
Simulation and Optimal Control
using CasADi and acados

Katrin Baumgärtner

Systems Control and Optimization Laboratory (syscop)

workshop @ SPP2364 Doktorand:innenseminar

November 2023

Intro

▶ Who has experience with python?

▶ Who has experience with CasADi?

▶ Who models their system in terms of an ordinary differential equation (ODE)?

▶ Who models their system in terms of an differential algebraic equation (DAE)?

▶ Who models their systems using a neural network?

▶ Who has installed the provided docker?

1

Intro

▶ Who has experience with python?

▶ Who has experience with CasADi?

▶ Who models their system in terms of an ordinary differential equation (ODE)?

▶ Who models their system in terms of an differential algebraic equation (DAE)?

▶ Who models their systems using a neural network?

▶ Who has installed the provided docker?

1

Intro

▶ Who has experience with python?

▶ Who has experience with CasADi?

▶ Who models their system in terms of an ordinary differential equation (ODE)?

▶ Who models their system in terms of an differential algebraic equation (DAE)?

▶ Who models their systems using a neural network?

▶ Who has installed the provided docker?

1

Intro

▶ Who has experience with python?

▶ Who has experience with CasADi?

▶ Who models their system in terms of an ordinary differential equation (ODE)?

▶ Who models their system in terms of an differential algebraic equation (DAE)?

▶ Who models their systems using a neural network?

▶ Who has installed the provided docker?

1

Workshop Outline

▶ Part 1: Nonlinear Optimization

using CasADi

▶ Part 2: Direct Optimal Control

using CasADi and acados

Most of the theory part of this talk is based on slides by Armin Nurkanović.

2

Workshop Outline

▶ Part 1: Nonlinear Optimization using CasADi

▶ Part 2: Direct Optimal Control

using CasADi and acados

Most of the theory part of this talk is based on slides by Armin Nurkanović.

2

Workshop Outline

▶ Part 1: Nonlinear Optimization using CasADi

▶ Part 2: Direct Optimal Control using CasADi and acados

Most of the theory part of this talk is based on slides by Armin Nurkanović.

2

Workshop Outline

▶ Part 1: Nonlinear Optimization using CasADi

▶ Part 2: Direct Optimal Control using CasADi and acados

Most of the theory part of this talk is based on slides by Armin Nurkanović.

2

Outline

Part 1: Nonlinear Optimization

1. Basic definitions

2. Conditions of optimality

3. Nonlinear programming algorithms

4. Nonlinear optimization with CasADi

Part 2: Direct Optimal Control

3

Outline

Part 1: Nonlinear Optimization

1. Basic definitions

2. Conditions of optimality

3. Nonlinear programming algorithms

4. Nonlinear optimization with CasADi

Part 2: Direct Optimal Control

3

What is an optimization problem?

Minimize (or maximize) an objective function F (w) depending on decision variables w subject
to equality and/or inequality constraints.

An optimization problem

min
w

F (w) (1a)

s.t. G(w) = 0 (1b)

H(w) ≥ 0 (1c)

Terminology

▶ w - decision variable

▶ F : objective/cost function

▶ G,H: equality and inequality constraint
functions

▶ Only in few special cases a closed form solution exist

▶ Use an iterative algorithm to find solution

4

What is an optimization problem?

Minimize (or maximize) an objective function F (w) depending on decision variables w subject
to equality and/or inequality constraints.

An optimization problem

min
w

F (w) (1a)

s.t. G(w) = 0 (1b)

H(w) ≥ 0 (1c)

Terminology

▶ w - decision variable

▶ F : objective/cost function

▶ G,H: equality and inequality constraint
functions

▶ Only in few special cases a closed form solution exist

▶ Use an iterative algorithm to find solution

4

What is an optimization problem?

Minimize (or maximize) an objective function F (w) depending on decision variables w subject
to equality and/or inequality constraints.

An optimization problem

min
w

F (w) (1a)

s.t. G(w) = 0 (1b)

H(w) ≥ 0 (1c)

Terminology

▶ w - decision variable

▶ F : objective/cost function

▶ G,H: equality and inequality constraint
functions

▶ Only in few special cases a closed form solution exist

▶ Use an iterative algorithm to find solution

4

Basic definitions: the feasible set

Definition

The feasible set of the optimization problem (1) is defined as
Ω = {w ∈ Rn | G(w) = 0, H(w) ≥ 0}. A point w ∈ Ω is is called a feasible point.

The feasible set is the intersection of the two grey areas (halfspace and circle)

5

Basic definitions: local and global minimizer

-3 -2 -1 0 1 2 3 4 5
w

-10

0

10

20

30

40

50

60

70

F
(w

)

F (w)
Local minimum
Global minimum
Neighborhood of w$

The value F (w∗) at a local/global minimizer w∗ is called local/global minimum.

6

Convex optimization problems

A convex optimization problem

min
w

F (w)

s.t. G(w) = 0

H(w) ≥ 0

An optimization problem is convex if the
objective function F is convex and the
feasible set Ω is convex.

▶ Example: convex objective and linear
equalities and linear inequalities.

▶ A locally optimal solution is globally optimal!

▶ First order conditions are necessary and sufficient (we come back to this)

7

Some classifications of optimization problems

Optimization problems can be:

▶ unconstrained (Ω = Rn) or constrained (Ω ⊂ Rn)

▶ convex or nonconvex

▶ linear or nonlinear

▶ finite or infinite dimensional

Three important classes of optimization problems:

▶ Linear Program (LP)

▶ Quadratic Program (QP)

▶ Nonlinear Program (NLP)

8

Some classifications of optimization problems

Optimization problems can be:

▶ unconstrained (Ω = Rn) or constrained (Ω ⊂ Rn)

▶ convex or nonconvex

▶ linear or nonlinear

▶ finite or infinite dimensional

Three important classes of optimization problems:

▶ Linear Program (LP)

▶ Quadratic Program (QP)

▶ Nonlinear Program (NLP)

8

Class 1: Linear Programming (LP)

Linear program

min
w

g⊤w

s.t. Aw − b = 0

Cw − d ≥ 0

▶ convex optimization problem

▶ 1947: simplex method by Dantzig, 1984: polynomial time interior-point method by
Karmarkar

▶ if not unbounded, the solution is always at edge or vertex of the feasible set

▶ today very mature and reliable

9

Class 1: Linear Programming (LP)

Linear program

min
w

g⊤w

s.t. Aw − b = 0

Cw − d ≥ 0

▶ convex optimization problem

▶ 1947: simplex method by Dantzig, 1984: polynomial time interior-point method by
Karmarkar

▶ if not unbounded, the solution is always at edge or vertex of the feasible set

▶ today very mature and reliable

9

Class 2: Quadratic Programming (QP)

Quadratic program

min
w

1

2
w⊤Qw + g⊤w

s.t. Aw − b = 0

Cw − d ≥ 0

▶ depending on Q, can be convex and nonconvex

▶ solved online in linear model predictive control
(linear system model + linear constraints + quadratic cost)

▶ many good solvers: Gurobi, OSQP, HPIPM, qpOASES, OOQP, ...

▶ subsproblems in nonlinear optimization

10

Class 3: Nonlinear Program (NLP)

Nonlinear programming problem

min
w

F (w)

s.t. G(w) = 0

H(w) ≥ 0

▶ can be convex and nonconvex

▶ solved with iterative Newton-type algorithms

▶ solved in nonlinear model predictive control

11

Classify your control problem

▶ Linear Program (LP)

▶ Quadratic Program (QP)

▶ Nonlinear Program (NLP)

12

Direct optimal control methods solve Nonlinear Programs (NLP)

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = fc(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T]

0 ≥ r(x(T))

Direct methods (like direct collocation,
multiple shooting) first discretize, then
optimize.

13

Direct optimal control methods solve Nonlinear Programs (NLP)

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T))

s.t. x(0) = x̄0

ẋ(t) = fc(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T]

0 ≥ r(x(T))

Direct methods (like direct collocation,
multiple shooting) first discretize, then
optimize.

Discrete time OCP (an NLP)

min
x,u

∑N−1
k=0 ℓ(xk, uk) + E(xN)

s.t. x0 = x̄0

xk+1 = f(xk, uk), k = 0, . . . , N−1

0 ≥ h(xk, uk), k = 0, . . . , N−1
0 ≥ r(xN)

Variables x = (x0, . . . , xN) and
u = (u0, . . . , uN−1) can be summarized in
vector w = (x, u) ∈ Rn.

13

Direct optimal control methods solve Nonlinear Programs (NLP)

Discrete time OCP (an NLP)

min
x,u

∑N−1
k=0 ℓ(xk, uk) + E(xN)

s.t. x0 = x̄0

xk+1 = f(xk, uk), k = 0, . . . , N−1

0 ≥ h(xk, uk), k = 0, . . . , N−1
0 ≥ r(xN)

Variables x = (x0, . . . , xN) and
u = (u0, . . . , uN−1) can be summarized in
vector w = (x, u) ∈ Rn.

13

Nonlinear MPC solves Nonlinear Programs (NLP)

Discrete time NMPC Problem (an NLP)

min
x,u

∑N−1
k=0 ℓ(xk, uk) + E(xN)

s.t. x0 = x̄0

xk+1 = f(xk, uk)

0 ≥ h(xk, uk), k = 0, . . . , N−1
0 ≥ r(xN)

Variables x = (x0, . . . , xN) and
u = (u0, . . . , uN−1) can be summarized in
vector w = (x, u) ∈ Rn.

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0

14

Outline

Part 1: Nonlinear Optimization

1. Basic definitions

2. Conditions of optimality

3. Nonlinear programming algorithms

4. Nonlinear optimization with CasADi

Part 2: Direct Optimal Control

15

Algebraic characterization of unconstrained local optima

Consider the unconstrained problem: minw∈Rn F (w)

First-Order Necessary Condition of Optimality (FONC)

w∗ local optimum ⇒ ∇F (w∗) = 0, w∗ stationary point

Second-Order Necessary Condition of Optimality (SONC)

w∗ local optimum ⇒ ∇2F (w∗) ⪰ 0

Second-Order Sufficient Conditions of Optimality (SOSC)

∇F (w∗) = 0 and ∇2F (w∗) ≻ 0 ⇒ x∗ strict local minimum

∇F (w∗) = 0 and ∇2F (w∗) ≺ 0 ⇒ x∗ strict local maximum

No conclusion can be drawn in the case ∇2F (w∗) is indefinite!

16

Algebraic characterization of unconstrained local optima

Consider the unconstrained problem: minw∈Rn F (w)

First-Order Necessary Condition of Optimality (FONC)

w∗ local optimum ⇒ ∇F (w∗) = 0, w∗ stationary point

Second-Order Necessary Condition of Optimality (SONC)

w∗ local optimum ⇒ ∇2F (w∗) ⪰ 0

Second-Order Sufficient Conditions of Optimality (SOSC)

∇F (w∗) = 0 and ∇2F (w∗) ≻ 0 ⇒ x∗ strict local minimum

∇F (w∗) = 0 and ∇2F (w∗) ≺ 0 ⇒ x∗ strict local maximum

No conclusion can be drawn in the case ∇2F (w∗) is indefinite!

16

Type of stationary points

5
0

10

5

20

Minimum

30

F
(w

)

w1

40

0

w2

0

50

-5-5

-50

-40

5

-30

-20

F
(w

)

-10

0

Maximum

5

w2

0

w1

0

-5 -5

-30

-20

5

-10

0

F
(w

)

5

10

Saddle point

20

w2

30

0

w1

0

-5 -5

A stationary point can be a minimum, maximum or a saddle point

17

FONC for equality constraints

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

L(w, λ) = F (w)− λ⊤G(w) is the Lagrangian

Definition (LICQ)

A point w satisfies Linear Independence
Constraint Qualification LICQ if and only
if ∇G (w) is full column rank

First-order Necessary Conditions

Let F,G in C1. If w∗ is a (local) minimizer, and w∗ satisfies LICQ, then there is a unique
vector λ such that:

∇wL(w∗, λ∗) = ∇F (w∗)−∇G(w∗)λ = 0 Dual feasibility

∇λL(w∗, λ∗) = G(w∗) = 0 Primal feasibility

18

FONC for equality constraints

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

L(w, λ) = F (w)− λ⊤G(w) is the Lagrangian

Definition (LICQ)

A point w satisfies Linear Independence
Constraint Qualification LICQ if and only
if ∇G (w) is full column rank

First-order Necessary Conditions

Let F,G in C1. If w∗ is a (local) minimizer, and w∗ satisfies LICQ, then there is a unique
vector λ such that:

∇wL(w∗, λ∗) = ∇F (w∗)−∇G(w∗)λ = 0 Dual feasibility

∇λL(w∗, λ∗) = G(w∗) = 0 Primal feasibility

18

FONC for equality constraints

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

L(w, λ) = F (w)− λ⊤G(w) is the Lagrangian

Definition (LICQ)

A point w satisfies Linear Independence
Constraint Qualification LICQ if and only
if ∇G (w) is full column rank

First-order Necessary Conditions

Let F,G in C1. If w∗ is a (local) minimizer, and w∗ satisfies LICQ, then there is a unique
vector λ such that:

∇wL(w∗, λ∗) = ∇F (w∗)−∇G(w∗)λ = 0 Dual feasibility

∇λL(w∗, λ∗) = G(w∗) = 0 Primal feasibility

18

The KKT conditions

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0

L(w, λ) = F (w)− λ⊤G(w)− µ⊤H(w)

Definition (LICQ)

A point w satisfies LICQ if and only if

[∇G (w) , ∇HA (w)]

is full column rank

Active set A = {i | Hi(w) = 0}

Theorem (KKT conditions)

Let F, G, H be C1. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique
vectors λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗) = 0, µ∗ ≥ 0, Dual feasibility

G (w∗) = 0, H (w∗) ≥ 0 Primal feasibility

µ∗
iHi(w

∗) = 0, ∀ i Complementary slackness

19

The KKT conditions

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0

L(w, λ) = F (w)− λ⊤G(w)− µ⊤H(w)

Definition (LICQ)

A point w satisfies LICQ if and only if

[∇G (w) , ∇HA (w)]

is full column rank

Active set A = {i | Hi(w) = 0}

Theorem (KKT conditions)

Let F, G, H be C1. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique
vectors λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗) = 0, µ∗ ≥ 0, Dual feasibility

G (w∗) = 0, H (w∗) ≥ 0 Primal feasibility

µ∗
iHi(w

∗) = 0, ∀ i Complementary slackness

19

The KKT conditions

Nonlinear Program (NLP)

min
w∈Rn

F (w)

s.t. G(w) = 0

H(w) ≥ 0

L(w, λ) = F (w)− λ⊤G(w)− µ⊤H(w)

Definition (LICQ)

A point w satisfies LICQ if and only if

[∇G (w) , ∇HA (w)]

is full column rank

Active set A = {i | Hi(w) = 0}

Theorem (KKT conditions)

Let F, G, H be C1. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique
vectors λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗) = 0, µ∗ ≥ 0, Dual feasibility

G (w∗) = 0, H (w∗) ≥ 0 Primal feasibility

µ∗
iHi(w

∗) = 0, ∀ i Complementary slackness

19

The complementary slackness condition

Active constraints:

▶ Hi(w
∗) > 0 then µ∗

i = 0, and Hi is
inactive

▶ µ∗
i > 0 and Hi(w) = 0 then Hi(w) is

strictly active

▶ µ∗
i = 0 and Hi(w) = 0 then then Hi(w) is

weakly active

▶ We define the active set A∗ as the set of
indices i of the active constraints

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

7
i

20

The complementary slackness condition

Active constraints:

▶ Hi(w
∗) > 0 then µ∗

i = 0, and Hi is
inactive

▶ µ∗
i > 0 and Hi(w) = 0 then Hi(w) is

strictly active

▶ µ∗
i = 0 and Hi(w) = 0 then then Hi(w) is

weakly active

▶ We define the active set A∗ as the set of
indices i of the active constraints

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

7
i

20

The complementary slackness condition

Active constraints:

▶ Hi(w
∗) > 0 then µ∗

i = 0, and Hi is
inactive

▶ µ∗
i > 0 and Hi(w) = 0 then Hi(w) is

strictly active

▶ µ∗
i = 0 and Hi(w) = 0 then then Hi(w) is

weakly active

▶ We define the active set A∗ as the set of
indices i of the active constraints

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

7
i

20

The complementary slackness condition

Active constraints:

▶ Hi(w
∗) > 0 then µ∗

i = 0, and Hi is
inactive

▶ µ∗
i > 0 and Hi(w) = 0 then Hi(w) is

strictly active

▶ µ∗
i = 0 and Hi(w) = 0 then then Hi(w) is

weakly active

▶ We define the active set A∗ as the set of
indices i of the active constraints

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

7
i

20

Summary of optimality conditions

Optimality conditions for NLP with equality and/or inequality constraints:

▶ First-Order Necessary Conditions: A regular local optimum of a (differentiable) NLP is
a KKT point

▶ Second-Order Sufficient Conditions require positivity of the Hessian in all critical
feasible directions

Nonconvex problem ⇒ minimum is not necessarily global.
But some nonconvex problems have a unique minimum

Some important practical consequences...

▶ A KKT point may not be a local (global) optimum
... the lack of equivalence results from a lack of regularity and/or SOSC

▶ A local (global) optimum may not be a KKT point
... due to violation of constraint qualifications, e.g. LICQ violated.

21

Summary of optimality conditions

Optimality conditions for NLP with equality and/or inequality constraints:

▶ First-Order Necessary Conditions: A regular local optimum of a (differentiable) NLP is
a KKT point

▶ Second-Order Sufficient Conditions require positivity of the Hessian in all critical
feasible directions

Nonconvex problem ⇒ minimum is not necessarily global.
But some nonconvex problems have a unique minimum

Some important practical consequences...

▶ A KKT point may not be a local (global) optimum
... the lack of equivalence results from a lack of regularity and/or SOSC

▶ A local (global) optimum may not be a KKT point
... due to violation of constraint qualifications, e.g. LICQ violated.

21

Summary of optimality conditions

Optimality conditions for NLP with equality and/or inequality constraints:

▶ First-Order Necessary Conditions: A regular local optimum of a (differentiable) NLP is
a KKT point

▶ Second-Order Sufficient Conditions require positivity of the Hessian in all critical
feasible directions

Nonconvex problem ⇒ minimum is not necessarily global.
But some nonconvex problems have a unique minimum

Some important practical consequences...

▶ A KKT point may not be a local (global) optimum
... the lack of equivalence results from a lack of regularity and/or SOSC

▶ A local (global) optimum may not be a KKT point
... due to violation of constraint qualifications, e.g. LICQ violated.

21

Summary of optimality conditions

Optimality conditions for NLP with equality and/or inequality constraints:

▶ First-Order Necessary Conditions: A regular local optimum of a (differentiable) NLP is
a KKT point

▶ Second-Order Sufficient Conditions require positivity of the Hessian in all critical
feasible directions

Nonconvex problem ⇒ minimum is not necessarily global.
But some nonconvex problems have a unique minimum

Some important practical consequences...

▶ A KKT point may not be a local (global) optimum
... the lack of equivalence results from a lack of regularity and/or SOSC

▶ A local (global) optimum may not be a KKT point
... due to violation of constraint qualifications, e.g. LICQ violated.

21

Outline

Part 1: Nonlinear Optimization

1. Basic definitions

2. Conditions of optimality

3. Nonlinear programming algorithms

4. Nonlinear optimization with CasADi

Part 2: Direct Optimal Control

22

Newton’s method
To solve a nonlinear system, solve a sequence of linear systems

Root-finding problem. Find x such that F (x) = 0.

Linearization of F at linearization point w̄

equals

First-order Taylor series at w̄

equals

FL(w; w̄) := F (w̄) +
∂F

∂w
(w̄) (w − w̄)

(for continuously differentiable F : Rn → Rn)
-1 -0.5 0 0.5 1 1.5 2 2.5 3

w

-1

0

1

2

3

4

5

6

F
(w

)

Iteration 0

y = F (w)
y = F (wk) + rF (wk)(w ! wk)

23

Newton’s method
To solve a nonlinear system, solve a sequence of linear systems

Root-finding problem. Find x such that F (x) = 0.

Linearization of F at linearization point w̄

equals

First-order Taylor series at w̄

equals

FL(w; w̄) := F (w̄) +∇wF (w̄)⊤(w − w̄)

(for continuously differentiable F : Rn → Rn)
-1 -0.5 0 0.5 1 1.5 2 2.5 3

w

-1

0

1

2

3

4

5

6

F
(w

)

Iteration 1

y = F (w)
y = F (wk) + rF (wk)(w ! wk)

23

Newton’s method
To solve a nonlinear system, solve a sequence of linear systems

Root-finding problem. Find x such that F (x) = 0.

Linearization of F at linearization point w̄

equals

First-order Taylor series at w̄

equals

FL(w; w̄) := F (w̄) +∇wF (w̄)⊤(w − w̄)

(for continuously differentiable F : Rn → Rn)
-1 -0.5 0 0.5 1 1.5 2 2.5 3

w

-1

0

1

2

3

4

5

6

F
(w

)

Iteration 2

y = F (w)
y = F (wk) + rF (wk)(w ! wk)

23

Newton’s method
To solve a nonlinear system, solve a sequence of linear systems

Root-finding problem. Find x such that F (x) = 0.

Linearization of F at linearization point w̄

equals

First-order Taylor series at w̄

equals

FL(w; w̄) := F (w̄) +∇wF (w̄)⊤(w − w̄)

(for continuously differentiable F : Rn → Rn)
-1 -0.5 0 0.5 1 1.5 2 2.5 3

w

-1

0

1

2

3

4

5

6

F
(w

)

Iteration 3

y = F (w)
y = F (wk) + rF (wk)(w ! wk)

23

General Nonlinear Program (NLP)

In direct methods, we have to solve the discretized optimal control problem, which is a
Nonlinear Program (NLP)

General Nonlinear Program (NLP)

min
w

F (w) s.t.

{
G(w) = 0
H(w) ≥ 0

We first treat the case without inequalities

NLP only with equality constraints

min
w

F (w) s.t. G(w) = 0

24

Lagrange function and optimality conditions

Lagrange function

L(w, λ) = F (w)− λTG(w)

Then for an optimal solution w∗ exist multipliers λ∗ such that

Nonlinear root-finding problem

∇wL(w∗, λ∗) = 0
G(w∗) = 0

25

Newton’s Method on optimality conditions

How to solve nonlinear equations

∇wL(w∗, λ∗) = 0
G(w∗) = 0 ?

Linearize!
∇wL(wk, λk) +∇2

wL(wk, λk)∆w −∇wG(wk)∆λ = 0
G(wk) +∇wG(wk)T∆w = 0

This is equivalent, due to ∇L(wk, λk) = ∇F (wk)−∇G(wk)λk with the shorthand
λ+ = λk +∆λ to

∇wF (wk) +∇2
wL(wk, λk)∆w −∇wG(wk)λ+ = 0

G(wk) +∇wG(wk)T∆w = 0

26

Newton Step = Solution to a Quadratic Program

Conditions
∇wF (wk) +∇2

wL(wk, λk)∆w −∇wG(wk)λ+ = 0
G(wk) +∇wG(wk)T∆w = 0

are optimality conditions of a quadratic program (QP), namely:

Quadratic program

min
∆w

∇F (wk)T∆w +
1

2
∆wTAk∆w

s.t. G(wk) +∇G(wk)T∆w = 0,

with
Ak = ∇2

wL(wk, λk)

27

Newton’s method

The full step Newton’s Method iterates by solving in each iteration the quadratic program (QP)

min
∆w

∇F (wk)T∆w +
1

2
∆wTAk∆w

s.t. G(wk) +∇G(wk)T∆w = 0,

with Ak = ∇2
wL(wk, λk). As solution, we obtain the step ∆wk and the new multiplier λ+

QP.

New iterate

wk+1 = wk +∆wk

λk+1 = λk +∆λk = λ+
QP

This Newton’s method is also called Sequential Quadratic Programming (SQP) for equality
constrained optimization (with exact Hessian and full steps)

28

NLP with Inequalities

Regard again NLP with both, equalities and inequalities:

NLP with equality and inequality constraints

min
w

F (w) s.t.

{
G(w) = 0
H(w) ≥ 0

Lagrangian function for NLP with equality and inequality constraints

L(w, λ, µ) = F (w)− λTG(w)− µTH(w)

29

Optimality conditions with inequalities

Theorem (Karush-Kuhn-Tucker (KKT) conditions)

Let F, G, H be C2. If w∗ is a (local) minimizer and satisfies LICQ, then there are unique
vectors λ∗ and µ∗ such that (w∗, λ∗, µ∗) satisfies:

∇wL (w∗, µ∗, λ∗) = 0

G (w∗) = 0

H(w∗) ≥ 0

µ∗ ≥ 0

H(w∗)⊤µ∗ = 0

▶ These contain nonsmooth conditions (the last three) which are called complementarity
conditions

▶ This system cannot be solved by Newton’s Method. But still with SQP...

30

Sequential Quadratic Programming (SQP)

By Linearizing all functions within the KKT Conditions, and setting λ+ = λk +∆λ and
µ+ = µk +∆µ, we obtain the KKT conditions of a Quadratic Program (QP).

QP with inequality constraints

min
∆w

∇F (wk)T∆w +
1

2
∆wTAk∆w

s.t.

{
G(wk) +∇G(wk)T∆w = 0
H(wk) +∇H(wk)T∆w ≥ 0

with
Ak = ∇2

wL(wk, λk, µk)

and its solution delivers
∆wk, λ+

QP, µ+
QP

31

Constrained Gauss-Newton Method

In special case of least squares objectives

Least squares objective function

F (w) =
1

2
∥R(w)∥22

can approximate Hessian ∇2
wL(wk, λk, µk) by much cheaper

Ak = ∇R(w)∇R(w)T .

Need no multipliers to compute Ak! QP= linear least squares:

Gauss-Newton QP

min
∆w

1

2
∥R(wk) +∇R(wk)T∆w∥22

s.t.
G(wk) +∇G(wk)T∆w = 0
H(wk) +∇H(wk)T∆w ≥ 0

Convergence: linear (better if ∥R(w∗)∥ small)
32

Interior point methods

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

KKT conditions

∇F (w)−∇H(w)⊤µ = 0

0 ≤ µ ⊥ H(w) ≥ 0

Main difficulty: inequality conditions
introduce nonsmoothness in the KKT
conditions

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

7
i

0 5 7i ? Hi(w) 6 0

33

The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

@
(H

i(
w

))

= =5.000

@(Hi(w))
!= log(Hi(w))

approximate:

χ(Hi(w)) =

{
0 if Hi(w) ≥ 0

∞ if Hi(w) < 0

34

The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

@
(H

i(
w

))

= =1.000

@(Hi(w))
!= log(Hi(w))

approximate:

χ(Hi(w)) =

{
0 if Hi(w) ≥ 0

∞ if Hi(w) < 0

34

The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

@
(H

i(
w

))

= =0.200

@(Hi(w))
!= log(Hi(w))

approximate:

χ(Hi(w)) =

{
0 if Hi(w) ≥ 0

∞ if Hi(w) < 0

34

The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

@
(H

i(
w

))

= =0.040

@(Hi(w))
!= log(Hi(w))

approximate:

χ(Hi(w)) =

{
0 if Hi(w) ≥ 0

∞ if Hi(w) < 0

34

The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

@
(H

i(
w

))

= =0.008

@(Hi(w))
!= log(Hi(w))

approximate:

χ(Hi(w)) =

{
0 if Hi(w) ≥ 0

∞ if Hi(w) < 0

34

The barrier problem

NLP with inequalites

min
w

F (w)

s.t. H(w) ≥ 0

Barrier problem

min
w

F (w)− τ

m∑
i=1

log(Hi(w)) =: Fτ (w)

Main idea: put inequality constraint into
objective

0 0.5 1 1.5 2 2.5 3

Hi(w)

-0.5

0

0.5

1

1.5

2

2.5

3

@
(H

i(
w

))

= =0.002

@(Hi(w))
!= log(Hi(w))

approximate:

χ(Hi(w)) =

{
0 if Hi(w) ≥ 0

∞ if Hi(w) < 0

34

An example of the barrier problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem

min
w

0.5w2 − 2− τ log(w + 1)− τ log(1− w) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w

-1

-0.5

0

0.5

1

1.5

2

2.5

3

O
b
je

ct
iv

e

= =5.000
F (w)
F= (w)

35

An example of the barrier problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem

min
w

0.5w2 − 2− τ log(w + 1)− τ log(1− w) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w

-1

-0.5

0

0.5

1

1.5

2

2.5

3

O
b
je

ct
iv

e

= =1.500
F (w)
F= (w)

35

An example of the barrier problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem

min
w

0.5w2 − 2− τ log(w + 1)− τ log(1− w) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w

-1

-0.5

0

0.5

1

1.5

2

2.5

3

O
b
je

ct
iv

e

= =0.450
F (w)
F= (w)

35

An example of the barrier problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem

min
w

0.5w2 − 2− τ log(w + 1)− τ log(1− w) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w

-1

-0.5

0

0.5

1

1.5

2

2.5

3

O
b
je

ct
iv

e

= =0.135
F (w)
F= (w)

35

An example of the barrier problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem

min
w

0.5w2 − 2− τ log(w + 1)− τ log(1− w) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w

-1

-0.5

0

0.5

1

1.5

2

2.5

3

O
b
je

ct
iv

e

= =0.040
F (w)
F= (w)

35

An example of the barrier problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem

min
w

0.5w2 − 2− τ log(w + 1)− τ log(1− w) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w

-1

-0.5

0

0.5

1

1.5

2

2.5

3

O
b
je

ct
iv

e

= =0.012
F (w)
F= (w)

35

An example of the barrier problem

Example NLP

min
w

0.5w2 − 2w

s.t. − 1 ≤ w ≤ 1

Barrier problem

min
w

0.5w2 − 2− τ log(w + 1)− τ log(1− w) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

w

-1

-0.5

0

0.5

1

1.5

2

2.5

3

O
b
je

ct
iv

e

= =0.004
F (w)
F= (w)

35

Summary Newton-type optimization

▶ Newton type optimization solves the necessary optimality conditions

▶ Newton’s method linearizes the nonlinear system in each iteration

▶ for constraints: requires Lagrangian function

▶ for equality constraints: KKT conditions are smooth, can apply Newton’s method directly

▶ for inequality constraints: KKT conditions are non-smooth
→ Sequential Quadratic Programming (SQP)

▶ QP subproblem might be solved via an interior point solver, active set solver, ADMM, etc.

36

Outline

Part 1: Nonlinear Optimization

1. Basic definitions

2. Conditions of optimality

3. Nonlinear programming algorithms

4. Nonlinear optimization with CasADi

Part 2: Direct Optimal Control

37

CasADi

CasADi1 is an open-source tool for nonlinear optimization and algorithmic differentiation.

https://web.casadi.org/

CasADi provides

▶ algorithmic differentiation on user-defined symbolic expressions

▶ standardized interfaces to a variety of numerical routines:
▶ simulation and nonlinear constrained optimization

→ Interior point solver IPOPT

▶ solution of linear and nonlinear equations

▶ CasADi can be used from C++, python, Octave or MATLAB.

1Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings and Moritz Diehl: CasADi – A software
framework for nonlinear optimization and optimal control ; Mathematical Programming Computation (2019).

38

CasADi

CasADi1 is an open-source tool for nonlinear optimization and algorithmic differentiation.

https://web.casadi.org/

CasADi provides

▶ algorithmic differentiation on user-defined symbolic expressions

▶ standardized interfaces to a variety of numerical routines:
▶ simulation and nonlinear constrained optimization → Interior point solver IPOPT
▶ solution of linear and nonlinear equations

▶ CasADi can be used from C++, python, Octave or MATLAB.

1Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings and Moritz Diehl: CasADi – A software
framework for nonlinear optimization and optimal control ; Mathematical Programming Computation (2019).

38

Exercise Session – Part 1

1. Read the docs! https://web.casadi.org/docs

▶ What is the difference between a CasADi expression and a CasADi function?

▶ How do you compute a derivative using CasADi?

2. Work on the exercise sheet.

▶ How to formulate a constrained nonlinear optimization problem with CasADi? How to
solve the NLP with the solver IPOPT?

39

https://web.casadi.org/docs

Ordinary differential equations and controlled dynamical system

Let:

▶ t ∈ R be the time

▶ x(t) ∈ Rnx the differential states and ẋ(t) = dx(t)
dt

▶ u(t) ∈ Rnu a given control function

Ordinary differential equations

▶ Let F : R× Rnx × Rnx × Rnu → Rnx be a function such that the Jacobian ∂F
∂ẋ (·) is

invertible. The system of equations:

F (t, ẋ(t), x(t), u(t)) = 0,

is called an Ordinary Differential Equation (ODE).

▶ Given a function f : R× Rnx × Rnu → Rnx then a system of equations:

ẋ(t) = f(t, x(t), u(t)) (2)

is called an explicit ODE.

40

Ordinary differential equations and controlled dynamical system

Let:

▶ t ∈ R be the time

▶ x(t) ∈ Rnx the differential states and ẋ(t) = dx(t)
dt

▶ u(t) ∈ Rnu a given control function

Ordinary differential equations

▶ Let F : R× Rnx × Rnx × Rnu → Rnx be a function such that the Jacobian ∂F
∂ẋ (·) is

invertible. The system of equations:

F (t, ẋ(t), x(t), u(t)) = 0,

is called an Ordinary Differential Equation (ODE).

▶ Given a function f : R× Rnx × Rnu → Rnx then a system of equations:

ẋ(t) = f(t, x(t), u(t)) (2)

is called an explicit ODE.

40

Ordinary differential equations and controlled dynamical system

Let:

▶ t ∈ R be the time

▶ x(t) ∈ Rnx the differential states and ẋ(t) = dx(t)
dt

▶ u(t) ∈ Rnu a given control function

Ordinary differential equations

▶ Let F : R× Rnx × Rnx × Rnu → Rnx be a function such that the Jacobian ∂F
∂ẋ (·) is

invertible. The system of equations:

F (t, ẋ(t), x(t), u(t)) = 0,

is called an Ordinary Differential Equation (ODE).

▶ Given a function f : R× Rnx × Rnu → Rnx then a system of equations:

ẋ(t) = f(t, x(t), u(t)) (2)

is called an explicit ODE.

40

ODE Example: harmonic oscillator

Mass m with spring constant k and friction coefficient c:

ẋ1(t) = x2(t)

ẋ2(t) = − k

m
(x2(t)− u(t)) − β

m
x1(t)

• state x(t) ∈ R2

• position of mass x1(t) ←− measured
• velocity of mass x2(t)
• control action: spring position u(t) ∈ R ←− manipulated

As explicit ODE: ẋ = f(x, u) with

f(x, u) =

[
x2

− k
m (x2 − u)− c

mx1

] As implicit ODE: 0 = F (ẋ, x, u) with

F (ẋ, x, u) =

[
x2 − ẋ1

− k
m (x2 − u)− β

mx1 − ẋ2

]

41

ODE Example: harmonic oscillator

Mass m with spring constant k and friction coefficient c:

ẋ1(t) = x2(t)

ẋ2(t) = − k

m
(x2(t)− u(t)) − β

m
x1(t)

• state x(t) ∈ R2

• position of mass x1(t) ←− measured
• velocity of mass x2(t)
• control action: spring position u(t) ∈ R ←− manipulated

As explicit ODE: ẋ = f(x, u) with

f(x, u) =

[
x2

− k
m (x2 − u)− c

mx1

] As implicit ODE: 0 = F (ẋ, x, u) with

F (ẋ, x, u) =

[
x2 − ẋ1

− k
m (x2 − u)− β

mx1 − ẋ2

]

41

ODE Example: harmonic oscillator

Mass m with spring constant k and friction coefficient c:

ẋ1(t) = x2(t)

ẋ2(t) = − k

m
(x2(t)− u(t)) − β

m
x1(t)

• state x(t) ∈ R2

• position of mass x1(t) ←− measured
• velocity of mass x2(t)
• control action: spring position u(t) ∈ R ←− manipulated

As explicit ODE: ẋ = f(x, u) with

f(x, u) =

[
x2

− k
m (x2 − u)− c

mx1

] As implicit ODE: 0 = F (ẋ, x, u) with

F (ẋ, x, u) =

[
x2 − ẋ1

− k
m (x2 − u)− β

mx1 − ẋ2

]

41

Differential algebraic equations

Let:

▶ x(t) ∈ Rnx the differential states with ẋ(t) = dx(t)
dt

▶ z(t) ∈ Rnz the algebraic states

▶ u(t) ∈ Rnu a given control function

Differential algebraic equations

▶ Let F : R× Rnx × Rnz × Rnx × Rnu → Rnx be a function such that the matrix [∂F
∂ẋ

∂F
∂z

] is
invertible (index one). The system of equations:

F (t, ẋ(t), x(t), z(t), u(t)) = 0,

is called an fully implicit Differential Algebraic Equation (DAE).

▶ Let f : R× Rnx × Rnz × Rnu → Rnx and g : R× Rnx × Rnz × Rnu → Rnz with ∂g
∂z

invertible.
The system of equations:

ẋ(t) = f(t, x(t), z(t), u(t)),

0 = g(t, x(t), z(t), u(t)),

is called a semi-explicit DAE.

42

Differential algebraic equations

Let:

▶ x(t) ∈ Rnx the differential states with ẋ(t) = dx(t)
dt

▶ z(t) ∈ Rnz the algebraic states

▶ u(t) ∈ Rnu a given control function

Differential algebraic equations

▶ Let F : R× Rnx × Rnz × Rnx × Rnu → Rnx be a function such that the matrix [∂F
∂ẋ

∂F
∂z

] is
invertible (index one). The system of equations:

F (t, ẋ(t), x(t), z(t), u(t)) = 0,

is called an fully implicit Differential Algebraic Equation (DAE).

▶ Let f : R× Rnx × Rnz × Rnu → Rnx and g : R× Rnx × Rnz × Rnu → Rnz with ∂g
∂z

invertible.
The system of equations:

ẋ(t) = f(t, x(t), z(t), u(t)),

0 = g(t, x(t), z(t), u(t)),

is called a semi-explicit DAE.

42

Differential algebraic equations

Let:

▶ x(t) ∈ Rnx the differential states with ẋ(t) = dx(t)
dt

▶ z(t) ∈ Rnz the algebraic states

▶ u(t) ∈ Rnu a given control function

Differential algebraic equations

▶ Let F : R× Rnx × Rnz × Rnx × Rnu → Rnx be a function such that the matrix [∂F
∂ẋ

∂F
∂z

] is
invertible (index one). The system of equations:

F (t, ẋ(t), x(t), z(t), u(t)) = 0,

is called an fully implicit Differential Algebraic Equation (DAE).

▶ Let f : R× Rnx × Rnz × Rnu → Rnx and g : R× Rnx × Rnz × Rnu → Rnz with ∂g
∂z

invertible.
The system of equations:

ẋ(t) = f(t, x(t), z(t), u(t)),

0 = g(t, x(t), z(t), u(t)),

is called a semi-explicit DAE.

42

Basic definitions of numerical simulation

▶ IVPs have only in special cases a closed form solution

▶ Instead, compute numerically a solution approximation x̃(t) that approximately satisfies:

˙̃x(t) ≈ f(t, x̃(t), u(t)), t ∈ [0, T]

x̃(0) = x(0) = x0

▶ Recursively generate solution approximation xn := x̃(tn) ≈ x(tn) at N discrete time
points 0 = t0 < t1 < . . . < tN = T

▶ Integration interval [0, T] split into subintervals [tn, tn+1] where h = tn+1 − tn

43

Basic definitions of numerical simulation

▶ IVPs have only in special cases a closed form solution

▶ Instead, compute numerically a solution approximation x̃(t) that approximately satisfies:

˙̃x(t) ≈ f(t, x̃(t), u(t)), t ∈ [0, T]

x̃(0) = x(0) = x0

▶ Recursively generate solution approximation xn := x̃(tn) ≈ x(tn) at N discrete time
points 0 = t0 < t1 < . . . < tN = T

▶ Integration interval [0, T] split into subintervals [tn, tn+1] where h = tn+1 − tn

43

Single step numerical simulation as discrete time system

Single step abstract integration method

ODE.

xn+1 = ϕ(xn, un)

where ϕ computes the next state based on current state and input.

DAE. [
xn+1

zn

]
= ϕ(xn, un)

where ϕ computes the next state and algebraic variables based on the current state and input.

Simplest Example: Explicit Euler

xn+1 = xn + hf(xn, un).

44

Single step numerical simulation as discrete time system

Single step abstract integration method

ODE.

xn+1 = ϕ(xn, un)

where ϕ computes the next state based on current state and input.

DAE. [
xn+1

zn

]
= ϕ(xn, un)

where ϕ computes the next state and algebraic variables based on the current state and input.

Simplest Example: Explicit Euler

xn+1 = xn + hf(xn, un).

44

Integration error

Local and global error

▶ Local integration error at tn+1:

e(tn+1) = ∥x(tn+1)− ϕ(x(tn), u0)∥.

▶ Global integration error at t = T :

E(T) = ∥x(T)− xN∥.

▶ Global error - accumulation of local
errors

0 0.2 0.4 0.6 0.8 1 1.2

t

0

2

4

6

8

10

12

14

16

18

20

x
(t

)

e(t1)

Exact solution
Numerical simulation
Locally exact solution

45

Integration error

Local and global error

▶ Local integration error at tn+1:

e(tn+1) = ∥x(tn+1)− ϕ(x(tn), u0)∥.

▶ Global integration error at t = T :

E(T) = ∥x(T)− xN∥.

▶ Global error - accumulation of local
errors

0 0.2 0.4 0.6 0.8 1 1.2

t

0

2

4

6

8

10

12

14

16

18

20

x
(t

)

e(t2)

Exact solution
Numerical simulation
Locally exact solution

45

Integration error

Local and global error

▶ Local integration error at tn+1:

e(tn+1) = ∥x(tn+1)− ϕ(x(tn), u0)∥.

▶ Global integration error at t = T :

E(T) = ∥x(T)− xN∥.

▶ Global error - accumulation of local
errors

0 0.2 0.4 0.6 0.8 1 1.2

t

0

2

4

6

8

10

12

14

16

18

20

x
(t

)

e(t3)

Exact solution
Numerical simulation
Locally exact solution

45

Integration error

Local and global error

▶ Local integration error at tn+1:

e(tn+1) = ∥x(tn+1)− ϕ(x(tn), u0)∥.

▶ Global integration error at t = T :

E(T) = ∥x(T)− xN∥.

▶ Global error - accumulation of local
errors

0 0.2 0.4 0.6 0.8 1 1.2

t

0

2

4

6

8

10

12

14

16

18

20

x
(t

)

e(t4)

Exact solution
Numerical simulation
Locally exact solution

45

Integration error

Local and global error

▶ Local integration error at tn+1:

e(tn+1) = ∥x(tn+1)− ϕ(x(tn), u0)∥.

▶ Global integration error at t = T :

E(T) = ∥x(T)− xN∥.

▶ Global error - accumulation of local
errors

0 0.2 0.4 0.6 0.8 1 1.2

t

0

2

4

6

8

10

12

14

16

18

20

x
(t

)

e(t5)

E(T)

Exact solution
Numerical simulation
Locally exact solution

45

Convergence and integrator order

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Higher order p:
▶ less, but more expensive steps for

same accuracy
▶ in total fewer r.h.s. evaluations for

same accuracy

10-2 10-1

h

10-14

10-12

10-10

10-8

10-6

10-4

10-2

E
(T

)

Explicit Euler
RK2
RK4

O(h)
O(h2)
O(h4)

46

Convergence and integrator order

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Higher order p:
▶ less, but more expensive steps for

same accuracy
▶ in total fewer r.h.s. evaluations for

same accuracy

10-2 10-1

h

10-14

10-12

10-10

10-8

10-6

10-4

10-2

E
(T

)

Explicit Euler
RK2
RK4

O(h)
O(h2)
O(h4)

46

Convergence and integrator order

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Higher order p:
▶ less, but more expensive steps for

same accuracy
▶ in total fewer r.h.s. evaluations for

same accuracy

10-2 10-1

h

10-14

10-12

10-10

10-8

10-6

10-4

10-2

E
(T

)

Explicit Euler
RK2
RK4

O(h)
O(h2)
O(h4)

46

Convergence and integrator order

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Higher order p:
▶ less, but more expensive steps for

same accuracy
▶ in total fewer r.h.s. evaluations for

same accuracy

10-2 10-1

h

10-14

10-12

10-10

10-8

10-6

10-4

10-2

E
(T

)

Explicit Euler
RK2
RK4

O(h)
O(h2)
O(h4)

46

Convergence and integrator order

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Higher order p:
▶ less, but more expensive steps for

same accuracy
▶ in total fewer r.h.s. evaluations for

same accuracy

10-2 10-1

h

10-14

10-12

10-10

10-8

10-6

10-4

10-2

E
(T

)

Explicit Euler
RK2
RK4

O(h)
O(h2)
O(h4)

46

Convergence and integrator order

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Higher order p:
▶ less, but more expensive steps for

same accuracy
▶ in total fewer r.h.s. evaluations for

same accuracy

101 102

N

10-14

10-12

10-10

10-8

10-6

10-4

10-2

E
(T

)

Explicit Euler
RK2
RK4

O(h)
O(h2)
O(h4)

46

Stability and convergence

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Stability: damping of errors, does it
work for h≫ 0?

▶ If integrator is unstable, it does not
converge and has p = 0, unless h very
small

0 0.5 1 1.5

t

0

0.5

1

1.5

x
(t

)

10-2 10-1

h

10-5

100

105

E
(T

)

Explicit Euler
Implicit Euler
O(h)

ẋ(t) = −300(x(t)− cos(t)), t ∈ [0, 2]

x(0) = 1

47

Stability and convergence

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Stability: damping of errors, does it
work for h≫ 0?

▶ If integrator is unstable, it does not
converge and has p = 0, unless h very
small

0 0.5 1 1.5 2

t

0

0.5

1

1.5

x
(t

)

h = 0:1

10-2 10-1

h

10-5

100

105

E
(T

)

Explicit Euler
Implicit Euler
O(h)

ẋ(t) = −300(x(t)− cos(t)), t ∈ [0, 2]

x(0) = 1

47

Stability and convergence

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Stability: damping of errors, does it
work for h≫ 0?

▶ If integrator is unstable, it does not
converge and has p = 0, unless h very
small

0 0.5 1 1.5 2

t

0

0.5

1

1.5

x
(t

)

h = 0:05

10-2 10-1

h

10-5

100

105

E
(T

)

Explicit Euler
Implicit Euler
O(h)

ẋ(t) = −300(x(t)− cos(t)), t ∈ [0, 2]

x(0) = 1

47

Stability and convergence

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Stability: damping of errors, does it
work for h≫ 0?

▶ If integrator is unstable, it does not
converge and has p = 0, unless h very
small

0 0.5 1 1.5 2

t

0

0.5

1

1.5

x
(t

)

h = 0:0125

10-2 10-1

h

10-5

100

105

E
(T

)

Explicit Euler
Implicit Euler
O(h)

ẋ(t) = −300(x(t)− cos(t)), t ∈ [0, 2]

x(0) = 1

47

Stability and convergence

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Stability: damping of errors, does it
work for h≫ 0?

▶ If integrator is unstable, it does not
converge and has p = 0, unless h very
small

0 0.5 1 1.5

t

0

0.5

1

1.5

x
(t

)

h = 0:00625

10-2 10-1

h

10-5

100

105

E
(T

)

Explicit Euler
Implicit Euler
O(h)

ẋ(t) = −300(x(t)− cos(t)), t ∈ [0, 2]

x(0) = 1

47

Stability and convergence

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Stability: damping of errors, does it
work for h≫ 0?

▶ If integrator is unstable, it does not
converge and has p = 0, unless h very
small

0 0.5 1 1.5

t

0

0.5

1

1.5

x
(t

)

h = 0:003125

10-2 10-1

h

10-5

100

105

E
(T

)

Explicit Euler
Implicit Euler
O(h)

ẋ(t) = −300(x(t)− cos(t)), t ∈ [0, 2]

x(0) = 1

47

Stability and convergence

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Stability: damping of errors, does it
work for h≫ 0?

▶ If integrator is unstable, it does not
converge and has p = 0, unless h very
small

0 0.5 1 1.5

t

0

0.5

1

1.5

x
(t

)

h = 0:0015625

10-2 10-1

h

10-5

100

105

E
(T

)

Explicit Euler
Implicit Euler
O(h)

ẋ(t) = −300(x(t)− cos(t)), t ∈ [0, 2]

x(0) = 1

47

Runge-Kutta method examples

Explicit Runge-Kutta of order 4

kn,1 = f (tn, xn)

kn,2 = f

(
tn +

h

2
, xn + h

kn,1
2

)
kn,3 = f

(
tn +

h

2
, xn + h

kn,2
2

)
kn,5 = f (tn + h, xn + hkn,3)

xn+1 = xn + h

(
1

6
kn,1 +

2

6
kn,2 +

2

6
kn,3 +

1

6
kn,4

)

▶ All kn,i can be found by explicit function
evaluations.

Implicit Euler Method

kn,1 = f(tn, xn + hkn,1)

xn+1 = xn + hkn,1

▶ kn,1 is found implicitly by solving
kn,1 − f(tn, xn + hkn,1) = 0.

48

Runge-Kutta method examples

Explicit Runge-Kutta of order 4

kn,1 = f (tn, xn)

kn,2 = f

(
tn +

h

2
, xn + h

kn,1
2

)
kn,3 = f

(
tn +

h

2
, xn + h

kn,2
2

)
kn,5 = f (tn + h, xn + hkn,3)

xn+1 = xn + h

(
1

6
kn,1 +

2

6
kn,2 +

2

6
kn,3 +

1

6
kn,4

)

▶ All kn,i can be found by explicit function
evaluations.

Implicit Euler Method

kn,1 = f(tn, xn + hkn,1)

xn+1 = xn + hkn,1

▶ kn,1 is found implicitly by solving
kn,1 − f(tn, xn + hkn,1) = 0.

48

Continuous time OCP into Nonlinear Programs (NLP)

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+M(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T]

0 ≥ r(x(T))

▶ Direct methods: first discretize,
then optimize

1. Parametrize controls, e.g.
u(t) = un, t ∈ [tn, tn+1].

2. Discretize cost and dynamics

l(xn, un) ≈
∫ tn+1

tn

Lc(x(t), u(t)) dt.

Replace ẋ = f(x, u) by

xn+1 = ϕ(xn, un).

3. Relax path constraints, e.g., evaluate only
at t = tn

0 ≥ h(xn, un), n = 0, . . . N − 1.

49

Continuous time OCP into Nonlinear Programs (NLP)

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+M(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T]

0 ≥ r(x(T))

▶ Direct methods: first discretize,
then optimize

1. Parametrize controls, e.g.
u(t) = un, t ∈ [tn, tn+1].

2. Discretize cost and dynamics

l(xn, un) ≈
∫ tn+1

tn

Lc(x(t), u(t)) dt.

Replace ẋ = f(x, u) by

xn+1 = ϕ(xn, un).

3. Relax path constraints, e.g., evaluate only
at t = tn

0 ≥ h(xn, un), n = 0, . . . N − 1.

49

Continuous time OCP into Nonlinear Programs (NLP)

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+M(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T]

0 ≥ r(x(T))

▶ Direct methods: first discretize,
then optimize

1. Parametrize controls, e.g.
u(t) = un, t ∈ [tn, tn+1].

2. Discretize cost and dynamics

l(xn, un) ≈
∫ tn+1

tn

Lc(x(t), u(t)) dt.

Replace ẋ = f(x, u) by

xn+1 = ϕ(xn, un).

3. Relax path constraints, e.g., evaluate only
at t = tn

0 ≥ h(xn, un), n = 0, . . . N − 1.

49

Continuous time OCP into Nonlinear Programs (NLP)

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+M(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T]

0 ≥ r(x(T))

▶ Direct methods: first discretize,
then optimize

1. Parametrize controls, e.g.
u(t) = un, t ∈ [tn, tn+1].

2. Discretize cost and dynamics

l(xn, un) ≈
∫ tn+1

tn

Lc(x(t), u(t)) dt.

Replace ẋ = f(x, u) by

xn+1 = ϕ(xn, un).

3. Relax path constraints, e.g., evaluate only
at t = tn

0 ≥ h(xn, un), n = 0, . . . N − 1.

49

Continuous time OCP into Nonlinear Programs (NLP)

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+M(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T]

0 ≥ r(x(T))

▶ Direct methods: first discretize,
then optimize

1. Parametrize controls, e.g.
u(t) = un, t ∈ [tn, tn+1].

2. Discretize cost and dynamics

l(xn, un) ≈
∫ tn+1

tn

Lc(x(t), u(t)) dt.

Replace ẋ = f(x, u) by

xn+1 = ϕ(xn, un).

3. Relax path constraints, e.g., evaluate only
at t = tn

0 ≥ h(xn, un), n = 0, . . . N − 1.

Discrete time OCP (an NLP)

min
x,u

∑N−1
k=0 l(xk, uk) +M(xN)

s.t. x0 = x̄0

xn+1 = ϕ(xn, un)

0 ≥ h(xn, un), n = 0, . . . , N−1
0 ≥ r(xN)

Variables x = (x0, . . . , xN) and
u = (u0, . . . , uN−1).

49

Direct optimal control methods solve Nonlinear Programs (NLP)

Discrete time OCP – Multiple Shooting Formulation

min
x,u

∑N−1
k=0 l(xk, uk) + E(xN)

s.t. x0 = x̄0

xn+1 = ϕ(xn, un)

0 ≥ h(xn, un), n = 0, . . . , N−1
0 ≥ r(xN)

Variables w = (x,u)

50

Direct optimal control methods solve Nonlinear Programs (NLP)

Discrete time OCP – Multiple Shooting Formulation

min
x,u

∑N−1
k=0 l(xk, uk) + E(xN)

s.t. x0 = x̄0

xn+1 = ϕ(xn, un)

0 ≥ h(xn, un), n = 0, . . . , N−1
0 ≥ r(xN)

Variables w = (x,u)

Nonlinear Program (NLP)

min
w∈Rnx

F (w)

s.t. G(w) = 0

H(w) ≥ 0

Obtain large and sparse NLP

50

Direct optimal control methods solve Nonlinear Programs (NLP)

0 50 100

nz = 611

0

20

40

60

80

100

120

r2
wwL(w;6;7)

0 50 100

nz = 196

0

50

rwG(w)

Variables w = (x,u)

Nonlinear Program (NLP)

min
w∈Rnx

F (w)

s.t. G(w) = 0

H(w) ≥ 0

Obtain large and sparse NLP

50

Direct optimal control methods solve Nonlinear Programs (NLP)

Discrete time OCP – Collocation Formulation

min
x,k,u

∑N−1
k=0 l(xk, uk) + E(xN)

s.t. x0 = x̄0

xn+1 = ϕ(xn, un, kn)

0 = ϕcoll(xn, un, kn)

0 ≥ h(xn, un), n = 0, . . . , N−1
0 ≥ r(xN)

Variables w = (x,k,u)

51

Direct optimal control methods solve Nonlinear Programs (NLP)

Discrete time OCP – Collocation Formulation

min
x,k,u

∑N−1
k=0 l(xk, uk) + E(xN)

s.t. x0 = x̄0

xn+1 = ϕ(xn, un, kn)

0 = ϕcoll(xn, un, kn)

0 ≥ h(xn, un), n = 0, . . . , N−1
0 ≥ r(xN)

Variables w = (x,k,u)

Nonlinear Program (NLP)

min
w∈Rnx

F (w)

s.t. G(w) = 0

H(w) ≥ 0

Obtain large and sparse NLP

51

Summary

▶ Numerical simulation methods (integrators) used to solve ODEs and DAEs approximately.

▶ Integration accuracy order and stability play key roles.

▶ Within the multiple shooting framework, integrators are a key building block for
discretization of the continuous OCP.

▶ The resulting discrete-time OCP is large, but very sparse

52

acados

acados is an open-source software package for nonlinear optimal control developed and
maintain by the group of Prof. Diehl.

acados provides several building blocks for nonlinear optimal control

▶ Integrators for ODEs and DAEs
▶ explicit and (structure-exploiting) implicit Runge-Kutta schemes
▶ efficient sensitivity propagation

▶ SQP-type solver for nonlinear optimal control problems
▶ Hessian approximation exploiting convex-over-nonlinear structures in costs and constraints
▶ real-time iteration
▶ (partial) condensing routines

▶ Interfaces to state-of-the-art QP solvers
▶ HPIPM, qpOASES, qpDUNES, OSQP, DAQP

▶ Generation of self-contained C code for embedded deployment as well as convenient user
interfaces to MATLAB and python.

53

Open-Source Dependencies/Foundations

acados builds on

▶ CasADi2 for describing the problem functions and their derivatives via algorithmic
differentiation (AD)

▶ HPIPM2 for efficient condensing routines

▶ BLASFEO3 for high-performance linear algebra tailored to the embedded hardware

▶ various open-source QP solvers, HPIPM2, qpOASES4, qpDUNES5, OSQP6, DAQP, for solving
the SQP-subproblems

2Andersson et al., 2019; 2Frison & Diehl, 2020; 3Frison et al., 2018; 4Ferreau et al., 2014; 5Frasch et al.,
2015; 6Stellato et al., 2020; 7Arnstrom et al., 2022;

54

Recent applications of acados

Recent applications of acados in real-world experiments.

▶ Obstacle Avoidance for Mobile Robotics (Gao et al., 2023)

▶ Quadrotor Control (Salzmann et al., 2023; Romero et al., 2022; Carlos et al., 2020)

▶ Combustion Engine and Air Path Control (Hänggi et al., 2022; Gordon et al., 2022)

▶ Electric Motor Control (Zanelli et al., 2021)

Advanced NMPC problem formulations and implementations.

▶ Robust MPC (Gao et al., 2023)

▶ Deep Neural Networks (DNN) and Gaussian Processes (GP) as dynamics model
(Salzmann et al., 2023; Lahr et al., 2023)

▶ Convenient and efficient access to the SQP subproblem for custom modifications
(Frey, Gao, et al., 2023)

▶ Custom sensitivity propagation for accurate cost integration for convex-over-nonlinear
costs (Frey, Baumgärtner, & Diehl, 2023)

55

Exercise Session

▶ We consider a continuously stirred tank reactor as in Pannocchia & Rawlings (2003).

▶ An irreversible, first-order reaction A→ B occurs in the liquid phase and the reactor
temperature is regulated with external cooling.

Mass and energy balances lead to the following nonlinear
state space model:

ċ =
F0(c0 − c)

πr2h
− k0 exp

(
− E

RT

)
c

Ṫ =
F0(T0 − T)

πr2h
− ∆H

ρCp
k0 exp

(
− E

RT

)
c+

2U

rρCp
(Tc − T)

ḣ =
F0 − F

πr2

▶ The controls are Tc, the coolant liquid temperature, and F , the outlet flowrate.

56

References I

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., & Diehl, M. (2019). CasADi – a
software framework for nonlinear optimization and optimal control. Mathematical
Programming Computation, 11(1), 1–36. doi: 10.1007/s12532-018-0139-4

Arnstrom, D., Bemporad, A., & Axehill, D. (2022). A dual active-set solver for embedded
quadratic programming using recursive LDLT updates. IEEE Transactions on Automatic
Control. doi: 10.1109/TAC.2022.3176430

Carlos, B. B., Sartor, T., Zanelli, A., Frison, G., Burgard, W., Diehl, M., & Oriolo, G. (2020).
An efficient real-time nmpc for quadrotor position control under communication
time-delay. In 2020 16th international conference on control, automation, robotics and
vision (icarcv) (p. 982-989). doi: 10.1109/ICARCV50220.2020.9305513

Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., & Diehl, M. (2014). qpOASES: a
parametric active-set algorithm for quadratic programming. Mathematical Programming
Computation, 6(4), 327–363.

Frasch, J. V., Sager, S., & Diehl, M. (2015). A parallel quadratic programming method for
dynamic optimization problems. Mathematical Programming Computations, 7(3),
289–329.

57

References II

Frey, J., Baumgärtner, K., & Diehl, M. (2023). Gauss-newton runge-kutta integration for
efficient discretization of optimal control problems with long horizons and least-squares
costs..

Frey, J., Gao, Y., Messerer, F., Lahr, A., Zeilinger, M., & Diehl, M. (2023). Efficient zero-order
robust optimization for real-time model predictive control with acados..

Frison, G., & Diehl, M. (2020, July). HPIPM: a high-performance quadratic programming
framework for model predictive control. In Proceedings of the ifac world congress. Berlin,
Germany.

Frison, G., Kouzoupis, D., Sartor, T., Zanelli, A., & Diehl, M. (2018). BLASFEO: Basic linear
algebra subroutines for embedded optimization. ACM Transactions on Mathematical
Software (TOMS), 44(4), 42:1–42:30.

Gao, Y., Messerer, F., Frey, J., van Duijkeren, N., & Diehl, M. (2023). Collision-free motion
planning for mobile robots by zero-order robust optimization-based mpc. In Proceedings
of the european control conference (ecc).

Gordon, D. C., Norouzi, A., Winkler, A., McNally, J., Nuss, E., Abel, D., . . . Koch, C. R.
(2022). End-to-end deep neural network based nonlinear model predictive control:
experimental implementation on diesel engine emission control. Energies, 15(24), 9335.

58

References III

Hänggi, S., Frey, J., van Dooren, S., Diehl, M., & Onder, C. H. (2022). A modular approach
for diesel engine air path control based on nonlinear mpc. IEEE Transactions on Control
Systems Technology, 1-16. doi: 10.1109/TCST.2022.3228203

Lahr, A., Zanelli, A., Carron, A., & Zeilinger, M. N. (2023). Zero-order optimization for
Gaussian process-based model predictive control. European Journal of Control, 100862.

Romero, A., Penicka, R., & Scaramuzza, D. (2022). Time-optimal online replanning for agile
quadrotor flight. IEEE Robotics and Automation Letters, 7(3), 7730–7737.

Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., & Ryll, M.
(2023). Real-time neural MPC: Deep learning model predictive control for quadrotors
and agile robotic platforms. IEEE Robotics and Automation Letters, 8(4), 2397–2404.

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., & Boyd, S. (2020). OSQP: An operator
splitting solver for quadratic programs. Mathematical Programming Computation, 12(4),
637–672. Retrieved from https://doi.org/10.1007/s12532-020-00179-2 doi:
10.1007/s12532-020-00179-2

Zanelli, A., Kullick, J., Eldeeb, H., Frison, G., Hackl, C., & Diehl, M. (2021). Continuous
control set nonlinear model predictive control of reluctance synchronous machines. IEEE
Transactions on Control Systems Technology, 1-12. doi: 10.1109/TCST.2020.3043956

59

https://doi.org/10.1007/s12532-020-00179-2

Appendix

60

Convex sets
A key concept in optimization is convexity

A set Ω is said to be convex if for any w1, w2 and any θ ∈ [0, 1] it holds θw1 + (1− θ)w2 ∈ Ω

61

Convex functions

▶ A function F is convex if for every
w1, w2 ∈ Rn and θ ∈ [0, 1] it holds that

F (θw1+(1−θ)w2) ≤ θF (w1)+(1−θ)F (w2)

▶ F is concave if and only if −F is convex

▶ F is convex if and only if the epigraph

epiF = {(w, t) ∈ Rnw+1 | F (w) ≤ t}

is a convex set

w
F

(w
)

(w1; F (w1))

(w2; F (w2))

3F (w1) + (1! 3)F (w2)

F (3w1 + (1! 3)w2)

62

	Basic definitions
	Basic definitions
	Bibliography
	References

