Exercises for Lecture Course on Numerical Optimization (NUMOPT)

Albert-Ludwigs-Universität Freiburg - Winter Term 2023/2024

Exercise 5: Exam Type Question

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis, Andrea Zanelli, Florian Messerer, Yizhen Wang

Exercise Tasks

1. A sample exam question.

Regard the following minimization problem:

$$
\min _{x \in \mathbb{R}^{2}} x_{2}^{4}+\left(x_{1}+2\right)^{4} \quad \text { s.t. } \quad\left\{\begin{array}{l}
x_{1}^{2}+x_{2}^{2} \leq 8 \\
x_{1}-x_{2}=0
\end{array}\right.
$$

(a) How many scalar decision variables, how many equality, and how many inequality constraints does this problem have?
two scalar decision variables, 1 equality constraint, 1 inequality constraint
(b) Sketch the feasible set $\Omega \in \mathbb{R}^{2}$ of this problem.
(c) Bring this problem into the NLP standard form

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { s.t. } \quad\left\{\begin{array}{l}
g(x)=0 \\
h(x) \geq 0
\end{array}\right.
$$

by defining the functions f, g, h appropriately.

$$
\begin{aligned}
& f(x)=x_{2}^{4}+\left(x_{1}+2\right)^{4} \\
& g(x)=x_{1}-x_{2} \\
& h(x)=8-x_{1}^{2}-x_{2}^{2}
\end{aligned}
$$

FROM NOW ON UNTIL THE END TREAT THE PROBLEM IN THIS STANDARD FORM.
(d) Is this optimization problem convex? Justify. $f(x)$ is convex, $g(x)$ is affine, $h(x)$ is concave \Rightarrow the problem is convex
(e) Write down the Lagrangian function of this optimization problem.

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \mu) & =f(x)-\lambda^{\top} g(x)-\mu^{\top} h(x) \\
& =x_{2}^{4}+\left(x_{1}+2\right)^{4}-\lambda\left(x_{1}-x_{2}\right)-\mu\left(8-x_{1}^{2}-x_{2}^{2}\right)
\end{aligned}
$$

where $\lambda, \mu \in \mathbb{R}$.
(f) A feasible solution of the problem is $\bar{x}=(2,2)^{T}$. What is the active set $\mathcal{A}(\bar{x})$ at this point? $h(\bar{x})=8-2^{2}-2^{2}=0 \Rightarrow$ the constraint is active, $\mathcal{A}(\bar{x})=\{1\}$ (This notation interprets $h(x)$ as vector valued function with only one dimension, i.e. a "scalar vector")
(g) Is the linear independence constraint qualification (LICQ) satisfied at \bar{x} ? Justify.

Check linear independence of $\nabla g(\bar{x})$ and $\nabla h_{i}(\bar{x}), i \in \mathcal{A}$ or whether $\left[\nabla g(\bar{x}) \quad \nabla h_{1}(\bar{x})\right]$ is full rank.

$$
\begin{gathered}
\nabla g(x)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\nabla g(\bar{x}) \quad \nabla h_{1}(x)=\left[\begin{array}{l}
-2 x_{1} \\
-2 x_{2}
\end{array}\right], \nabla h_{1}(\bar{x})=\left[\begin{array}{c}
-4 \\
4
\end{array}\right] \\
\operatorname{det}\left[\nabla g(\bar{x}) \quad \nabla h_{1}(\bar{x})\right]=\operatorname{det}\left[\begin{array}{cc}
1 & -4 \\
-1 & -4
\end{array}\right]=6>0 \Rightarrow \text { full rank } \Rightarrow \text { LICQ satisfied }
\end{gathered}
$$

(h) An optimal solution of the problem is $x^{*}=(-1,-1)^{T}$. What is the active set $\mathcal{A}\left(x^{*}\right)$ at this point? $h\left(x^{*}\right)=6>0 \Rightarrow \mathcal{A}\left(x^{*}\right)=\{ \}$ (no active inequality constraints)
(i) Is the linear independence constraint qualification (LICQ) satisfied at x^{*} ? Justify.

$$
\nabla g\left(x^{*}\right)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \Rightarrow \text { full rank } \Rightarrow \text { LICQ satisfied }
$$

(j) Describe the tangent cone $T_{\Omega}\left(x^{*}\right)$ (the set of feasible directions) to the feasible set at this point x^{*}, by a set definition formula with explicitly computed numbers.
LICQ holds at x^{*}, so the tangent cone and the linearized feasible cone coincide:

$$
T_{\Omega}\left(x^{*}\right)=\mathcal{F}\left(x^{*}\right)=\left\{p \in \mathbb{R}^{n} \mid \nabla g_{i}\left(x^{*}\right)^{\top} p=0, i=1, \ldots, m \& \nabla h_{i}\left(x^{*}\right)^{\top} p=0, i \in \mathcal{A}\left(x^{*}\right)\right\}
$$

Here:

$$
\begin{aligned}
\mathcal{F}\left(x^{*}\right) & =\left\{p \in \mathbb{R}^{2} \mid \nabla g\left(x^{*}\right)^{\top} p=0\right\}=\left\{p \in \mathbb{R}^{2} \left\lvert\,\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=0\right.\right\} \\
& =\left\{p \in \mathbb{R}^{2} \mid p_{1}=-p_{2}\right\}=\left\{\left.t\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
\end{aligned}
$$

(k) Compute the Lagrange gradient and find the multiplier vectors λ^{*}, μ^{*} so that the above point x^{*} satisfies the KKT conditions.
general KKT conditions for inequality constraint optimization

$$
\begin{aligned}
\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}, \mu^{*}\right)=\nabla f\left(x^{*}\right)-\nabla g\left(x^{*}\right) \lambda^{*}-\nabla h\left(x^{*}\right) \mu & =0 \\
g\left(x^{*}\right) & =0 \\
h\left(x^{*}\right) & \geq 0 \\
\mu^{*} & \geq 0 \\
\mu_{i}^{*} h_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, q
\end{aligned}
$$

Here:
$h\left(x^{*}\right)>0 \Rightarrow \mu^{*}=0$
$g\left(x^{*}\right)=0$
$\nabla_{x} \mathcal{L}(x, \lambda, \mu)=\left[\begin{array}{c}4\left(x_{1}+2\right)^{3} \\ 4 x_{2}^{3}\end{array}\right]-\left[\begin{array}{c}1 \\ -1\end{array}\right] \lambda-\left[\begin{array}{c}-2 x_{1} \\ -2 x_{2}\end{array}\right] \mu$
$\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}, \mu^{*}\right)=\left[\begin{array}{c}4-\lambda^{*} \\ -4+\lambda^{*}\end{array}\right]=0 \Leftrightarrow \underline{\lambda^{*}=4}$
(1) Describe the critical cone $C\left(x^{*}, \mu^{*}\right)$ at the point $\left(x^{*}, \lambda^{*}, \mu^{*}\right)$ in a set definition using explicitly computed numbers

$$
\begin{aligned}
& \mathcal{C}\left(x^{*}, \mu^{*}\right)=\left\{p \in \mathbb{R}^{n} \mid \quad \nabla g_{i}\left(x^{*}\right)^{\top} p=0, i\right.=1, \ldots, m \\
& \& \nabla h_{i}\left(x^{*}\right)^{\top} p=0, i \in \mathcal{A}_{+}\left(x^{*}\right) \\
&\left.\& \nabla h_{i}\left(x^{*}\right)^{\top} p \geq 0, i \in \mathcal{A}_{0}\left(x^{*}\right)\right\}
\end{aligned}
$$

Here $(\mathcal{A}=\{ \})$:

$$
\mathcal{C}\left(x^{*}, \mu^{*}\right)=\left\{p \in \mathbb{R}^{2} \mid \nabla g\left(x^{*}\right)^{\top} p=0\right\}=\mathcal{F}\left(x^{*}\right)=\left\{\left.t\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

(m) Formulate the second order necessary conditions for optimality (SONC) for this problem and test if they are satisfied at $\left(x^{*}, \lambda^{*}, \mu^{*}\right)$. Can you prove whether x^{*} is a local or even global minimizer?
SONC: Regard x^{*} with LICQ. If x^{*} is a local minimizer of the NLP, then
i. $\exists \lambda^{*}, \mu^{*}$ such that KKT conditions hold
ii. $\forall p \in \mathcal{C}\left(x^{*}, \mu^{*}\right)$ holds $p^{\top} \nabla_{x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}, \mu^{*}\right) p \geq 0$

Here:

$$
\nabla_{x}^{2} \mathcal{L}(x, \lambda, \mu)=\left[\begin{array}{cc}
12\left(x_{1}+2\right)^{2}+2 \mu & 0 \\
0 & 12 x_{2}^{2}+2 \mu
\end{array}\right], \quad \Lambda^{*}:=\nabla_{x}^{2} \mathcal{L}\left(x^{*}, \lambda^{*}, \mu^{*}\right)=\left[\begin{array}{cc}
12 & 0 \\
0 & 12
\end{array}\right]
$$

check SONC
i. holds due to task (1k)
ii. $\Lambda^{*} \succ 0 \Rightarrow p^{\top} \Lambda^{*} p \geq 0 \forall p \in \mathbb{R}^{n}$, therefore this specifically holds also for $\forall p \in \mathcal{C}\left(x^{*}, \mu^{*}\right)$
\Rightarrow SONC are satisfied
Due to $\Lambda^{*} \succ 0$ we furthermore have $p^{\top} \Lambda^{*} p>0 \forall p \in \mathbb{R}^{n} \backslash\{0\}$, and therefore specifically $\forall p \in \mathcal{C}\left(x^{*}, \mu^{*}\right) \backslash\{0\}$. Thus SOSC also holds, and x^{*} is a local minimizer. Due to convexity of the NLP this is equivalent to x^{*} being a global minimizer.
Alternative: Theorem 13.6. For convex NLP and x^{*} with LICQ holds:
x^{*} is a global minimizer $\Leftrightarrow \exists \lambda, \mu$ such that KKT conditions hold.
We know the righthandside to be true, so x^{*} is a global minimizer.

