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Rise of Transformers

» Transformers were introduced in the paper “Attention is All You Need" [Vaswani et al. 2017]

» They are now used everywhere from Reinforcement Learning, Computer Vision to Natural
Language Processing.
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Figure: Drastic increase in the number of transformer-based papers.

[Image source: Khan et al. 2021]
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Motivating Example: Translation
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Motivating Example: Text Generation (ChatGPT)

e.g. Text Generation

many to one

How do you generate the next word?

| generate the next word (or token) using a neural network-based language model. Here's a
simplified overview of the process:

1. Input Context: | take in a sequence of words or tokens as context. This context can be a
single sentence, a paragraph, or even a longer document. The context helps me understand

the context and generate coherent responses.

2. Tokenization: | break down the input text into individual tokens (words or subwords).
Tokenization helps me process the text at a granular level.

3. Neural Network Architecture: | use a deep neural network
°
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Recurrent Neural Networks
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hi = fa(hi—1,74)
gt = fy(ht)

Figure: Recurrent Neural Network

» Recurrent Neural Networks encode past information in their hidden state h.
» In theory, they can store information of arbitrary long sequences in h.
» However, they are are hard to train for long sequences (backprop through time).

[Image source: Geiger 2022]
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Transformers are Autoregressive Models

Autoregressive Model

e = f(xtvxt—la e MUt—N)

Figure: Autoregressive Model

» An autoregressive model with block size N is a feedforward model which predicts the
output ¢; based on the last N previous variables x;_1,%:_2,...2:_nN.

» Often a prediction j; is the next steps input, §; = x411, thus the term autoregressive.
» Assumption: Our prediction g, is independent of {z; | i <t — N}!

[Definition and image source: Geiger 2022]
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High-Level View of the Encoder-Decoder Architecture
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Figure: The encoder-decoder transformer architecture was designed for translation tasks.

» Encoder (decoder) blocks share the same architecture but have different trainable weights.

[Image source: https://jalammar.github.io/illustrated-transformer/|
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Zooming into the Encoder and Decoder Blocks

» Encoder and decoder blocks share two main components:
Self-Attention Layer
Feed Forward (Fully Connected Layer)

» The third component allows the decoder to focus on relevant parts of the input sentence:
Encoder-Decoder Attention

t
( Feed Forward
1 T
( Feed Forward ( Encoder-Decoder Attention )
Y | — 7}
( Self-Attention ( Self-Attention
i i

Figure: Components of the encoder and decoder blocks.

[Image source: https://jalammar.github.io/illustrated-transformer/]
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Flow of Vectors Through the Encoder

» Each input is encoded into a vector z; € R1X% (e.g. d, = 512).
» An encoder block takes an input vector and outputs a vector with the same dimension d,.

Figure: How vectors are processed in an encoder layer.

» The self-attention block operates on all inputs jointly.
» The feedforward block operates on each word separately.
» The vector of each word gets transformed to take into account the entire sentence.

[Adapted from: Foundations of Deep Learning (Hutter and Valada)]
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Self-Attention: Attention as Soft Retrieval from a Database

> Assume we have a list of keys K € RV*% 3 list of values V € RN *dv
and a single query ¢ € R X%,

» \We denote with b;, the i-th row vector of a matrix B € Rxd,

» Database retrieval: compare g to keys and try to find the exact match

k1 Vi
retrieval(q, K, V) = Zi\;l Lo—k, vs ka | va

» Attention: compare ¢ to keys and return weighted average of values
attention(q, K, V) = Ziil a; vi, kv | vy

where the weight is calculated by the softmax of the inner product:
exp (qk] /+/dy)
S exp (kT /VE)

[Adapted from: Foundations of Deep Learning (Hutter and Valada)]

a; =
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Self-Attention: Obtaining Keys, Values and Queries

Input Thinking Machines

x: [ X, [

e v e we > Linear mapping for key and query:
ns mnn : G =TS WO WK € Rtexi
ki = LL'iWK ’

Values WITT I W » Linear mapping for value:

V; = .TiWV with WV S RdeXdV
Figure: A self-attention block induces 3 trainable
weight matrices (W<, W5, W"), that linearly
transforms inputs x; to yield g;, ki and v;.

[Image source: https://jalammar.github.io/illustrated-transformer/|
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Self-Attention: Exemplary Calculation of Self-Attention

Input Thinking Machines
g x [EETT x [
Queries o OO0 e O
Keys « [ oo
Values Vi I:\:\:‘ V2 I:\:\:‘
Score qie ki= qie ke =

Divide by 8 ( v/ )

Softmax
Softmax
X vi [ v2
Value
Sum z z2

[Image source: https://jalammar.github.io/illustrated-transformer/|
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Self-Attention: Matrix Form

X we Q
. - - R 1. Calculate query, key and value for X € RV de:
* ‘ K =XW¥X e RNVXdk
H - - b Q=XW? ¢ RVN*%
X wy v V = XWV c RNXdV
) = 2. Calculate softmax attention scores row-wise:
T
A = softmax (QK ) € RVxN
a . Vdy
i} v " . m
. 3. Apply "soft retrieval”:
softmax( H:‘ Q; ) D:‘
Vi,
Z = AV € RNV
- HH

[Image source: https://jalammar.github.io/illustrated-transformer/|
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Figure: Single Attention Figure: Multi-headed Attention

» More heads might lead to better training dynamics as indicated in Michel et al. 2019.

[Image source: https://jalammar.github.io/illustrated-transformer/]
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Self-Attention: Multi-headed Attention

MPC and RL — Lecture
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Transformers
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5) Concatenate the resulting ” matrices,
then multiply with weight matrix to
produce the output of the layer

4) Calculate attention
using the resulting
Q/K/V matrices
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Finalizing the Encoder Block

”:,( Add & Normalize R Skip Connections (dashed lines):

( Feed Forward ) ( Feed Forward ) > Are Of the form y == layel"(x) + X
. it » Allow information to bypass intermediate layers

» No vanishing gradients and " network can choose its

own depth”
) LayerNorm:
Y, » Normalizes features based on all outputs of one layer
TREE & é » Leads to more stable and faster training
x [ pro |
Thinking Machines

[Image source: https://jalammar.github.io/illustrated-transformer/]
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Wrapping up the Encoder-Decoder Architecture

» Encoder and decoders are very similar.
» Decoders also have encoder-decoder attention layers.
» The encoder-decoder layers get the keys K and values V' from the last self-attention layer

of the encoder.
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v T Linear
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Autoregressive Inference of the Transformer
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[Image source: https://jalammar.github.io/illustrated-transformer/]
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Autoregressive Inference of the Transformer
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[Image source: https://jalammar.github.io/illustrated-transformer/]
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Autoregressive Inference of the Transformer
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[Image source: https://jalammar.github.io/illustrated-transformer/]
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Autoregressive Inference of the Transformer
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[Image source: https://jalammar.github.io/illustrated-transformer/]
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[Image source: Vaswani et al. 2017]
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Attention Masks in Transformers

queries
queries
queries

keys keys keys
Full attention Local attention Causal attention
‘l’—j|>A=>A,',j=0 j>i:>A;J=0

» Full attention: Quadratic complexity (’)(n2), used in Encoder architecture

» Local attention: Linear complexity O(n)

» Causal attention: Quadratic complexity O(ng), used in Decoder architecture:
Different to RNNs, this allows the Decoder to train on a whole sentence in parallel.
Predictions can only access past information preventing attention to future parts.

[Image source: https://fleuret.org/dlc/]

MPC and RL — Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg


https://fleuret.org/dlc/

Overview

Embedding

Multi-Head
Attention

Output
Probabilties

L —

Positional
Encoding

Inout
Embedding

Inputs

Gutput
Embedding

Outputs
(shifted right)

Positional
Encoding

Figure: Original Transformer

[Image source: Vaswani et al. 2017]

MPC and RL — Lecture 8: Transformers

J. Hoffmann and Y. Zha


https://arxiv.org/abs/1706.03762

Self-Attention is Permutation Invariant

» Given a permutation o and a matrix B € R%*?, we will use the following notation for the
permutation of the rows o(B); = B, ;).

» Remember the formula for attention was defined as
attention(q, K, V) = Ef\;l similarity(q, k;) v;.

» Due to summing up, it directly follows that the standard attention operation is
permutation invariant regarding K and V:

attention(q, o(K),o(V)) = attention(q, K, V)

» Thus, in general the attention can not see whether a word is the first one in a sentence!
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Adding positional Embeddings

» Add positional information into the embedding vector.

» This information can then be used by the query and key matrices.

EMBEDDING
WITH TIME

SGNAL i [T [T %]

POSITIONAL
ENCODING

EMBEDDINGS  xi [ x: [

INPUT Je suis
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How to embed words?

word_to_ix = {"hello": ®, “"world": 1}

embeds = nn.Embedding(2, 5) # 2 words in vocab, 5 dimensional embeddings
lookup_tensor = torch.tensor([word_to_ix["hello"]], dtype=torch.long)
hello_embed = embeds(lookup_tensor)

print(hello_embed)

Out:
tensor([[ 0.6614, 0.2669, @.0617, 0.6213, -0.4519]],

grad_fn=<EmbeddingBackwarde>)

Figure: For each possible integer value a vector is assigned.

» Each possible word or token gets an embedding vector = assigned.
» The embedding vectors are also optimized via backpropagation.

[Image source: PyTorch Embeddings Tutorial]
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Generative Pre-Trained Transformers (GPT)
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Figure: The GPT architecture consists out of the decoder part with slightly different skip connections.

@

Feed Forward I

» Simple architecture used for GPT1, GPT2, GPT3 and ChatGPT.

» The exercise is based on the GPT architecture.
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Vision Transformer

Vision Transformer (ViT) Transformer Encoder

Transformer Encoder ’
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Embedded
Figure: The vision transformer splits an image into patches that are handled as a sequence.

» The continuous input variables are only preprocessed by a linear projection.

[Image source: Dosovitskiy et al. 2021]
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Sequential decision-making: Trajectory Transformer

» With Transformer we can learn a world model that allows us to optimal decision making.
» The Trajectory Transformer treats Reinforcement Learning as a single sequence problem.

wee GG o EIGEDEDED - @I k) <o
1 T 1

[ Trajectory Transformer J

T T

Figure: The Trajectory Transformer treats each dimension of states and actions separately and
discretizes the state and action space.

> Optimization is done by conditioning on returns (the reward-to-go becomes an additional
input in the sequence).

» We then can ask the Trajectory Transformer to create state-action-reward trajectories that
have a high return.

[Janner et al. 2021]

MPC and RL — Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg


https://arxiv.org/pdf/2106.02039.pdf

Generalist agents: RT-2

» Transformer can flexibly handle multiple modalities like images, natural language or
control signals at the same time.
In robotics, Large Language Models (LLM) are now used regularly to encode task
description and allow to have a better understanding of the environment.

Internet-Scale VQA + Robot Action Data Vision-Language-Action Models for Robot Control Closed-Loop

Q: Wh Robot Control
Vhat is b rappening vow ot (Do o

n the

Agrey dunkey walks
down the street. 1"-
w0
xcmpmpti 0™
: BN

ﬁ Q: Wha n should lm robot
E T FT 0 t L
ARotation = [10} 25' -7'] Co-Fine-Tune

Figure: RT-2 is a novel vision-language-action (VLA) model that learns from both web and robotics
data and translates this knowledge into generalised instructions for robotic control.

Image source: Brohan et al. 2023
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Some Advantages and Disadvantages of Transformers

Advantages:

> State-of-the-Art Performance: Transformers have
achieved remarkable results in natural language

. .. guag Drawbacks:

processing as well as computer vision.

» Computational Complexity: Transformers can be

computationally expensive and memory-intensive,

limiting their scalability.

> Long-Range Dependencies: They handle
long-range dependencies well, making them
suitable for tasks that require capturing global
context. »> Data Requirements: Training Transformers often

requires large datasets as they have less inductive

» Multi-Modality Fusion: Transformers excel at bias

fusing information from different modalities like
images, language or time series data, making
them versatile in handling multi-modal data.
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Further Material

> The lllustrated Transformer (a lot of visualizations in this lecture are based on it):
https://jalammar.github.io/illustrated-transformer/

» Minimal GPT3 implementation (our exercise is based on this implementation):
https://github.com/karpathy/minGPT

» A clear algorithmic description for Transformers:
https://arxiv.org/abs/2207.09238
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