Exercises for Lecture Course on Modeling and System Identification (MSI) Albert-Ludwigs-Universität Freiburg - Winter Term 2023-2024

Exercise 7: Dynamic Systems
 (to be returned on Jan 8th, 8:30)

Prof. Dr. Moritz Diehl, Katrin Baumgärtner, Jakob Harzer, Yizhen Wang, Adithya Anoop Thoniparambil, Premnath Srinivasan

Consider the trajectory of a some object thrown vertically into the air, in a gravity field for which we would like to estimate the constant of acceleration g. Using multiple cameras, we measure the position p of the object with measurement noise ϵ as $y=p+\epsilon$.

1. (Continous and Discrete Model) From kinematics we know that the object follows the simple ordinary differential equation

$$
\ddot{p}=-g .
$$

To formulate a model, let p and v correspond to the vertical position and velocity of the object, respectively.
(a) Paper: By defining a state vector $x=[p, v]^{\top} \in \mathbb{R}^{2}$, we can reformulate this kinematic model into the linear affine state-space form:

$$
\begin{align*}
& \dot{x}=A x+b \tag{1a}\\
& y=C x+d+\epsilon \tag{1b}
\end{align*}
$$

Define the values and dimensions of the matrices A and C as well of the vectors b and d accordingly.
(1 points)

(b) Paper: Show that the analytical solution to the differential equation (1a), with initial state $x_{0}=x(0)$,

$$
x(t)=\exp (A t) x_{0}+\int_{0}^{t} \exp (A(t-\tau)) b d \tau
$$

is for this model equivalent to:

$$
x(t)=x_{0}+\left(A x_{0}+b\right) t+\frac{1}{2} A b t^{2}
$$

Hint: Take a close look at the high order terms of the expansion of the matrix exponential given by $\exp (A t):=\mathbb{I}+A t+\frac{1}{2!}(A t)^{2}+\frac{1}{3!}(A t)^{3} \ldots$
(c) Paper: Since we later will have measurements on an equidistant time grid with stepsize h, we are interested to find a discrete state-space model

$$
\begin{align*}
x_{k+1} & =\tilde{A} x_{k}+\tilde{b} \tag{2a}\\
y_{k} & =\tilde{C}_{k} x_{k}+\tilde{d}+\epsilon_{k} \tag{2b}
\end{align*}
$$

where $x_{k}=x\left(t_{k}\right)$ is the state at some sampling time $t_{k}=k h$ and $x_{k+1}=x\left(t_{k+1}\right)=$ $x\left(t_{k}+h\right)$ is the state at the next sampling time. Use the equations of the analytical solution above to define the matrices and vectors $\tilde{A}, \tilde{b}, \tilde{C}$ and \tilde{d} of the discrete model.
2. We assume that the position measurements (the output of our model) are subject to i.i.d. noise ϵ_{k} with a standard deviation of $\sigma_{\epsilon}=0.3 \mathrm{~m}$. The series of $N=20$ measurements $y_{1}, y_{2}, \ldots, y_{N}$ lies on an evenly spaced time grid $t_{k}=k h, k=1, \ldots, N$, with $h=0.25 \mathrm{~s}$.

(Physical Model) From the solution of the previous tasks we can derive a model for the measurements that is inspired from physics as

$$
\begin{equation*}
y_{k}=p_{0}+v_{0} t_{k}-\frac{1}{2} g t_{k}^{2}+\epsilon_{k} \tag{3}
\end{equation*}
$$

that is parameterized by the initial position $p_{0}=p\left(t_{0}\right)$, initial velocity $v_{0}=v\left(t_{0}\right)$ and the constant g.
(a) Paper: To estimate the unknown parameters $\theta=\left[p_{0}, v_{0}, g\right]^{\top} \in \mathbb{R}^{5}$ we want use linear least squares with the measurement model above and thus want to solve the problem

$$
\theta_{\text {phy }}=\arg \min _{\theta}\left\|y_{\text {phy }}-\Phi_{\text {phy }} \theta\right\|_{2}^{2} .
$$

Define the vectors $y_{\text {phy }}$ and the matrix $\Phi_{\text {phy }}$, along with their dimensions. (0.5 points)
(b) Code: Use linear least squares to find the solution to the estimation problem. Estimate the covariance matrix Σ_{θ} of the estimation result. Complete the code to plot the trajectory of the predicted output with the found parameters over time, along with a 2 -sigma confidence interval of the predicted output y. For this you will need to calculate the covariance of the predicted outputs using the formula

$$
\begin{equation*}
\Sigma_{y_{\text {phy }}}=\Phi_{\text {phy }} \Sigma_{\theta} \Phi_{\text {phy }}^{\top}+\Sigma_{\epsilon} \tag{2points}
\end{equation*}
$$

(c) Paper: Where is the experiment taking place?
(ARX Model) Another possible modelling choice is to use an autoregressive model

$$
\begin{equation*}
y_{k+1}=\theta_{1} y_{k-1}+\theta_{2} y_{k}+\theta_{3} \tag{4}
\end{equation*}
$$

that relates the next output to previous outputs and a constant. With this model, we can only estimate the constant g, not the initial position and velocity.
(d) Paper: Show how the discrete linear state-space model (2a) can be reformulated into the ARX model (4). How does the constant g relate to the coefficients $\theta=\left[\theta_{1}, \theta_{2}, \theta_{3}\right]^{\top}$?
(1 points)
(e) Paper: Fit an ARX model to the data by formulating an LLS problem

$$
\theta_{\mathrm{ARX}}=\arg \min _{\theta}\left\|y_{\mathrm{ARX}}-\Phi_{\mathrm{ARX}} \theta\right\|_{2}^{2}
$$

Define the vectors $y_{\text {ARX }}$ and the matrix $\Phi_{\text {ARX }}$, along with their dimensions. (0.5 points)
(f) Code: Use LLS to find the coefficients of the ARX model. Use the code in the template to visualize a 'rollout' of the model.
(g) Paper: Why do you think the ARX modelling approach performs so much worse?

This sheet gives in total 10 points

