Exercise 3: Optimality Conditions and Linear Least Squares (to be returned on November 20th, 8:30)

Prof. Dr. Moritz Diehl, Katrin Baumgärtner, Jakob Harzer, Yizhen Wang, Adithya Anoop Thoniparambil, Premnath Srinivasan

The aim of this sheet is to strengthen your knowledge in optimality conditions and least squares estimation.

Exercise Tasks

1. Paper: Given the function $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $f(x)=x^{\top} Q x+c^{\top} x$ and fixed $c \in \mathbb{R}^{n}$.
(a) Consider the not necessarily symmetric matrix $Q \in \mathbb{R}^{n \times n}$ and compute the gradient $\nabla f(x) \in \mathbb{R}^{n}$ and the Hessian $\nabla^{2} f(x) \in \mathbb{R}^{n \times n}$ of this function for any x.
(b) If Q is symmetric, what properties does it have to fulfil such that the unique minimizer x^{*} can be computed?
(c) Compute the unique minimizer and the minimum function value $f\left(x^{*}\right)$ under the correct assumptions.
2. Paper: We would like to find the parameters $\hat{\theta}_{\mathrm{LS}}$ of a linear model $y(k)=\phi(k)^{\top} \theta+\epsilon(k)$, where $\epsilon(k) \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\right)$ is an additive i.i.d. zero-mean Gaussian noise that perturbed a series of N scalar measurements $y_{N}=[y(1), \ldots, y(N)] \in \mathbb{R}^{N}$. From the lecture we know that $\hat{\theta}_{\mathrm{LS}}$ can be computed using least-squares:

$$
\hat{\theta}_{\mathrm{LS}}=\arg \min _{\theta} \frac{1}{2}\left\|y_{N}-\Phi_{N} \theta\right\|_{2}^{2}
$$

where $\Phi_{N} \in \mathbb{R}^{N \times d}$. Assume that σ_{ϵ}^{2} is known.
(a) State the matrix Φ_{N} and the solution of least squares problem $\hat{\theta}_{\mathrm{LS}}$.
(b) Calculate the covariance of the least squares estimate $\operatorname{cov}\left(\hat{\theta}_{\mathrm{LS}}\right)$.

Hint: Recall from Exercise 2 that the covariance matrix of a vector-valued variable $Y=A X+b$ for a constant $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$ is given by $\operatorname{cov}(Y)=A \operatorname{cov}(X) A^{\top}$.
(2 points)
3. Consider the following experimental set up to estimate the values of E and R.

You obtain a dataset containing N measurements of the voltage $u(k)$ for different values of $i(k)$. We assume that the input measurements $i(k)$ is not affected by noise, but that the measurements $u(k)$ are affected by i.i.d. additive noise $n_{\mathrm{u}}(k)$. Under these assumptions the measurement model is given by:

$$
u(k)=m(k)+n_{\mathrm{u}}(k) \quad \text { where } \quad m(k)=E+R \cdot i(k) .
$$

(a) Code: Load the dataset containing the measurements. Plot the data with ' x ' markers and add labels to both axis.
(0.5 points)
(b) Paper: Formulate the problem of estimating the parameters E and R as a least squares problem where $\theta=\left[\begin{array}{ll}E & R\end{array}\right]^{\top} \in \mathbb{R}^{2}$ by defining $\Phi \in \mathbb{R}^{N \times 2}$ and $y \in \mathbb{R}^{N}$ such that the optimizer is given by $\hat{\theta}=\arg \min _{\theta}\|y-\Phi \theta\|_{2}^{2}$.
(1 points)
(c) Code: Use the least squares estimator formulated in the previous subtask to find the experimental values of R and E for the dataset. Plot the linear fit through the measurement data.
(d) Code: Plot a histogram of the residuals defined as $r(k)=u(k)-m(k)$, where $m(k)=E+$ $R \cdot i(k)$ is the voltage determined by the model, and $u(k)$ are the obtained measurements. (0.5 points)
(e) Paper: Give an educated guess for the type of noise distribution.

As we will learn later in the lecture, for i.i.d. measurement noise, the covariance matrix of the d estimated parameters $\hat{\theta}$ from a single experiment can be approximated by

$$
\hat{\Sigma}_{\hat{\theta}}=\frac{\|y-\Phi \hat{\theta}\|_{2}^{2}}{N-d}\left(\Phi^{\top} \Phi\right)^{-1}
$$

From this estimated covariance matrix, the estimated variances for the single components of the parameter vector can be extracted as the respective diagonal entry.
(f) Code: Calculate the estimated variance of both the R and E estimate and print their values along with a 1- σ confidence estimate in the format of

$$
(\text { quantity })=(\text { value }) \pm(1 \text { standard deviation })
$$

