Simulation and Optimal Control using CasADi and acados

Katrin Baumgärtner

Systems Control and Optimization Laboratory (syscop)

workshop @ SPP2364 Doktorand:innenseminar

November 2023

universitätfreiburg

▶ Who has experience with python?

- ▶ Who has experience with python?
- ► Who has experience with CasADi?

- Who has experience with python?
- Who has experience with CasADi?
- ▶ Who models their system in terms of an ordinary differential equation (ODE)?
- ▶ Who models their system in terms of an differential algebraic equation (DAE)?
- Who models their systems using a neural network?

- Who has experience with python?
- Who has experience with CasADi?
- ▶ Who models their system in terms of an ordinary differential equation (ODE)?
- ▶ Who models their system in terms of an differential algebraic equation (DAE)?
- Who models their systems using a neural network?
- Who has installed the provided docker?

Workshop Outline

- ▶ Part 1: Nonlinear Optimization
- ▶ Part 2: Direct Optimal Control

- Part 1: Nonlinear Optimization using CasADi
- ▶ Part 2: Direct Optimal Control

- Part 1: Nonlinear Optimization using CasADi
- Part 2: Direct Optimal Control using CasADi and acados

- Part 1: Nonlinear Optimization using CasADi
- Part 2: Direct Optimal Control using CasADi and acados

Most of the theory part of this talk is based on slides by Armin Nurkanović.

Part 1: Nonlinear Optimization

- 1. Basic definitions
- 2. Conditions of optimality
- 3. Nonlinear programming algorithms
- 4. Nonlinear optimization with CasADi

Part 2: Direct Optimal Control

Part 1: Nonlinear Optimization

1. Basic definitions

- 2. Conditions of optimality
- 3. Nonlinear programming algorithms
- 4. Nonlinear optimization with CasADi

Part 2: Direct Optimal Control

Minimize (or maximize) an objective function F(w) depending on decision variables w subject to equality and/or inequality constraints.

Minimize (or maximize) an objective function F(w) depending on decision variables w subject to equality and/or inequality constraints.

An optimization problem	
$\min_w F(w)$	(1a)
s.t. $G(w) = 0$	(1b)
$H(w) \ge 0$	(1c)

Terminology

- w decision variable
- ► *F*: objective/cost function
- ► *G*, *H*: equality and inequality constraint functions

Minimize (or maximize) an objective function F(w) depending on decision variables w subject to equality and/or inequality constraints.

n optimization problem	
$\min F(w)$	(12)
s.t. $G(w) = 0$	(1a) (1b)
$H(w) \ge 0$	(1c)

Terminology
w - decision variable
► <i>F</i> : objective/cost function
 G, H: equality and inequality constraint functions

- Only in few special cases a closed form solution exist
- Use an iterative algorithm to find solution

Definition

The feasible set of the optimization problem (1) is defined as $\Omega = \{w \in \mathbb{R}^n \mid G(w) = 0, H(w) \ge 0\}$. A point $w \in \Omega$ is called a feasible point.

The feasible set is the intersection of the two grey areas (halfspace and circle)

Basic definitions: local and global minimizer

The value $F(w^*)$ at a local/global minimizer w^* is called local/global minimum.

Convex optimization problems

A convex optimization problem

$$\min_{w} F(w)$$

s.t. $G(w) = 0$
 $H(w) \ge 0$

An optimization problem is convex if the objective function F is convex and the feasible set Ω is convex.

- Example: convex objective and linear equalities and linear inequalities.
- A locally optimal solution is globally optimal!
- First order conditions are necessary and sufficient (we come back to this)

Optimization problems can be:

- unconstrained $(\Omega = \mathbb{R}^n)$ or constrained $(\Omega \subset \mathbb{R}^n)$
- convex or nonconvex
- linear or nonlinear
- finite or infinite dimensional

Optimization problems can be:

- unconstrained $(\Omega = \mathbb{R}^n)$ or constrained $(\Omega \subset \mathbb{R}^n)$
- convex or nonconvex
- linear or nonlinear
- ▶ finite or infinite dimensional

Three important classes of optimization problems:

- Linear Program (LP)
- Quadratic Program (QP)
- Nonlinear Program (NLP)

Class 1: Linear Programming (LP)

- convex optimization problem
- 1947: simplex method by Dantzig, 1984: polynomial time interior-point method by Karmarkar
- ▶ if not unbounded, the solution is always at edge or vertex of the feasible set
- today very mature and reliable

Class 1: Linear Programming (LP)

- convex optimization problem
- 1947: simplex method by Dantzig, 1984: polynomial time interior-point method by Karmarkar
- if not unbounded, the solution is always at edge or vertex of the feasible set
- today very mature and reliable

Class 2: Quadratic Programming (QP)

Quadratic program

$$\min_{w} \frac{1}{2} w^{\top} Q w + g^{\top} w$$

s.t. $Aw - b = 0$
 $Cw - d \ge 0$

- depending on Q, can be convex and nonconvex
- solved online in linear model predictive control (linear system model + linear constraints + quadratic cost)
- many good solvers: Gurobi, OSQP, HPIPM, qpOASES, OOQP, ...
- subsproblems in nonlinear optimization

Class 3: Nonlinear Program (NLP)

$$\min_{w} F(w)$$

s.t. $G(w) = 0$
 $H(w) \ge 0$

- can be convex and nonconvex
- solved with iterative Newton-type algorithms
- solved in nonlinear model predictive control

- ► Linear Program (LP)
- Quadratic Program (QP)
- ► Nonlinear Program (NLP)

Continuous time OCP

$$\min_{x(\cdot),u(\cdot)} \int_{0}^{T} L_{c}(x(t), u(t)) dt + E(x(T))$$

s.t. $x(0) = \bar{x}_{0}$
 $\dot{x}(t) = f_{c}(x(t), u(t))$
 $0 \ge h(x(t), u(t)), \ t \in [0, T]$
 $0 \ge r(x(T))$

Direct methods (like direct collocation, multiple shooting) first discretize, then optimize.

Continuous time OCP

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f_c(x(t), u(t))$
 $0 \ge h(x(t), u(t)), t \in [0, T]$
 $0 \ge r(x(T))$

Direct methods (like direct collocation, multiple shooting) first discretize, then optimize.

Discrete time OCP (an NLP)

$$\min_{x,u} \sum_{k=0}^{N-1} \ell(x_k, u_k) + E(x_N)$$

s.t. $x_0 = \bar{x}_0$
 $x_{k+1} = f(x_k, u_k), \ k = 0, \dots, N-1$
 $0 \ge h(x_k, u_k), \ k = 0, \dots, N-1$
 $0 \ge r(x_N)$

Variables $x = (x_0, \ldots, x_N)$ and $u = (u_0, \ldots, u_{N-1})$ can be summarized in vector $w = (x, u) \in \mathbb{R}^n$.

Discrete time OCP (an NLP)

$$\min_{x,u} \sum_{k=0}^{N-1} \ell(x_k, u_k) + E(x_N)$$

s.t. $x_0 = \bar{x}_0$
 $x_{k+1} = f(x_k, u_k), \ k = 0, \dots, N-1$
 $0 \ge h(x_k, u_k), \ k = 0, \dots, N-1$
 $0 \ge r(x_N)$

Variables $x = (x_0, \ldots, x_N)$ and $u = (u_0, \ldots, u_{N-1})$ can be summarized in vector $w = (x, u) \in \mathbb{R}^n$.

Discrete time NMPC Problem (an NLP)

$$\min_{x,u} \sum_{k=0}^{N-1} \ell(x_k, u_k) + E(x_N)$$

s.t. $x_0 = \bar{x}_0$
 $x_{k+1} = f(x_k, u_k)$
 $0 \ge h(x_k, u_k), \ k = 0, \dots, N-1$
 $0 \ge r(x_N)$

Variables $x = (x_0, \ldots, x_N)$ and $u = (u_0, \ldots, u_{N-1})$ can be summarized in vector $w = (x, u) \in \mathbb{R}^n$.

Nonlinear Program (NLP)

$$\min_{w \in \mathbb{R}^n} F(w)$$

s.t. $G(w) = 0$
 $H(w) \ge 0$

Outline

Part 1: Nonlinear Optimization

1. Basic definitions

2. Conditions of optimality

- 3. Nonlinear programming algorithms
- 4. Nonlinear optimization with CasADi

Part 2: Direct Optimal Control

Algebraic characterization of **unconstrained** local optima

Consider the unconstrained problem: $\min_{w \in \mathbb{R}^n} F(w)$

First-Order Necessary Condition of Optimality (FONC)

 $w^* \text{ local optimum } \quad \Rightarrow \quad \nabla F(w^*) = 0, \ w^* \text{ stationary point}$

Second-Order **Necessary** Condition of Optimality (SONC)

 $w^* \text{ local optimum } \Rightarrow \quad \nabla^2 F(w^*) \succeq 0$

Algebraic characterization of unconstrained local optima

Consider the unconstrained problem: $\min_{w \in \mathbb{R}^n} F(w)$

First-Order Necessary Condition of Optimality (FONC)

 $w^* \text{ local optimum } \quad \Rightarrow \quad \nabla F(w^*) = 0, \ w^* \text{ stationary point}$

Second-Order **Necessary** Condition of Optimality (SONC)

 $w^* \text{ local optimum } \Rightarrow \quad \nabla^2 F(w^*) \succeq 0$

Second-Order Sufficient Conditions of Optimality (SOSC)

 $\nabla F(w^*) = 0 \text{ and } \nabla^2 F(w^*) \succ 0 \quad \Rightarrow \quad x^* \text{ strict local minimum}$

 $abla F(w^*) = 0$ and $abla^2 F(w^*) \prec 0 \quad \Rightarrow \quad x^*$ strict local maximum

No conclusion can be drawn in the case $\nabla^2 F(w^*)$ is indefinite!

Type of stationary points

A stationary point can be a minimum, maximum or a saddle point

FONC for equality constraints

Nonlinear Program (NLP)

$$\min_{w \in \mathbb{R}^n} F(w)$$

s.t. $G(w) = 0$

 $\mathcal{L}(w,\lambda) = F(w) - \lambda^\top G(w)$ is the Lagrangian

FONC for equality constraints

Nonlinear Program (NLP)

$$\min_{w \in \mathbb{R}^n} F(w)$$

s.t. $G(w) = 0$

 $\mathcal{L}(w,\lambda) = F(w) - \lambda^\top G(w)$ is the Lagrangian

Definition (LICQ)

A point w satisfies Linear Independence Constraint Qualification LICQ if and only if $\nabla G\left(w\right)$ is full column rank

FONC for equality constraints

Nonlinear Program (NLP)

 $\min_{w \in \mathbb{R}^n} F(w)$ s.t. G(w) = 0

Definition (LICQ)

A point w satisfies Linear Independence Constraint Qualification LICQ if and only if $\nabla G\left(w\right)$ is full column rank

 $\mathcal{L}(w,\lambda) = F(w) - \lambda^{\top} G(w)$ is the Lagrangian

First-order Necessary Conditions

Let F, G in C^1 . If w^* is a (local) minimizer, and w^* satisfies LICQ, then there is a unique vector λ such that:

$$\begin{aligned} \nabla_w \mathcal{L}(w^*,\lambda^*) &= \nabla F(w^*) - \nabla G(w^*)\lambda = 0 \\ \nabla_\lambda \mathcal{L}(w^*,\lambda^*) &= G(w^*) = 0 \end{aligned} \end{aligned} \qquad \begin{array}{l} \text{Dual feasibility} \\ \text{Primal feasibility} \end{aligned}$$

The KKT conditions

Nonlinear Program (NLP)

$$\min_{w \in \mathbb{R}^n} F(w)$$

s.t. $G(w) = 0$
 $H(w) \ge 0$

 $\mathcal{L}(w,\lambda) = F(w) - \lambda^{\top} G(w) - \mu^{\top} H(w)$

The KKT conditions

Nonlinear Program (NLP)

$$\min_{w \in \mathbb{R}^n} F(w)$$

s.t. $G(w) = 0$
 $H(w) \ge 0$

 $\mathcal{L}(w,\lambda) = F(w) - \lambda^{\top} G(w) - \mu^{\top} H(w)$

Definition (LICQ)

A point \boldsymbol{w} satisfies LICQ if and only if

 $\left[\nabla G\left(w\right), \quad \nabla H_{\mathcal{A}}\left(w\right)\right]$

is full column rank

Active set $\mathcal{A} = \{i \mid H_i(w) = 0\}$

The KKT conditions

Nonlinear Program (NLP)

 $\min_{w \in \mathbb{R}^n} F(w)$ s.t. G(w) = 0 $H(w) \ge 0$

Definition (LICQ)

A point \boldsymbol{w} satisfies LICQ if and only if

Active set $\mathcal{A} = \{i \mid H_i(w) = 0\}$

 $\left[\nabla G\left(w\right), \quad \nabla H_{\mathcal{A}}\left(w\right)\right]$

is full column rank

 $\mathcal{L}(w,\lambda) = F(w) - \lambda^{\top} G(w) - \mu^{\top} H(w)$

Theorem (KKT conditions)

Let F, G, H be C^1 . If w^* is a (local) minimizer and satisfies LICQ, then there are unique vectors λ^* and μ^* such that (w^*, λ^*, μ^*) satisfies:

$$\begin{split} \nabla_w \mathcal{L} \left(w^*, \, \mu^*, \, \lambda^* \right) &= 0, \quad \mu^* \geq 0, \\ G \left(w^* \right) &= 0, \quad H \left(w^* \right) \geq 0 \\ \mu_i^* H_i(w^*) &= 0, \quad \forall \, i \end{split} \ \ \ \begin{array}{ll} \text{Dual feasibility} \\ \text{Primal feasibility} \\ \text{Complementary slackness} \end{array}$$

Active constraints:

• $H_i(w^*) > 0$ then $\mu_i^* = 0$, and H_i is inactive

Active constraints:

- $H_i(w^*) > 0$ then $\mu_i^* = 0$, and H_i is inactive
- ▶ $\mu_i^* > 0$ and $H_i(w) = 0$ then $H_i(w)$ is strictly active

Active constraints:

- $H_i(w^*) > 0$ then $\mu_i^* = 0$, and H_i is inactive
- ▶ $\mu_i^* > 0$ and $H_i(w) = 0$ then $H_i(w)$ is strictly active
- ▶ $\mu_i^* = 0$ and $H_i(w) = 0$ then then $H_i(w)$ is weakly active

Active constraints:

- $H_i(w^*) > 0$ then $\mu_i^* = 0$, and H_i is inactive
- ▶ $\mu_i^* > 0$ and $H_i(w) = 0$ then $H_i(w)$ is strictly active
- ▶ $\mu_i^* = 0$ and $H_i(w) = 0$ then then $H_i(w)$ is weakly active
- We define the active set A* as the set of indices i of the active constraints

First-Order Necessary Conditions: A regular local optimum of a (differentiable) NLP is a KKT point

- First-Order Necessary Conditions: A regular local optimum of a (differentiable) NLP is a KKT point
- Second-Order Sufficient Conditions require positivity of the Hessian in all critical feasible directions

- First-Order Necessary Conditions: A regular local optimum of a (differentiable) NLP is a KKT point
- Second-Order Sufficient Conditions require positivity of the Hessian in all critical feasible directions

Nonconvex problem \Rightarrow minimum is not necessarily global. But some nonconvex problems have a unique minimum

- First-Order Necessary Conditions: A regular local optimum of a (differentiable) NLP is a KKT point
- Second-Order Sufficient Conditions require positivity of the Hessian in all critical feasible directions

Nonconvex problem \Rightarrow minimum is not necessarily global. But some nonconvex problems have a unique minimum

Some important practical consequences...

- A KKT point may not be a local (global) optimum ... the lack of equivalence results from a lack of regularity and/or SOSC
- A local (global) optimum may not be a KKT point ... due to violation of constraint qualifications, e.g. LICQ violated.

Outline

Part 1: Nonlinear Optimization

- 1. Basic definitions
- 2. Conditions of optimality
- 3. Nonlinear programming algorithms
- 4. Nonlinear optimization with CasADi

Part 2: Direct Optimal Control

To solve a nonlinear system, solve a sequence of linear systems

To solve a nonlinear system, solve a sequence of linear systems

To solve a nonlinear system, solve a sequence of linear systems

To solve a nonlinear system, solve a sequence of linear systems

In direct methods, we have to solve the discretized optimal control problem, which is a Nonlinear Program (NLP)

General Nonlinear Program (NLP)

$$\min_w F(w) \text{ s.t. } \begin{cases} G(w) = 0\\ H(w) \ge 0 \end{cases}$$

We first treat the case without inequalities

NLP only with equality constraints

$$\min_{w} F(w) \text{ s.t. } G(w) = 0$$

Lagrange function

$$\mathcal{L}(w,\lambda) = F(w) - \lambda^T G(w)$$

Then for an optimal solution w^* exist multipliers λ^* such that

Nonlinear root-finding problem

$$\nabla_w \mathcal{L}(w^*, \lambda^*) = 0$$

$$G(w^*) = 0$$

How to solve nonlinear equations

$$\nabla_w \mathcal{L}(w^*, \lambda^*) = 0
G(w^*) = 0 ?$$

Linearize!

$$\begin{aligned} \nabla_w \mathcal{L}(w^k,\lambda^k) &+ \nabla_w^2 \mathcal{L}(w^k,\lambda^k) \Delta w &- \nabla_w G(w^k) \Delta \lambda &= 0 \\ G(w^k) &+ \nabla_w G(w^k)^T \Delta w &= 0 \end{aligned}$$

This is equivalent, due to $\nabla \mathcal{L}(w^k,\lambda^k) = \nabla F(w^k) - \nabla G(w^k)\lambda^k$ with the shorthand $\lambda^+ = \lambda^k + \Delta\lambda$ to

$$\begin{aligned} \nabla_w F(w^k) &+ \nabla^2_w \mathcal{L}(w^k, \lambda^k) \Delta w &- \nabla_w G(w^k) \lambda^+ &= 0 \\ G(w^k) &+ \nabla_w G(w^k)^T \Delta w &= 0 \end{aligned}$$

Conditions

$$\begin{array}{rcl} \nabla_w F(w^k) & + \nabla_w^2 \mathcal{L}(w^k, \lambda^k) \Delta w & - \nabla_w G(w^k) \lambda^+ &= & 0 \\ G(w^k) & + \nabla_w G(w^k)^T \Delta w &= & 0 \end{array}$$

are optimality conditions of a quadratic program (QP), namely:

Quadratic program

$$\min_{\Delta w} \quad \nabla F(w^k)^T \Delta w + \frac{1}{2} \Delta w^T A^k \Delta w$$

s.t.
$$G(w^k) + \nabla G(w^k)^T \Delta w = 0,$$

with

$$A^k = \nabla^2_w \mathcal{L}(w^k, \lambda^k)$$

The full step Newton's Method iterates by solving in each iteration the quadratic program (QP)

$$\begin{split} \min_{\Delta w} \quad \nabla F(w^k)^T \Delta w + \frac{1}{2} \Delta w^T A^k \Delta w \\ \text{s.t.} \quad G(w^k) + \nabla G(w^k)^T \Delta w = 0 \end{split}$$

with $A^k = \nabla^2_w \mathcal{L}(w^k, \lambda^k)$. As solution, we obtain the step Δw^k and the new multiplier λ^+_{QP} .

New iterate

This Newton's method is also called Sequential Quadratic Programming (SQP) for equality constrained optimization (with *exact Hessian* and *full steps*)

Regard again NLP with both, equalities and inequalities:

NLP with equality and inequality constraints

$$\min_{w} F(w) \text{ s.t. } \begin{cases} G(w) = 0\\ H(w) \ge 0 \end{cases}$$

Lagrangian function for NLP with equality and inequality constraints

$$\mathcal{L}(w,\lambda,\mu) = F(w) - \lambda^T G(w) - \mu^T H(w)$$

Theorem (Karush-Kuhn-Tucker (KKT) conditions)

Let F, G, H be C^2 . If w^* is a (local) minimizer and satisfies LICQ, then there are unique vectors λ^* and μ^* such that (w^*, λ^*, μ^*) satisfies:

$$egin{aligned} & \nabla_w \mathcal{L} \left(w^*, \, \mu^*, \, \lambda^* \,
ight) &= 0 \ & G \left(w^*
ight) &= 0 \ & H(w^*) \geq 0 \ & \mu^* \geq 0 \ & H(w^*)^\top \mu^* &= 0 \end{aligned}$$

- These contain nonsmooth conditions (the last three) which are called *complementarity* conditions
- This system cannot be solved by Newton's Method. But still with SQP...

By Linearizing all functions within the KKT Conditions, and setting $\lambda^+ = \lambda^k + \Delta \lambda$ and $\mu^+ = \mu^k + \Delta \mu$, we obtain the KKT conditions of a Quadratic Program (QP).

QP with inequality constraints

$$\begin{split} \min_{\Delta w} & \nabla F(w^k)^T \Delta w + \frac{1}{2} \Delta w^T A^k \Delta w \\ \text{s.t.} & \left\{ \begin{array}{l} G(w^k) + \nabla G(w^k)^T \Delta w &= 0 \\ H(w^k) + \nabla H(w^k)^T \Delta w &\geq 0 \end{array} \right. \end{split}$$

with

$$A^k = \nabla^2_w \mathcal{L}(w^k, \lambda^k, \mu^k)$$

and its solution delivers

$$\Delta w^k, \quad \lambda_{\rm QP}^+, \quad \mu_{\rm QP}^+$$

Constrained Gauss-Newton Method

In special case of least squares objectives

Least squares objective function

$$F(w) = \frac{1}{2} \|R(w)\|_2^2$$

can approximate Hessian $\nabla^2_w \mathcal{L}(w^k,\lambda^k,\mu^k)$ by much cheaper

 $A^k = \nabla R(w) \nabla R(w)^T.$

Need no multipliers to compute A^k ! QP= linear least squares:

Gauss-Newton QP

$$\begin{split} \min_{\Delta w} & \frac{1}{2} \| R(w^k) + \nabla R(w^k)^T \Delta w \|_2^2 \\ \text{s.t.} & G(w^k) + \nabla G(w^k)^T \Delta w = 0 \\ H(w^k) + \nabla H(w^k)^T \Delta w \ge 0 \end{split}$$

Convergence: linear (better if $||R(w^*)||$ small)

Interior point methods

NLP with inequalites

$$\min_{w} F(w)$$

s.t. $H(w) \ge 0$

KKT conditions

$$\nabla F(w) - \nabla H(w)^\top \mu = 0$$

$$0 \le \mu \perp H(w) \ge 0$$

Main difficulty: inequality conditions introduce nonsmoothness in the KKT conditions

NLP with inequalites

$$\min_{w} F(w)$$

s.t. $H(w) \ge 0$

Barrier problem

$$\min_{w} F(w) - \tau \sum_{i=1}^{m} \log(H_i(w)) \eqqcolon F_{\tau}(w)$$

NLP with inequalites

$$\min_{w} F(w)$$

s.t. $H(w) \ge 0$

Barrier problem

$$\min_{w} F(w) - \tau \sum_{i=1}^{m} \log(H_i(w)) \eqqcolon F_{\tau}(w)$$

$\ensuremath{\mathsf{NLP}}$ with inequalites

$$\min_{w} F(w)$$

s.t. $H(w) \ge 0$

Barrier problem

$$\min_{w} F(w) - \tau \sum_{i=1}^{m} \log(H_i(w)) \eqqcolon F_{\tau}(w)$$

NLP with inequalites

$$\min_{w} F(w)$$

s.t. $H(w) \ge 0$

Barrier problem

$$\min_{w} F(w) - \tau \sum_{i=1}^{m} \log(H_i(w)) \eqqcolon F_{\tau}(w)$$

NLP with inequalites

$$\min_{w} F(w)$$

s.t. $H(w) \ge 0$

Barrier problem

$$\min_{w} F(w) - \tau \sum_{i=1}^{m} \log(H_i(w)) \eqqcolon F_{\tau}(w)$$

$\ensuremath{\mathsf{NLP}}$ with inequalites

$$\min_{w} F(w)$$

s.t. $H(w) \ge 0$

Barrier problem

$$\min_{w} F(w) - \tau \sum_{i=1}^{m} \log(H_i(w)) \eqqcolon F_{\tau}(w)$$

Example NLP

$$\min_{w} 0.5w^2 - 2w$$

s.t. $-1 \le w \le 1$

Barrier problem

$$\min_{w} \ 0.5w^2 - 2 - \tau \log(w+1) - \tau \log(1-w)$$

Example NLP

$$\min_{w} 0.5w^2 - 2w$$

s.t. $-1 \le w \le 1$

Barrier problem

$$\min_{w} \ 0.5w^2 - 2 - \tau \log(w+1) - \tau \log(1-w)$$

Example NLP

$$\min_{w} 0.5w^2 - 2w$$

s.t. $-1 \le w \le 1$

Barrier problem

$$\min_{w} \ 0.5w^2 - 2 - \tau \log(w+1) - \tau \log(1-w)$$

35

Example NLP

$$\min_{w} 0.5w^2 - 2w$$

s.t. $-1 \le w \le 1$

Barrier problem

$$\min_{w} \ 0.5w^2 - 2 - \tau \log(w+1) - \tau \log(1-w)$$

Example NLP

$$\min_{w} 0.5w^2 - 2w$$

s.t. $-1 \le w \le 1$

Barrier problem

$$\min_{w} \ 0.5w^2 - 2 - \tau \log(w+1) - \tau \log(1-w)$$

35
An example of the barrier problem

Example NLP

$$\min_{w} 0.5w^2 - 2w$$

s.t. $-1 \le w \le 1$

Barrier problem

$$\min_{w} \ 0.5w^2 - 2 - \tau \log(w+1) - \tau \log(1-w)$$

An example of the barrier problem

Example NLP

$$\min_{w} 0.5w^2 - 2w$$

s.t. $-1 \le w \le 1$

Barrier problem

$$\min_{w} \ 0.5w^2 - 2 - \tau \log(w+1) - \tau \log(1-w)$$

- Newton type optimization solves the necessary optimality conditions
- Newton's method linearizes the nonlinear system in each iteration
- ▶ for constraints: requires Lagrangian function
- ▶ for equality constraints: KKT conditions are smooth, can apply Newton's method directly
- ▶ for inequality constraints: KKT conditions are non-smooth
 - \rightarrow Sequential Quadratic Programming (SQP)
- ▶ QP subproblem might be solved via an interior point solver, active set solver, ADMM, etc.

Outline

Part 1: Nonlinear Optimization

- 1. Basic definitions
- 2. Conditions of optimality
- 3. Nonlinear programming algorithms
- 4. Nonlinear optimization with CasADi
- Part 2: Direct Optimal Control

CasADi¹ is an open-source tool for nonlinear optimization and algorithmic differentiation.

https://web.casadi.org/

CasADi provides

- algorithmic differentiation on user-defined symbolic expressions
- standardized interfaces to a variety of numerical routines:
 - simulation and nonlinear constrained optimization
 - solution of linear and nonlinear equations
- CasADi can be used from C++, python, Octave or MATLAB.

¹Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings and Moritz Diehl: *CasADi – A software framework for nonlinear optimization and optimal control*; Mathematical Programming Computation (2019).

CasADi¹ is an open-source tool for nonlinear optimization and algorithmic differentiation.

https://web.casadi.org/

CasADi provides

- algorithmic differentiation on user-defined symbolic expressions
- standardized interfaces to a variety of numerical routines:
 - \blacktriangleright simulation and nonlinear constrained optimization \rightarrow Interior point solver IPOPT
 - solution of linear and nonlinear equations
- CasADi can be used from C++, python, Octave or MATLAB.

¹Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings and Moritz Diehl: *CasADi – A software framework for nonlinear optimization and optimal control*; Mathematical Programming Computation (2019).

- 1. Read the docs! https://web.casadi.org/docs
 - ▶ What is the difference between a CasADi expression and a CasADi function?
 - How do you compute a derivative using CasADi?
- 2. Work on the exercise sheet.
 - How to formulate a constrained nonlinear optimization problem with CasADi? How to solve the NLP with the solver IPOPT?

Ordinary differential equations and controlled dynamical system

Let:

- $\blacktriangleright \ t \in \mathbb{R} \text{ be the time}$
- $x(t) \in \mathbb{R}^{n_x}$ the differential states and $\dot{x}(t) = \frac{\mathrm{d}x(t)}{\mathrm{d}t}$
- $\blacktriangleright \ u(t) \in \mathbb{R}^{n_u}$ a given control function

Ordinary differential equations and controlled dynamical system

Let:

- $\blacktriangleright t \in \mathbb{R}$ be the time
- $x(t) \in \mathbb{R}^{n_x}$ the differential states and $\dot{x}(t) = \frac{\mathrm{d}x(t)}{\mathrm{d}t}$
- $\blacktriangleright \ u(t) \in \mathbb{R}^{n_u}$ a given control function

Ordinary differential equations

▶ Let $F : \mathbb{R} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$ be a function such that the Jacobian $\frac{\partial F}{\partial \dot{x}}(\cdot)$ is invertible. The system of equations:

 $F(t, \dot{x}(t), x(t), u(t)) = 0,$

is called an Ordinary Differential Equation (ODE).

Ordinary differential equations and controlled dynamical system

Let:

- $\blacktriangleright t \in \mathbb{R}$ be the time
- $x(t) \in \mathbb{R}^{n_x}$ the differential states and $\dot{x}(t) = \frac{\mathrm{d}x(t)}{\mathrm{d}t}$
- ▶ $u(t) \in \mathbb{R}^{n_u}$ a given control function

Ordinary differential equations

▶ Let $F : \mathbb{R} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$ be a function such that the Jacobian $\frac{\partial F}{\partial \dot{x}}(\cdot)$ is invertible. The system of equations:

$$F(t, \dot{x}(t), x(t), u(t)) = 0,$$

is called an Ordinary Differential Equation (ODE).

• Given a function $f : \mathbb{R} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$ then a system of equations:

$$\dot{x}(t) = f(t, x(t), u(t)) \tag{2}$$

is called an explicit ODE.

Mass m with spring constant k and friction coefficient c:

$$\dot{x}_1(t) = x_2(t) \dot{x}_2(t) = -\frac{k}{m}(x_2(t) - u(t)) - \frac{\beta}{m}x_1(t)$$

Mass m with spring constant k and friction coefficient c:

$$\dot{x}_1(t) = x_2(t) \dot{x}_2(t) = -\frac{k}{m}(x_2(t) - u(t)) - \frac{\beta}{m}x_1(t)$$

- state $x(t) \in \mathbb{R}^2$
- $x_1(t) \qquad \longleftarrow \text{measured}$ • position of mass $x_2(t)$
- velocity of mass
- control action: spring position $u(t) \in \mathbb{R}$ \leftarrow manipulated

Mass m with spring constant k and friction coefficient c:

$$\dot{x}_1(t) = x_2(t) \dot{x}_2(t) = -\frac{k}{m}(x_2(t) - u(t)) - \frac{\beta}{m}x_1(t)$$

- state $x(t) \in \mathbb{R}^2$
- position of mass $x_1(t) \qquad \longleftarrow \text{measured}$
- velocity of mass
- control action: spring position $u(t) \in \mathbb{R} \quad \longleftarrow$ manipulated

 $x_2(t)$

As explicit ODE: $\dot{x} = f(x, u)$ with

$$f(x,u) = \begin{bmatrix} x_2\\ -\frac{k}{m}(x_2 - u) - \frac{c}{m}x_1 \end{bmatrix}$$

As implicit ODE: $0 = F(\dot{x}, x, u)$ with

$$F(\dot{x}, x, u) = \begin{bmatrix} x_2 - \dot{x}_1 \\ -\frac{k}{m}(x_2 - u) - \frac{\beta}{m}x_1 - \dot{x}_2 \end{bmatrix}$$

Differential algebraic equations

Let:

•
$$x(t) \in \mathbb{R}^{n_x}$$
 the differential states with $\dot{x}(t) = \frac{\mathrm{d}x(t)}{\mathrm{d}t}$

- ▶ $z(t) \in \mathbb{R}^{n_z}$ the algebraic states
- $u(t) \in \mathbb{R}^{n_u}$ a given control function

Differential algebraic equations

Let:

•
$$x(t) \in \mathbb{R}^{n_x}$$
 the differential states with $\dot{x}(t) = rac{\mathrm{d}x(t)}{\mathrm{d}t}$

- $z(t) \in \mathbb{R}^{n_z}$ the algebraic states
- $u(t) \in \mathbb{R}^{n_u}$ a given control function

Differential algebraic equations

Let $F : \mathbb{R} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_z} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$ be a function such that the matrix $\begin{bmatrix} \frac{\partial F}{\partial x} & \frac{\partial F}{\partial z} \end{bmatrix}$ is invertible (*index one*). The system of equations:

 $F(t, \dot{x}(t), x(t), z(t), u(t)) = 0,$

is called an fully implicit Differential Algebraic Equation (DAE).

Differential algebraic equations

Let:

•
$$x(t) \in \mathbb{R}^{n_x}$$
 the differential states with $\dot{x}(t) = rac{\mathrm{d}x(t)}{\mathrm{d}t}$

- $z(t) \in \mathbb{R}^{n_z}$ the algebraic states
- ▶ $u(t) \in \mathbb{R}^{n_u}$ a given control function

Differential algebraic equations

Let $F : \mathbb{R} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_z} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$ be a function such that the matrix $\left[\frac{\partial F}{\partial x} \ \frac{\partial F}{\partial z}\right]$ is invertible (*index one*). The system of equations:

 $F(t, \dot{x}(t), x(t), z(t), u(t)) = 0,$

is called an fully implicit Differential Algebraic Equation (DAE).

▶ Let $f : \mathbb{R} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_z} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$ and $g : \mathbb{R} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_z} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_z}$ with $\frac{\partial g}{\partial z}$ invertible. The system of equations:

$$\begin{split} \dot{x}(t) &= f(t, x(t), z(t), u(t)), \\ 0 &= g(t, x(t), z(t), u(t)), \end{split}$$

- IVPs have only in special cases a closed form solution
- ▶ Instead, compute numerically a solution approximation $\tilde{x}(t)$ that approximately satisfies:

$$\dot{\tilde{x}}(t) \approx f(t, \tilde{x}(t), u(t)), \quad t \in [0, T]$$
$$\tilde{x}(0) = x(0) = x_0$$

b Instead, compute numerically a solution approximation $\tilde{x}(t)$ that approximately satisfies:

$$\begin{split} \dot{\tilde{x}}(t) &\approx f(t,\tilde{x}(t),u(t)), \quad t \in [0,T] \\ \tilde{x}(0) &= x(0) = x_0 \end{split}$$

► Recursively generate solution approximation x_n := x̃(t_n) ≈ x(t_n) at N discrete time points 0 = t₀ < t₁ < ... < t_N = T

▶ Integration interval [0,T] split into subintervals $[t_n, t_{n+1}]$ where $h = t_{n+1} - t_n$

Single step abstract integration method

ODE.

$$x_{n+1} = \phi(x_n, u_n)$$

where ϕ computes the next state based on current state and input.

DAE.

$$\begin{bmatrix} x_{n+1} \\ z_n \end{bmatrix} = \phi(x_n, u_n)$$

where ϕ computes the next state and algebraic variables based on the current state and input.

Single step abstract integration method

ODE.

$$x_{n+1} = \phi(x_n, u_n)$$

where ϕ computes the next state based on current state and input.

DAE.

$$\begin{bmatrix} x_{n+1} \\ z_n \end{bmatrix} = \phi(x_n, u_n)$$

where ϕ computes the next state and algebraic variables based on the current state and input.

Simplest Example: Explicit Euler

$$x_{n+1} = x_n + hf(x_n, u_n).$$

Local and global error

$$e(t_{n+1}) = \|x(t_{n+1}) - \phi(x(t_n), u_0)\|.$$

Local and global error

$$e(t_{n+1}) = \|x(t_{n+1}) - \phi(x(t_n), u_0)\|.$$

Local and global error

$$e(t_{n+1}) = \|x(t_{n+1}) - \phi(x(t_n), u_0)\|.$$

Local and global error

$$e(t_{n+1}) = \|x(t_{n+1}) - \phi(x(t_n), u_0)\|.$$

Local and global error

- Local integration error at t_{n+1} :
 - $e(t_{n+1}) = \|x(t_{n+1}) \phi(x(t_n), u_0)\|.$
- Global integration error at t = T:

$$E(T) = \|x(T) - x_N\|.$$

 Global error - accumulation of local errors

Integrator convergence and accuracy

Convergence

$$\lim_{h \to 0} E(T) = 0$$

 \blacktriangleright Integrator has order p if

- ► Higher order *p*:
 - less, but more expensive steps for same accuracy
 - in total fewer r.h.s. evaluations for same accuracy

Integrator convergence and accuracy

Convergence

$$\lim_{h \to 0} E(T) = 0$$

 \blacktriangleright Integrator has order p if

- ► Higher order *p*:
 - less, but more expensive steps for same accuracy
 - in total fewer r.h.s. evaluations for same accuracy

Integrator convergence and accuracy

Convergence

$$\lim_{h \to 0} E(T) = 0$$

 \blacktriangleright Integrator has order p if

- ► Higher order *p*:
 - less, but more expensive steps for same accuracy
 - in total fewer r.h.s. evaluations for same accuracy

Integrator convergence and accuracy

Convergence

$$\lim_{h \to 0} E(T) = 0$$

 \blacktriangleright Integrator has order p if

- ► Higher order *p*:
 - less, but more expensive steps for same accuracy
 - in total fewer r.h.s. evaluations for same accuracy

Integrator convergence and accuracy

Convergence

$$\lim_{h \to 0} E(T) = 0$$

 \blacktriangleright Integrator has order p if

- ► Higher order *p*:
 - less, but more expensive steps for same accuracy
 - in total fewer r.h.s. evaluations for same accuracy

Integrator convergence and accuracy

Convergence

$$\lim_{h \to 0} E(T) = 0$$

 \blacktriangleright Integrator has order p if

- ► Higher order *p*:
 - less, but more expensive steps for same accuracy
 - in total fewer r.h.s. evaluations for same accuracy

Integrator convergence and accuracy

Convergence

 $\lim_{h\to 0} E(T) = 0$

 \blacktriangleright Integrator has order p if

 $\lim_{h \to 0} e(t_i) \le C h^{p+1} = O(h^{p+1}), C > 0$

- Stability: damping of errors, does it work for $h \gg 0$?
- If integrator is unstable, it does not converge and has p = 0, unless h very small

$$\dot{x}(t) = -300(x(t) - \cos(t)), \ t \in [0, 2]$$

 $x(0) = 1$

Integrator convergence and accuracy

Convergence

 $\lim_{h\to 0} E(T) = 0$

 \blacktriangleright Integrator has order p if

 $\lim_{h \to 0} e(t_i) \le Ch^{p+1} = O(h^{p+1}), C > 0$

- Stability: damping of errors, does it work for $h \gg 0$?
- If integrator is unstable, it does not converge and has p = 0, unless h very small

$$\dot{x}(t) = -300(x(t) - \cos(t)), \ t \in [0, 2]$$

 $x(0) = 1$

Integrator convergence and accuracy

Convergence

 $\lim_{h\to 0} E(T) = 0$

 \blacktriangleright Integrator has order p if

 $\lim_{h \to 0} e(t_i) \le C h^{p+1} = O(h^{p+1}), C > 0$

- Stability: damping of errors, does it work for $h \gg 0$?
- If integrator is unstable, it does not converge and has p = 0, unless h very small

$$\dot{x}(t) = -300(x(t) - \cos(t)), \ t \in [0, 2]$$

 $x(0) = 1$

Integrator convergence and accuracy

Convergence

 $\lim_{h\to 0} E(T) = 0$

 \blacktriangleright Integrator has order p if

 $\lim_{h \to 0} e(t_i) \le C h^{p+1} = O(h^{p+1}), C > 0$

- Stability: damping of errors, does it work for $h \gg 0$?
- If integrator is unstable, it does not converge and has p = 0, unless h very small

$$\dot{x}(t) = -300(x(t) - \cos(t)), \ t \in [0, 2]$$

 $x(0) = 1$

Integrator convergence and accuracy

Convergence

 $\lim_{h\to 0} E(T) = 0$

 \blacktriangleright Integrator has order p if

- Stability: damping of errors, does it work for h ≫ 0?
- If integrator is unstable, it does not converge and has p = 0, unless h very small

$$\dot{x}(t) = -300(x(t) - \cos(t)), \ t \in [0, 2]$$

 $x(0) = 1$
Stability and convergence

Integrator convergence and accuracy

Convergence

$$\lim_{h \to 0} E(T) = 0$$

 \blacktriangleright Integrator has order p if

 $\lim_{h\rightarrow 0}e(t_i)\leq Ch^{p+1}=O(h^{p+1}), C>0$

- Stability: damping of errors, does it work for h ≫ 0?
- If integrator is unstable, it does not converge and has p = 0, unless h very small

$$\dot{x}(t) = -300(x(t) - \cos(t)), \ t \in [0, 2]$$

 $x(0) = 1$

Stability and convergence

Integrator convergence and accuracy

Convergence

$$\lim_{h \to 0} E(T) = 0$$

 \blacktriangleright Integrator has order p if

 $\lim_{h \to 0} e(t_i) \le C h^{p+1} = O(h^{p+1}), C > 0$

- Stability: damping of errors, does it work for h ≫ 0?
- If integrator is unstable, it does not converge and has p = 0, unless h very small

$$\dot{x}(t) = -300(x(t) - \cos(t)), \ t \in [0, 2]$$

 $x(0) = 1$

Runge-Kutta method examples

Explicit Runge-Kutta of order 4

$$k_{n,1} = f(t_n, x_n)$$

$$k_{n,2} = f\left(t_n + \frac{h}{2}, x_n + h\frac{k_{n,1}}{2}\right)$$

$$k_{n,3} = f\left(t_n + \frac{h}{2}, x_n + h\frac{k_{n,2}}{2}\right)$$

$$k_{n,5} = f(t_n + h, x_n + hk_{n,3})$$

$$x_{n+1} = x_n + h\left(\frac{1}{6}k_{n,1} + \frac{2}{6}k_{n,2} + \frac{2}{6}k_{n,3} + \frac{1}{6}k_{n,4}\right)$$

► All *k*_{*n*,*i*} can be found by explicit function evaluations.

Runge-Kutta method examples

Explicit Runge-Kutta of order 4

$$\begin{aligned} k_{n,1} &= f\left(t_n, x_n\right) \\ k_{n,2} &= f\left(t_n + \frac{h}{2}, x_n + h\frac{k_{n,1}}{2}\right) \\ k_{n,3} &= f\left(t_n + \frac{h}{2}, x_n + h\frac{k_{n,2}}{2}\right) \\ k_{n,5} &= f\left(t_n + h, x_n + hk_{n,3}\right) \\ x_{n+1} &= x_n + h\left(\frac{1}{6}k_{n,1} + \frac{2}{6}k_{n,2} + \frac{2}{6}k_{n,3} + \frac{1}{6}k_{n,4}\right) \end{aligned}$$

► All *k*_{*n*,*i*} can be found by explicit function evaluations.

Implicit Euler Method

$$k_{n,1} = f(t_n, x_n + hk_{n,1})$$

 $x_{n+1} = x_n + hk_{n,1}$

► $k_{n,1}$ is found implicitly by solving $k_{n,1} - f(t_n, x_n + hk_{n,1}) = 0.$

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + M(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), t \in [0, T]$
 $0 \ge r(x(T))$

 Direct methods: first discretize, then optimize

 $\min_{x(\cdot),u(\cdot)} \int_{0}^{T} L_{c}(x(t), u(t)) dt + M(x(T))$ s.t. $x(0) = \bar{x}_{0}$ $\dot{x}(t) = f(x(t), u(t))$ $0 \ge h(x(t), u(t)), \ t \in [0, T]$ $0 \ge r(x(T))$

 Direct methods: first discretize, then optimize 1. Parametrize controls, e.g. $u(t) = u_n, t \in [t_n, t_{n+1}].$

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) \, dt + M(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), \ t \in [0, T]$
 $0 \ge r(x(T))$

 Direct methods: first discretize, then optimize

- 1. Parametrize controls, e.g. $u(t) = u_n, t \in [t_n, t_{n+1}].$
- 2. Discretize cost and dynamics

$$l(x_n, u_n) \approx \int_{t_n}^{t_{n+1}} L_{\mathbf{c}}(x(t), u(t)) \,\mathrm{d}t.$$

Replace $\dot{x}=f(x,u)$ by

$$x_{n+1} = \phi(x_n, u_n).$$

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + M(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), t \in [0, T]$
 $0 \ge r(x(T))$

 Direct methods: first discretize, then optimize

- 1. Parametrize controls, e.g. $u(t) = u_n, t \in [t_n, t_{n+1}].$
- 2. Discretize cost and dynamics

$$l(x_n, u_n) \approx \int_{t_n}^{t_{n+1}} L_{\mathbf{c}}(x(t), u(t)) \,\mathrm{d}t.$$

Replace
$$\dot{x} = f(x,u)$$
 by

$$x_{n+1} = \phi(x_n, u_n).$$

3. Relax path constraints, e.g., evaluate only at $t = t_n$

$$0 \ge h(x_n, u_n), \ n = 0, \dots N - 1.$$

${\sf Continuous \ time \ OCP}$

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + M(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), \ t \in [0, T]$
 $0 \ge r(x(T))$

 Direct methods: first discretize, then optimize

Discrete time OCP (an NLP)

$$\min_{\mathbf{x},\mathbf{u}} \sum_{k=0}^{N-1} l(x_k, u_k) + M(x_N)$$

s.t. $x_0 = \bar{x}_0$
 $x_{n+1} = \phi(x_n, u_n)$
 $0 \ge h(x_n, u_n), \ n = 0, \dots, N-1$
 $0 \ge r(x_N)$

Variables $\mathbf{x} = (x_0, \dots, x_N)$ and $\mathbf{u} = (u_0, \dots, u_{N-1}).$

1

Discrete time OCP – Multiple Shooting Formulation

$$\min_{\mathbf{x},\mathbf{u}} \sum_{k=0}^{N-1} l(x_k, u_k) + E(x_N)$$

s.t. $x_0 = \bar{x}_0$
 $x_{n+1} = \phi(x_n, u_n)$
 $0 \ge h(x_n, u_n), \ n = 0, \dots, N - 0 \ge r(x_N)$

Variables $w = (\mathbf{x}, \mathbf{u})$

Discrete time OCP – Multiple Shooting Formulation

$$\min_{\mathbf{x},\mathbf{u}} \sum_{k=0}^{N-1} l(x_k, u_k) + E(x_N)$$

s.t. $x_0 = \bar{x}_0$
 $x_{n+1} = \phi(x_n, u_n)$
 $0 \ge h(x_n, u_n), \ n = 0, \dots, N-1$
 $0 \ge r(x_N)$

Nonlinear Program (NLP)

$$\min_{w \in \mathbb{R}^{n_x}} F(w)$$

s.t. $G(w) = 0$
 $H(w) \ge 0$

Obtain large and sparse NLP

Variables $w = (\mathbf{x}, \mathbf{u})$

Direct optimal control methods solve Nonlinear Programs (NLP)

Variables $w = (\mathbf{x}, \mathbf{u})$

Discrete time OCP – Collocation Formulation

$$\min_{\mathbf{x},\mathbf{k},\mathbf{u}} \sum_{k=0}^{N-1} l(x_k, u_k) + E(x_N)$$

s.t. $x_0 = \bar{x}_0$
 $x_{n+1} = \phi(x_n, u_n, k_n)$
 $0 = \phi_{\text{coll}}(x_n, u_n, k_n)$
 $0 \ge h(x_n, u_n), \ n = 0, \dots, N-1$
 $0 \ge r(x_N)$

Variables $w = (\mathbf{x}, \mathbf{k}, \mathbf{u})$

Discrete time OCP – Collocation Formulation

$$\min_{\mathbf{x},\mathbf{k},\mathbf{u}} \sum_{k=0}^{N-1} l(x_k, u_k) + E(x_N)$$

s.t. $x_0 = \bar{x}_0$
 $x_{n+1} = \phi(x_n, u_n, k_n)$
 $0 = \phi_{\text{coll}}(x_n, u_n, k_n)$
 $0 \ge h(x_n, u_n), \ n = 0, \dots, N-1$
 $0 \ge r(x_N)$

Nonlinear Program (NLP)

 $\min_{w \in \mathbb{R}^{n_x}} F(w)$ s.t. G(w) = 0 $H(w) \ge 0$

Obtain large and sparse NLP

Variables $w = (\mathbf{x}, \mathbf{k}, \mathbf{u})$

- ▶ Numerical simulation methods (integrators) used to solve ODEs and DAEs approximately.
- Integration accuracy order and stability play key roles.
- Within the multiple shooting framework, integrators are a key building block for discretization of the continuous OCP.
- ▶ The resulting discrete-time OCP is large, but very sparse

acados is an open-source software package for nonlinear optimal control developed and maintain by the group of Prof. Diehl.

acados provides several building blocks for nonlinear optimal control

- Integrators for ODEs and DAEs
 - explicit and (structure-exploiting) implicit Runge-Kutta schemes
 - efficient sensitivity propagation
- SQP-type solver for nonlinear optimal control problems
 - Hessian approximation exploiting convex-over-nonlinear structures in costs and constraints
 - real-time iteration
 - (partial) condensing routines
- Interfaces to state-of-the-art QP solvers
 - HPIPM, qpOASES, qpDUNES, OSQP, DAQP

 Generation of self-contained C code for embedded deployment as well as convenient user interfaces to MATLAB and python.

acados builds on

- CasADi² for describing the problem functions and their derivatives via algorithmic differentiation (AD)
- ▶ HPIPM² for efficient condensing routines
- ▶ BLASFE0³ for high-performance linear algebra tailored to the embedded hardware
- various open-source QP solvers, HPIPM², qpOASES⁴, qpDUNES⁵, OSQP⁶, DAQP, for solving the SQP-subproblems

²Andersson et al., 2019; ²Frison & Diehl, 2020; ³Frison et al., 2018; ⁴Ferreau et al., 2014; ⁵Frasch et al., 2015; ⁶Stellato et al., 2020; ⁷Arnstrom et al., 2022;

Recent applications of acados in real-world experiments.

- Obstacle Avoidance for Mobile Robotics (Gao et al., 2023)
- Quadrotor Control (Salzmann et al., 2023; Romero et al., 2022; Carlos et al., 2020)
- Combustion Engine and Air Path Control (Hänggi et al., 2022; Gordon et al., 2022)
- Electric Motor Control (Zanelli et al., 2021)

Advanced NMPC problem formulations and implementations.

- Robust MPC (Gao et al., 2023)
- Deep Neural Networks (DNN) and Gaussian Processes (GP) as dynamics model (Salzmann et al., 2023; Lahr et al., 2023)
- Convenient and efficient access to the SQP subproblem for custom modifications (Frey, Gao, et al., 2023)
- Custom sensitivity propagation for accurate cost integration for convex-over-nonlinear costs (Frey, Baumgärtner, & Diehl, 2023)

Exercise Session

- ▶ We consider a continuously stirred tank reactor as in Pannocchia & Rawlings (2003).
- An irreversible, first-order reaction A → B occurs in the liquid phase and the reactor temperature is regulated with external cooling.

Mass and energy balances lead to the following nonlinear state space model:

$$\dot{c} = \frac{F_0(c_0 - c)}{\pi r^2 h} - k_0 \exp\left(-\frac{E}{RT}\right)c$$

$$\dot{T} = \frac{F_0(T_0 - T)}{\pi r^2 h} - \frac{\Delta H}{\rho C_p} k_0 \exp\left(-\frac{E}{RT}\right)c + \frac{2U}{r\rho C_p}(T_c - T)$$

$$\dot{h} = \frac{F_0 - F}{\pi r^2}$$

 \blacktriangleright The controls are T_c , the coolant liquid temperature, and F, the outlet flowrate.

- Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., & Diehl, M. (2019). CasADi a software framework for nonlinear optimization and optimal control. *Mathematical Programming Computation*, 11(1), 1–36. doi: 10.1007/s12532-018-0139-4
- Arnstrom, D., Bemporad, A., & Axehill, D. (2022). A dual active-set solver for embedded quadratic programming using recursive LDL^T updates. *IEEE Transactions on Automatic Control.* doi: 10.1109/TAC.2022.3176430
- Carlos, B. B., Sartor, T., Zanelli, A., Frison, G., Burgard, W., Diehl, M., & Oriolo, G. (2020). An efficient real-time nmpc for quadrotor position control under communication time-delay. In 2020 16th international conference on control, automation, robotics and vision (icarcv) (p. 982-989). doi: 10.1109/ICARCV50220.2020.9305513
- Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., & Diehl, M. (2014). qpOASES: a parametric active-set algorithm for quadratic programming. *Mathematical Programming Computation*, 6(4), 327–363.
- Frasch, J. V., Sager, S., & Diehl, M. (2015). A parallel quadratic programming method for dynamic optimization problems. *Mathematical Programming Computations*, 7(3), 289–329.

References II

- Frey, J., Baumgärtner, K., & Diehl, M. (2023). Gauss-newton runge-kutta integration for efficient discretization of optimal control problems with long horizons and least-squares costs..
- Frey, J., Gao, Y., Messerer, F., Lahr, A., Zeilinger, M., & Diehl, M. (2023). Efficient zero-order robust optimization for real-time model predictive control with acados..
- Frison, G., & Diehl, M. (2020, July). HPIPM: a high-performance quadratic programming framework for model predictive control. In *Proceedings of the ifac world congress*. Berlin, Germany.
- Frison, G., Kouzoupis, D., Sartor, T., Zanelli, A., & Diehl, M. (2018). BLASFEO: Basic linear algebra subroutines for embedded optimization. ACM Transactions on Mathematical Software (TOMS), 44(4), 42:1–42:30.
- Gao, Y., Messerer, F., Frey, J., van Duijkeren, N., & Diehl, M. (2023). Collision-free motion planning for mobile robots by zero-order robust optimization-based mpc. In *Proceedings* of the european control conference (ecc).
- Gordon, D. C., Norouzi, A., Winkler, A., McNally, J., Nuss, E., Abel, D., ... Koch, C. R. (2022). End-to-end deep neural network based nonlinear model predictive control: experimental implementation on diesel engine emission control. *Energies*, 15(24), 9335.

References III

- Hänggi, S., Frey, J., van Dooren, S., Diehl, M., & Onder, C. H. (2022). A modular approach for diesel engine air path control based on nonlinear mpc. *IEEE Transactions on Control Systems Technology*, 1-16. doi: 10.1109/TCST.2022.3228203
- Lahr, A., Zanelli, A., Carron, A., & Zeilinger, M. N. (2023). Zero-order optimization for Gaussian process-based model predictive control. *European Journal of Control*, 100862.
 Romero, A., Penicka, R., & Scaramuzza, D. (2022). Time-optimal online replanning for agile quadrotor flight. *IEEE Robotics and Automation Letters*, 7(3), 7730–7737.
- Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., & Ryll, M. (2023). Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. *IEEE Robotics and Automation Letters*, 8(4), 2397–2404.
- Stellato, B., Banjac, G., Goulart, P., Bemporad, A., & Boyd, S. (2020). OSQP: An operator splitting solver for quadratic programs. *Mathematical Programming Computation*, 12(4), 637–672. Retrieved from https://doi.org/10.1007/s12532-020-00179-2 doi: 10.1007/s12532-020-00179-2
- Zanelli, A., Kullick, J., Eldeeb, H., Frison, G., Hackl, C., & Diehl, M. (2021). Continuous control set nonlinear model predictive control of reluctance synchronous machines. *IEEE Transactions on Control Systems Technology*, 1-12. doi: 10.1109/TCST.2020.3043956

Appendix

Convex sets

A key concept in optimization is convexity

A set Ω is said to be convex if for any w_1, w_2 and any $\theta \in [0, 1]$ it holds $\theta w_1 + (1 - \theta) w_2 \in \Omega$

Convex functions

A function F is convex if for every $w_1, w_2 \in \mathbb{R}^n$ and $\theta \in [0, 1]$ it holds that

 $F(\theta w_1 + (1-\theta)w_2) \le \theta F(w_1) + (1-\theta)F(w_2)$

F is concave if and only if -F is convex
F is convex if and only if the epigraph

 $epiF = \{(w,t) \in \mathbb{R}^{n_w+1} \mid F(w) \le t\}$

is a convex set

