline

Part 1: Nonlinear Optimization

1. Basic definitions

2. Conditions of optimality

3. Nonlinear programming algorithms

4. Nonlinear optimization with CasADi

Part 2: Direct Optimal Control
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What is an optimization problem?

Minimize (or maximize) an objective function F (w) depending on decision variables w subject
to equality and/or inequality constraints.

An optimization problem

min
w

F (w) (1a)

s.t. G(w) = 0 (1b)

H(w) ≥ 0 (1c)

Terminology

▶ w - decision variable

▶ F : objective/cost function

▶ G,H: equality and inequality constraint
functions

▶ Only in few special cases a closed form solution exist

▶ Use an iterative algorithm to find solution
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Basic definitions: the feasible set

Definition

The feasible set of the optimization problem (1) is defined as
Ω = {w ∈ Rn | G(w) = 0, H(w) ≥ 0}. A point w ∈ Ω is is called a feasible point.

The feasible set is the intersection of the two grey areas (halfspace and circle)
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Basic definitions: local and global minimizer
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The value F (w∗) at a local/global minimizer w∗ is called local/global minimum.
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Convex optimization problems

A convex optimization problem

min
w

F (w)

s.t. G(w) = 0

H(w) ≥ 0

An optimization problem is convex if the
objective function F is convex and the
feasible set Ω is convex.

▶ Example: convex objective and linear
equalities and linear inequalities.

▶ A locally optimal solution is globally optimal!

▶ First order conditions are necessary and sufficient (we come back to this)
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Some classifications of optimization problems

Optimization problems can be:

▶ unconstrained (Ω = Rn) or constrained (Ω ⊂ Rn)

▶ convex or nonconvex

▶ linear or nonlinear

▶ finite or infinite dimensional

Three important classes of optimization problems:

▶ Linear Program (LP)

▶ Quadratic Program (QP)

▶ Nonlinear Program (NLP)
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Class 1: Linear Programming (LP)

Linear program

min
w

g⊤w

s.t. Aw − b = 0

Cw − d ≥ 0

▶ convex optimization problem

▶ 1947: simplex method by Dantzig, 1984: polynomial time interior-point method by
Karmarkar

▶ if not unbounded, the solution is always at edge or vertex of the feasible set

▶ today very mature and reliable
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Class 2: Quadratic Programming (QP)

Quadratic program

min
w

1

2
w⊤Qw + g⊤w

s.t. Aw − b = 0

Cw − d ≥ 0

▶ depending on Q, can be convex and nonconvex

▶ solved online in linear model predictive control
(linear system model + linear constraints + quadratic cost)

▶ many good solvers: Gurobi, OSQP, HPIPM, qpOASES, OOQP, ...

▶ subsproblems in nonlinear optimization
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Class 3: Nonlinear Program (NLP)

Nonlinear programming problem

min
w

F (w)

s.t. G(w) = 0

H(w) ≥ 0

▶ can be convex and nonconvex

▶ solved with iterative Newton-type algorithms

▶ solved in nonlinear model predictive control
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Classify your control problem

▶ Linear Program (LP)

▶ Quadratic Program (QP)

▶ Nonlinear Program (NLP)
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Direct optimal control methods solve Nonlinear Programs (NLP)

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = fc(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Direct methods (like direct collocation,
multiple shooting) first discretize, then
optimize.
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Nonlinear MPC solves Nonlinear Programs (NLP)

Discrete time NMPC Problem (an NLP)

min
x,u

∑N−1
k=0 ℓ(xk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = f(xk, uk)

0 ≥ h(xk, uk), k = 0, . . . , N−1
0 ≥ r(xN )

Variables x = (x0, . . . , xN ) and
u = (u0, . . . , uN−1) can be summarized in
vector w = (x, u) ∈ Rn.

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0
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Outline

Part 1: Nonlinear Optimization

1. Basic definitions

2. Conditions of optimality

3. Nonlinear programming algorithms

4. Nonlinear optimization with CasADi

Part 2: Direct Optimal Control
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Algebraic characterization of unconstrained local optima

Consider the unconstrained problem: minw∈Rn F (w)

First-Order Necessary Condition of Optimality (FONC)

w∗ local optimum ⇒ ∇F (w∗) = 0, w∗ stationary point

Second-Order Necessary Condition of Optimality (SONC)

w∗ local optimum ⇒ ∇2F (w∗) ⪰ 0

Second-Order Sufficient Conditions of Optimality (SOSC)

∇F (w∗) = 0 and ∇2F (w∗) ≻ 0 ⇒ x∗ strict local minimum

∇F (w∗) = 0 and ∇2F (w∗) ≺ 0 ⇒ x∗ strict local maximum

No conclusion can be drawn in the case ∇2F (w∗) is indefinite!
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Type of stationary points
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FONC for equality constraints

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

L(w, λ) = F (w)− λ⊤G(w) is the Lagrangian

Definition (LICQ)

A point w satisfies Linear Independence
Constraint Qualification LICQ if and only
if ∇G (w) is full column rank

First-order Necessary Conditions

Let F,G in C1. If w∗ is a (local) minimizer, and w∗ satisfies LICQ, then there is a unique
vector λ such that:

∇wL(w∗, λ∗) = ∇F (w∗)−∇G(w∗)λ = 0 Dual feasibility

∇λL(w∗, λ∗) = G(w∗) = 0 Primal feasibility
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The KKT conditions

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0

L(w, λ) = F (w)− λ⊤G(w)− µ⊤H(w)

Definition (LICQ)

A point w satisfies LICQ if and only if

[∇G (w) , ∇HA (w)]

is full column rank

Active set A = {i | Hi(w) = 0}

Theorem (KKT conditions)

Let F, G, H be C1. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique
vectors λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗ ) = 0, µ∗ ≥ 0, Dual feasibility

G (w∗) = 0, H (w∗) ≥ 0 Primal feasibility

µ∗
iHi(w

∗) = 0, ∀ i Complementary slackness
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The complementary slackness condition

Active constraints:

▶ Hi(w
∗) > 0 then µ∗

i = 0, and Hi is
inactive

▶ µ∗
i > 0 and Hi(w) = 0 then Hi(w) is

strictly active

▶ µ∗
i = 0 and Hi(w) = 0 then then Hi(w) is

weakly active

▶ We define the active set A∗ as the set of
indices i of the active constraints
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Summary of optimality conditions

Optimality conditions for NLP with equality and/or inequality constraints:

▶ First-Order Necessary Conditions: A regular local optimum of a (differentiable) NLP is
a KKT point

▶ Second-Order Sufficient Conditions require positivity of the Hessian in all critical
feasible directions

Nonconvex problem ⇒ minimum is not necessarily global.
But some nonconvex problems have a unique minimum

Some important practical consequences...

▶ A KKT point may not be a local (global) optimum
... the lack of equivalence results from a lack of regularity and/or SOSC

▶ A local (global) optimum may not be a KKT point
... due to violation of constraint qualifications, e.g. LICQ violated.
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Newton’s method
To solve a nonlinear system, solve a sequence of linear systems

Root-finding problem. Find x such that F (x) = 0.

Linearization of F at linearization point w̄

equals

First-order Taylor series at w̄

equals

FL(w; w̄) := F (w̄) +
∂F

∂w
(w̄) (w − w̄)

(for continuously differentiable F : Rn → Rn)
-1 -0.5 0 0.5 1 1.5 2 2.5 3

w
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0

1

2

3

4

5

6

F
(w

)

Iteration 0

y = F (w)
y = F (wk) + rF (wk)(w ! wk)
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General Nonlinear Program (NLP)

In direct methods, we have to solve the discretized optimal control problem, which is a
Nonlinear Program (NLP)

General Nonlinear Program (NLP)

min
w

F (w) s.t.

{
G(w) = 0
H(w) ≥ 0

We first treat the case without inequalities

NLP only with equality constraints

min
w

F (w) s.t. G(w) = 0
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Lagrange function and optimality conditions

Lagrange function

L(w, λ) = F (w)− λTG(w)

Then for an optimal solution w∗ exist multipliers λ∗ such that

Nonlinear root-finding problem

∇wL(w∗, λ∗) = 0
G(w∗) = 0

25



Newton’s Method on optimality conditions

How to solve nonlinear equations

∇wL(w∗, λ∗) = 0
G(w∗) = 0 ?

Linearize!
∇wL(wk, λk) +∇2

wL(wk, λk)∆w −∇wG(wk)∆λ = 0
G(wk) +∇wG(wk)T∆w = 0

This is equivalent, due to ∇L(wk, λk) = ∇F (wk)−∇G(wk)λk with the shorthand
λ+ = λk +∆λ to

∇wF (wk) +∇2
wL(wk, λk)∆w −∇wG(wk)λ+ = 0

G(wk) +∇wG(wk)T∆w = 0

26



Newton Step = Solution to a Quadratic Program

Conditions
∇wF (wk) +∇2

wL(wk, λk)∆w −∇wG(wk)λ+ = 0
G(wk) +∇wG(wk)T∆w = 0

are optimality conditions of a quadratic program (QP), namely:

Quadratic program

min
∆w

∇F (wk)T∆w +
1

2
∆wTAk∆w

s.t. G(wk) +∇G(wk)T∆w = 0,

with
Ak = ∇2

wL(wk, λk)
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Newton’s method

The full step Newton’s Method iterates by solving in each iteration the quadratic program (QP)

min
∆w

∇F (wk)T∆w +
1

2
∆wTAk∆w

s.t. G(wk) +∇G(wk)T∆w = 0,

with Ak = ∇2
wL(wk, λk). As solution, we obtain the step ∆wk and the new multiplier λ+

QP.

New iterate

wk+1 = wk +∆wk

λk+1 = λk +∆λk = λ+
QP

This Newton’s method is also called Sequential Quadratic Programming (SQP) for equality
constrained optimization (with exact Hessian and full steps)
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NLP with Inequalities

Regard again NLP with both, equalities and inequalities:

NLP with equality and inequality constraints

min
w

F (w) s.t.

{
G(w) = 0
H(w) ≥ 0

Lagrangian function for NLP with equality and inequality constraints

L(w, λ, µ) = F (w)− λTG(w)− µTH(w)
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Optimality conditions with inequalities

Theorem (Karush-Kuhn-Tucker (KKT) conditions)

Let F, G, H be C2. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique
vectors λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗ ) = 0

G (w∗) = 0

H(w∗) ≥ 0

µ∗ ≥ 0

H(w∗)⊤µ∗ = 0

▶ These contain nonsmooth conditions (the last three) which are called complementarity
conditions

▶ This system cannot be solved by Newton’s Method. But still with SQP...
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Sequential Quadratic Programming (SQP)

By Linearizing all functions within the KKT Conditions, and setting λ+ = λk +∆λ and
µ+ = µk +∆µ, we obtain the KKT conditions of a Quadratic Program (QP).

QP with inequality constraints

min
∆w

∇F (wk)T∆w +
1

2
∆wTAk∆w

s.t.

{
G(wk) +∇G(wk)T∆w = 0
H(wk) +∇H(wk)T∆w ≥ 0

with
Ak = ∇2

wL(wk, λk, µk)

and its solution delivers
∆wk, λ+

QP, µ+
QP
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Constrained Gauss-Newton Method

In special case of least squares objectives

Least squares objective function

F (w) =
1

2
∥R(w)∥22

can approximate Hessian ∇2
wL(wk, λk, µk) by much cheaper

Ak = ∇R(w)∇R(w)T .

Need no multipliers to compute Ak! QP= linear least squares:

Gauss-Newton QP

min
∆w

1

2
∥R(wk) +∇R(wk)T∆w∥22

s.t.
G(wk) +∇G(wk)T∆w = 0
H(wk) +∇H(wk)T∆w ≥ 0

Convergence: linear (better if ∥R(w∗)∥ small)
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Interior point methods

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

KKT conditions

∇F (w)−∇H(w)⊤µ = 0

0 ≤ µ ⊥ H(w) ≥ 0

Main difficulty: inequality conditions
introduce nonsmoothness in the KKT
conditions
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The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective
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!= log(Hi(w))

approximate:

χ(Hi(w)) =

{
0 if Hi(w) ≥ 0

∞ if Hi(w) < 0
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An example of the barrier problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem

min
w

0.5w2 − 2− τ log(w + 1)− τ log(1− w) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w
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Summary Newton-type optimization

▶ Newton type optimization solves the necessary optimality conditions

▶ Newton’s method linearizes the nonlinear system in each iteration

▶ for constraints: requires Lagrangian function

▶ for equality constraints: KKT conditions are smooth, can apply Newton’s method directly

▶ for inequality constraints: KKT conditions are non-smooth
→ Sequential Quadratic Programming (SQP)

▶ QP subproblem might be solved via an interior point solver, active set solver, ADMM, etc.
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Outline

Part 1: Nonlinear Optimization

1. Basic definitions

2. Conditions of optimality

3. Nonlinear programming algorithms

4. Nonlinear optimization with CasADi

Part 2: Direct Optimal Control
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CasADi

CasADi1 is an open-source tool for nonlinear optimization and algorithmic differentiation.

https://web.casadi.org/

CasADi provides

▶ algorithmic differentiation on user-defined symbolic expressions

▶ standardized interfaces to a variety of numerical routines:
▶ simulation and nonlinear constrained optimization

→ Interior point solver IPOPT

▶ solution of linear and nonlinear equations

▶ CasADi can be used from C++, python, Octave or MATLAB.

1Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings and Moritz Diehl: CasADi – A software
framework for nonlinear optimization and optimal control ; Mathematical Programming Computation (2019).
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Exercise Session – Part 1

1. Read the docs! https://web.casadi.org/docs

▶ What is the difference between a CasADi expression and a CasADi function?

▶ How do you compute a derivative using CasADi?

2. Work on the exercise sheet.

▶ How to formulate a constrained nonlinear optimization problem with CasADi? How to
solve the NLP with the solver IPOPT?
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Ordinary differential equations and controlled dynamical system

Let:

▶ t ∈ R be the time

▶ x(t) ∈ Rnx the differential states and ẋ(t) = dx(t)
dt

▶ u(t) ∈ Rnu a given control function

Ordinary differential equations

▶ Let F : R× Rnx × Rnx × Rnu → Rnx be a function such that the Jacobian ∂F
∂ẋ (·) is

invertible. The system of equations:

F (t, ẋ(t), x(t), u(t)) = 0,

is called an Ordinary Differential Equation (ODE).

▶ Given a function f : R× Rnx × Rnu → Rnx then a system of equations:

ẋ(t) = f(t, x(t), u(t)) (2)

is called an explicit ODE.
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∂ẋ (·) is

invertible. The system of equations:
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ODE Example: harmonic oscillator

Mass m with spring constant k and friction coefficient c:

ẋ1(t) = x2(t)

ẋ2(t) = − k

m
(x2(t)− u(t)) − β

m
x1(t)

• state x(t) ∈ R2

• position of mass x1(t) ←− measured
• velocity of mass x2(t)
• control action: spring position u(t) ∈ R ←− manipulated

As explicit ODE: ẋ = f(x, u) with

f(x, u) =

[
x2

− k
m (x2 − u)− c

mx1

] As implicit ODE: 0 = F (ẋ, x, u) with

F (ẋ, x, u) =

[
x2 − ẋ1

− k
m (x2 − u)− β

mx1 − ẋ2

]
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f(x, u) =

[
x2

− k
m (x2 − u)− c

mx1

] As implicit ODE: 0 = F (ẋ, x, u) with
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Differential algebraic equations

Let:

▶ x(t) ∈ Rnx the differential states with ẋ(t) = dx(t)
dt

▶ z(t) ∈ Rnz the algebraic states

▶ u(t) ∈ Rnu a given control function

Differential algebraic equations

▶ Let F : R× Rnx × Rnz × Rnx × Rnu → Rnx be a function such that the matrix [ ∂F
∂ẋ

∂F
∂z

] is
invertible (index one). The system of equations:

F (t, ẋ(t), x(t), z(t), u(t)) = 0,

is called an fully implicit Differential Algebraic Equation (DAE).

▶ Let f : R× Rnx × Rnz × Rnu → Rnx and g : R× Rnx × Rnz × Rnu → Rnz with ∂g
∂z

invertible.
The system of equations:

ẋ(t) = f(t, x(t), z(t), u(t)),

0 = g(t, x(t), z(t), u(t)),

is called a semi-explicit DAE.
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Basic definitions of numerical simulation

▶ IVPs have only in special cases a closed form solution

▶ Instead, compute numerically a solution approximation x̃(t) that approximately satisfies:

˙̃x(t) ≈ f(t, x̃(t), u(t)), t ∈ [0, T ]

x̃(0) = x(0) = x0

▶ Recursively generate solution approximation xn := x̃(tn) ≈ x(tn) at N discrete time
points 0 = t0 < t1 < . . . < tN = T

▶ Integration interval [0, T ] split into subintervals [tn, tn+1] where h = tn+1 − tn
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Single step numerical simulation as discrete time system

Single step abstract integration method

ODE.

xn+1 = ϕ(xn, un)

where ϕ computes the next state based on current state and input.

DAE. [
xn+1

zn

]
= ϕ(xn, un)

where ϕ computes the next state and algebraic variables based on the current state and input.

Simplest Example: Explicit Euler

xn+1 = xn + hf(xn, un).
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Integration error

Local and global error

▶ Local integration error at tn+1:

e(tn+1) = ∥x(tn+1)− ϕ(x(tn), u0)∥.

▶ Global integration error at t = T :

E(T ) = ∥x(T )− xN∥.

▶ Global error - accumulation of local
errors
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▶ Global error - accumulation of local
errors
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Convergence and integrator order

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T ) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Higher order p:
▶ less, but more expensive steps for

same accuracy
▶ in total fewer r.h.s. evaluations for

same accuracy
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Convergence and integrator order

Integrator convergence and accuracy
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Stability and convergence

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T ) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Stability: damping of errors, does it
work for h≫ 0?

▶ If integrator is unstable, it does not
converge and has p = 0, unless h very
small
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Runge-Kutta method examples

Explicit Runge-Kutta of order 4

kn,1 = f (tn, xn)

kn,2 = f

(
tn +

h

2
, xn + h

kn,1
2

)
kn,3 = f

(
tn +

h

2
, xn + h

kn,2
2

)
kn,5 = f (tn + h, xn + hkn,3)

xn+1 = xn + h

(
1

6
kn,1 +

2

6
kn,2 +

2

6
kn,3 +

1

6
kn,4

)

▶ All kn,i can be found by explicit function
evaluations.

Implicit Euler Method

kn,1 = f(tn, xn + hkn,1)

xn+1 = xn + hkn,1

▶ kn,1 is found implicitly by solving
kn,1 − f(tn, xn + hkn,1) = 0.
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Continuous time OCP into Nonlinear Programs (NLP)

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+M(x(T ))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

▶ Direct methods: first discretize,
then optimize

1. Parametrize controls, e.g.
u(t) = un, t ∈ [tn, tn+1].

2. Discretize cost and dynamics

l(xn, un) ≈
∫ tn+1

tn

Lc(x(t), u(t)) dt.

Replace ẋ = f(x, u) by

xn+1 = ϕ(xn, un).

3. Relax path constraints, e.g., evaluate only
at t = tn

0 ≥ h(xn, un), n = 0, . . . N − 1.
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ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

▶ Direct methods: first discretize,
then optimize

1. Parametrize controls, e.g.
u(t) = un, t ∈ [tn, tn+1].

2. Discretize cost and dynamics

l(xn, un) ≈
∫ tn+1

tn

Lc(x(t), u(t)) dt.
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Replace ẋ = f(x, u) by

xn+1 = ϕ(xn, un).

3. Relax path constraints, e.g., evaluate only
at t = tn

0 ≥ h(xn, un), n = 0, . . . N − 1.

Discrete time OCP (an NLP)

min
x,u

∑N−1
k=0 l(xk, uk) +M(xN )

s.t. x0 = x̄0

xn+1 = ϕ(xn, un)

0 ≥ h(xn, un), n = 0, . . . , N−1
0 ≥ r(xN )

Variables x = (x0, . . . , xN ) and
u = (u0, . . . , uN−1).
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Direct optimal control methods solve Nonlinear Programs (NLP)

Discrete time OCP – Multiple Shooting Formulation

min
x,u

∑N−1
k=0 l(xk, uk) + E(xN )

s.t. x0 = x̄0

xn+1 = ϕ(xn, un)

0 ≥ h(xn, un), n = 0, . . . , N−1
0 ≥ r(xN )

Variables w = (x,u)
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Direct optimal control methods solve Nonlinear Programs (NLP)
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Direct optimal control methods solve Nonlinear Programs (NLP)

Discrete time OCP – Collocation Formulation

min
x,k,u

∑N−1
k=0 l(xk, uk) + E(xN )

s.t. x0 = x̄0

xn+1 = ϕ(xn, un, kn)

0 = ϕcoll(xn, un, kn)

0 ≥ h(xn, un), n = 0, . . . , N−1
0 ≥ r(xN )

Variables w = (x,k,u)
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Summary

▶ Numerical simulation methods (integrators) used to solve ODEs and DAEs approximately.

▶ Integration accuracy order and stability play key roles.

▶ Within the multiple shooting framework, integrators are a key building block for
discretization of the continuous OCP.

▶ The resulting discrete-time OCP is large, but very sparse
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acados

acados is an open-source software package for nonlinear optimal control developed and
maintain by the group of Prof. Diehl.

acados provides several building blocks for nonlinear optimal control

▶ Integrators for ODEs and DAEs
▶ explicit and (structure-exploiting) implicit Runge-Kutta schemes
▶ efficient sensitivity propagation

▶ SQP-type solver for nonlinear optimal control problems
▶ Hessian approximation exploiting convex-over-nonlinear structures in costs and constraints
▶ real-time iteration
▶ (partial) condensing routines

▶ Interfaces to state-of-the-art QP solvers
▶ HPIPM, qpOASES, qpDUNES, OSQP, DAQP

▶ Generation of self-contained C code for embedded deployment as well as convenient user
interfaces to MATLAB and python.
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Open-Source Dependencies/Foundations

acados builds on

▶ CasADi2 for describing the problem functions and their derivatives via algorithmic
differentiation (AD)

▶ HPIPM2 for efficient condensing routines

▶ BLASFEO3 for high-performance linear algebra tailored to the embedded hardware

▶ various open-source QP solvers, HPIPM2, qpOASES4, qpDUNES5, OSQP6, DAQP, for solving
the SQP-subproblems

2Andersson et al., 2019; 2Frison & Diehl, 2020; 3Frison et al., 2018; 4Ferreau et al., 2014; 5Frasch et al.,
2015; 6Stellato et al., 2020; 7Arnstrom et al., 2022;

54



Recent applications of acados

Recent applications of acados in real-world experiments.

▶ Obstacle Avoidance for Mobile Robotics (Gao et al., 2023)

▶ Quadrotor Control (Salzmann et al., 2023; Romero et al., 2022; Carlos et al., 2020)

▶ Combustion Engine and Air Path Control (Hänggi et al., 2022; Gordon et al., 2022)

▶ Electric Motor Control (Zanelli et al., 2021)

Advanced NMPC problem formulations and implementations.

▶ Robust MPC (Gao et al., 2023)

▶ Deep Neural Networks (DNN) and Gaussian Processes (GP) as dynamics model
(Salzmann et al., 2023; Lahr et al., 2023)

▶ Convenient and efficient access to the SQP subproblem for custom modifications
(Frey, Gao, et al., 2023)

▶ Custom sensitivity propagation for accurate cost integration for convex-over-nonlinear
costs (Frey, Baumgärtner, & Diehl, 2023)
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Exercise Session

▶ We consider a continuously stirred tank reactor as in Pannocchia & Rawlings (2003).

▶ An irreversible, first-order reaction A→ B occurs in the liquid phase and the reactor
temperature is regulated with external cooling.

Mass and energy balances lead to the following nonlinear
state space model:

ċ =
F0(c0 − c)

πr2h
− k0 exp

(
− E

RT

)
c

Ṫ =
F0(T0 − T )

πr2h
− ∆H

ρCp
k0 exp

(
− E

RT

)
c+

2U

rρCp
(Tc − T )

ḣ =
F0 − F

πr2

▶ The controls are Tc, the coolant liquid temperature, and F , the outlet flowrate.
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Convex sets
A key concept in optimization is convexity

A set Ω is said to be convex if for any w1, w2 and any θ ∈ [0, 1] it holds θw1 + (1− θ)w2 ∈ Ω
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Convex functions

▶ A function F is convex if for every
w1, w2 ∈ Rn and θ ∈ [0, 1] it holds that

F (θw1+(1−θ)w2) ≤ θF (w1)+(1−θ)F (w2)

▶ F is concave if and only if −F is convex

▶ F is convex if and only if the epigraph

epiF = {(w, t) ∈ Rnw+1 | F (w) ≤ t}

is a convex set

w
F

(w
)

(w1; F (w1))

(w2; F (w2))

3F (w1) + (1! 3)F (w2)

F (3w1 + (1! 3)w2)
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