Exercises for Lecture Course on Numerical Optimization (NUMOPT) Albert-Ludwigs-Universität Freiburg – Winter Term 2023/2024

Exercise 5: Exam Type Question

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis, Andrea Zanelli, Florian Messerer, Yizhen Wang

Exercise Tasks

1. A sample exam question.

Regard the following minimization problem:

$$\min_{x \in \mathbb{R}^2} \quad x_2^4 + (x_1 + 2)^4 \quad \text{s.t.} \quad \begin{cases} x_1^2 + x_2^2 \le 8 \\ x_1 - x_2 = 0. \end{cases}$$

(a) How many scalar decision variables, how many equality, and how many inequality constraints does this problem have?

2

two scalar decision variables, 1 equality constraint, 1 inequality constraint

(b) Sketch the feasible set $\Omega \in \mathbb{R}^2$ of this problem.

3

(c) Bring this problem into the NLP standard form

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t.} \quad \left\{ \begin{array}{ll} g(x) & = & 0 \\ h(x) & \geq & 0 \end{array} \right.$$

by defining the functions f, g, h appropriately.

$$f(x) = x_2^4 + (x_1 + 2)^4$$

$$g(x) = x_1 - x_2$$

$$h(x) = 8 - x_1^2 - x_2^2$$

FROM NOW ON UNTIL THE END TREAT THE PROBLEM IN THIS STANDARD FORM.

(d) Is this optimization problem convex? Justify. f(x) is convex, g(x) is affine, h(x) is concave \Rightarrow the problem is convex

2

(e) Write down the Lagrangian function of this optimization problem.

$$\mathcal{L}(x,\lambda,\mu) = f(x) - \lambda^{\top} g(x) - \mu^{\top} h(x)$$

= $x_2^4 + (x_1 + 2)^4 - \lambda(x_1 - x_2) - \mu(8 - x_1^2 - x_2^2)$

where $\lambda, \mu \in \mathbb{R}$.

2

(f) A feasible solution of the problem is $\bar{x}=(2,2)^T$. What is the active set $\mathcal{A}(\bar{x})$ at this point? $h(\bar{x})=8-2^2-2^2=0 \Rightarrow$ the constraint is active, $\mathcal{A}(\bar{x})=\{1\}$ (This notation interprets h(x) as vector valued function with only one dimension, i.e. a "scalar vector")

2

(g) Is the *linear independence constraint qualification (LICQ)* satisfied at \bar{x} ? Justify. Check linear independence of $\nabla g(\bar{x})$ and $\nabla h_i(\bar{x})$, $i \in \mathcal{A}$ or whether $\begin{bmatrix} \nabla g(\bar{x}) & \nabla h_1(\bar{x}) \end{bmatrix}$ is full rank.

$$\nabla g(x) = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \nabla g(\bar{x}) \qquad \nabla h_1(x) = \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix}, \ \nabla h_1(\bar{x}) = \begin{bmatrix} -4 \\ 4 \end{bmatrix}$$

$$\det \begin{bmatrix} \nabla g(\bar{x}) & \nabla h_1(\bar{x}) \end{bmatrix} = \det \begin{bmatrix} 1 & -4 \\ -1 & -4 \end{bmatrix} = 6 > 0 \Rightarrow \text{full rank} \Rightarrow \text{LICQ satisfied}$$

3

(h) An optimal solution of the problem is $x^* = (-1, -1)^T$. What is the active set $\mathcal{A}(x^*)$ at this point? $h(x^*) = 6 > 0 \Rightarrow \mathcal{A}(x^*) = \{\}$ (no active inequality constraints)

1

(i) Is the linear independence constraint qualification (LICQ) satisfied at x^* ? Justify.

$$\nabla g(x^*) = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \Rightarrow \text{full rank} \Rightarrow \text{LICQ satisfied}$$

2

(j) Describe the tangent cone $T_{\Omega}(x^*)$ (the set of feasible directions) to the feasible set at this point x^* , by a set definition formula with explicitly computed numbers.

LICQ holds at x^* , so the tangent cone and the linearized feasible cone coincide:

$$T_{\Omega}(x^*) = \mathcal{F}(x^*) = \{ p \in \mathbb{R}^n \mid \nabla g_i(x^*)^\top p = 0, i = 1, \dots, m \& \nabla h_i(x^*)^\top p = 0, i \in \mathcal{A}(x^*) \}$$

Here:

$$\mathcal{F}(x^*) = \{ p \in \mathbb{R}^2 \mid \nabla g(x^*)^\top p = 0 \} = \{ p \in \mathbb{R}^2 \mid \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = 0 \}$$
$$= \{ p \in \mathbb{R}^2 \mid p_1 = -p_2 \} = \{ t \begin{bmatrix} 1 \\ -1 \end{bmatrix} \mid t \in \mathbb{R} \}$$

2

(k) Compute the Lagrange gradient and find the multiplier vectors λ^* , μ^* so that the above point x^* satisfies the KKT conditions.

general KKT conditions for inequality constraint optimization

$$\nabla_{x} \mathcal{L}(x^{*}, \lambda^{*}, \mu^{*}) = \nabla f(x^{*}) - \nabla g(x^{*}) \lambda^{*} - \nabla h(x^{*}) \mu = 0$$

$$g(x^{*}) = 0$$

$$h(x^{*}) \ge 0$$

$$\mu^{*} \ge 0$$

$$\mu_{i}^{*} h_{i}(x^{*}) = 0, \quad i = 1, \dots, q$$

Here

$$h(x^*) > 0 \Rightarrow \underline{\mu}^* = 0$$

$$g(x^*) = 0 \quad \checkmark$$

$$\nabla_x \mathcal{L}(x, \lambda, \mu) = \begin{bmatrix} 4(x_1 + 2)^3 \\ 4x_2^3 \end{bmatrix} - \begin{bmatrix} 1 \\ -1 \end{bmatrix} \lambda - \begin{bmatrix} -2x_1 \\ -2x_2 \end{bmatrix} \mu$$

$$\nabla_x \mathcal{L}(x^*, \lambda^*, \mu^*) = \begin{bmatrix} 4 - \lambda^* \\ -4 + \lambda^* \end{bmatrix} = 0 \Leftrightarrow \underline{\lambda}^* = \underline{4}$$

(l) Describe the critical cone $C(x^*, \mu^*)$ at the point (x^*, λ^*, μ^*) in a set definition using explicitly computed numbers

$$C(x^*, \mu^*) = \{ p \in \mathbb{R}^n \mid \nabla g_i(x^*)^\top p = 0, i = 1, \dots, m \\ \& \nabla h_i(x^*)^\top p = 0, i \in \mathcal{A}_+(x^*) \\ \& \nabla h_i(x^*)^\top p \ge 0, i \in \mathcal{A}_0(x^*) \}$$

Here $(\mathcal{A} = \{\})$:

$$C(x^*, \mu^*) = \{ p \in \mathbb{R}^2 \mid \nabla g(x^*)^\top p = 0 \} = \mathcal{F}(x^*) = \{ t \begin{bmatrix} 1 \\ -1 \end{bmatrix} \mid t \in \mathbb{R} \}$$

3

(m) Formulate the second order necessary conditions for optimality (SONC) for this problem and test if they are satisfied at (x^*, λ^*, μ^*) . Can you prove whether x^* is a local or even global minimizer?

SONC: Regard x^* with LICQ. If x^* is a local minimizer of the NLP, then

- i. $\exists \lambda^*, \mu^*$ such that KKT conditions hold
- ii. $\forall p \in \mathcal{C}(x^*, \mu^*) \text{ holds } p^\top \nabla^2_x \mathcal{L}(x^*, \lambda^*, \mu^*) p \geq 0$

Here:

$$\nabla_x^2 \mathcal{L}(x,\lambda,\mu) = \begin{bmatrix} 12(x_1+2)^2 + 2\mu & 0\\ 0 & 12x_2^2 + 2\mu \end{bmatrix}, \quad \Lambda^* := \nabla_x^2 \mathcal{L}(x^*,\lambda^*,\mu^*) = \begin{bmatrix} 12 & 0\\ 0 & 12 \end{bmatrix}$$

check SONC

- i. holds due to task (1k)
- ii. $\Lambda^* \succ 0 \Rightarrow p^\top \Lambda^* p \ge 0 \ \forall p \in \mathbb{R}^n$, therefore this specifically holds also for $\forall p \in \mathcal{C}(x^*, \mu^*)$
- \Rightarrow SONC are satisfied

Due to $\Lambda^* \succ 0$ we furthermore have $p^\top \Lambda^* p > 0 \ \forall p \in \mathbb{R}^n \setminus \{0\}$, and therefore specifically $\forall p \in \mathcal{C}(x^*, \mu^*) \setminus \{0\}$. Thus SOSC also holds, and x^* is a local minimizer. Due to convexity of the NLP this is equivalent to x^* being a global minimizer.

Alternative: Theorem 13.6. For convex NLP and x^* with LICQ holds:

 x^* is a global minimizer $\Leftrightarrow \exists \lambda, \mu$ such that KKT conditions hold.

We know the righthandside to be true, so x^* is a global minimizer.