Model Predictive Control and Reinforcement Learning - Lecture 8: Transformers -

J. Hoffmann and Y . Zhang

University of Freiburg

October 9, 2023

universitätfreiburg

Rise of Transformers

- Transformers were introduced in the paper "Attention is All You Need" [Vaswani et al. 2017]
- They are now used everywhere from Reinforcement Learning, Computer Vision to Natural Language Processing.

Figure: Drastic increase in the number of transformer-based papers.

Motivating Example: Translation

e.g. Translation

Motivating Example: Text Generation (ChatGPT)

e.g. Text Generation

many to one
How do you generate the next word?

I generate the next word (or token) using a neural network-based language model. Here's a simplified overview of the process:

1. Input Context: I take in a sequence of words or tokens as context. This context can be a single sentence, a paragraph, or even a longer document. The context helps me understand the context and generate coherent responses.
2. Tokenization: I break down the input text into individual tokens (words or subwords) Tokenization helps me process the text at a granular level.
3. Neural Network Architecture: I use a deep neural network

Recurrent Neural Networks

Recurrent Neural Networks

$$
\begin{aligned}
h_{t} & =f_{h}\left(h_{t-1}, x_{t}\right) \\
\hat{y}_{t} & =f_{y}\left(h_{t}\right)
\end{aligned}
$$

Figure: Recurrent Neural Network

- Recurrent Neural Networks encode past information in their hidden state h.
- In theory, they can store information of arbitrary long sequences in h.
- However, they are are hard to train for long sequences (backprop through time).

Transformers are Autoregressive Models

Autoregressive Model

$$
\hat{y}_{t}=f\left(x_{t}, x_{t-1}, \ldots, x_{t-N}\right)
$$

Figure: Autoregressive Model

- An autoregressive model with block size N is a feedforward model which predicts the output \hat{y}_{t} based on the last N previous variables $x_{t-1}, x_{t-2}, \ldots x_{t-N}$.
- Often a prediction \hat{y}_{t} is the next steps input, $\hat{y}_{t}=x_{t+1}$, thus the term autoregressive.
- Assumption: Our prediction \hat{y}_{t} is independent of $\left\{x_{i} \mid i<t-N\right\}$!

Overview

1 Transformer

2 Attention Masks

3 Embedding

4 Applications

Figure: Original Transformer

Overview

1 Transformer

2 Attention Masks

3 Embedding

4 Applications

Figure: Original Transformer

High-Level View of the Encoder-Decoder Architecture

Figure: The encoder-decoder transformer architecture was designed for translation tasks.

- Encoder (decoder) blocks share the same architecture but have different trainable weights.

Zooming into the Encoder and Decoder Blocks

- Encoder and decoder blocks share two main components:
- Self-Attention Layer
- Feed Forward (Fully Connected Layer)
- The third component allows the decoder to focus on relevant parts of the input sentence:
- Encoder-Decoder Attention

Figure: Components of the encoder and decoder blocks.

Flow of Vectors Through the Encoder

- Each input is encoded into a vector $x_{i} \in \mathbb{R}^{1 \times d_{\mathrm{e}}}$ (e.g. $d_{\mathrm{e}}=512$).
- An encoder block takes an input vector and outputs a vector with the same dimension d_{e}.

Figure: How vectors are processed in an encoder layer.

- The self-attention block operates on all inputs jointly.
- The feedforward block operates on each word separately.
- The vector of each word gets transformed to take into account the entire sentence.
[Adapted from: Foundations of Deep Learning (Hutter and Valada)]

Self-Attention: Attention as Soft Retrieval from a Database

- Assume we have a list of keys $K \in \mathbb{R}^{N \times d_{\mathrm{k}}}$, a list of values $V \in \mathbb{R}^{N \times d_{\mathrm{v}}}$ and a single query $q \in \mathbb{R}^{1 \times d_{\mathrm{k}}}$.
- We denote with b_{i}, the i-th row vector of a matrix $B \in \mathbb{R}^{\mathrm{d} \times \mathrm{d}}$.
- Database retrieval: compare q to keys and try to find the exact match

$$
\operatorname{retrieval}(q, K, V)=\sum_{i=1}^{N} \mathbb{1}_{q=k_{i}} v_{i}
$$

- Attention: compare q to keys and return weighted average of values

$$
\operatorname{attention}(q, K, V)=\sum_{i=1}^{N} a_{i} v_{i}
$$

k_{1}	v_{1}
k_{2}	v_{2}
\cdot	\cdot
\cdot	\cdot
\cdot	\cdot
k_{N}	v_{N}

where the weight is calculated by the softmax of the inner product:

$$
a_{i}=\frac{\exp \left(q k_{i}^{T} / \sqrt{d_{k}}\right)}{\sum_{j=1}^{N} \exp \left(q k_{j}^{T} / \sqrt{d_{k}}\right)} .
$$

Self-Attention: Obtaining Keys, Values and Queries

- Linear mapping for key and query:

$$
\begin{aligned}
& q_{i}:=x_{i} W^{Q} \\
& k_{i}:=x_{i} W^{K} \quad \text { with } W^{Q}, W^{K} \in \mathbb{R}^{d_{\mathrm{e}} \times d_{\mathrm{k}}}
\end{aligned}
$$

- Linear mapping for value:

$$
v_{i}:=x_{i} W^{V} \quad \text { with } W^{V} \in \mathbb{R}^{d_{\mathrm{e}} \times d_{\mathrm{v}}}
$$

Figure: A self-attention block induces 3 trainable weight matrices $\left(W^{Q}, W^{K}, W^{V}\right)$, that linearly transforms inputs x_{i} to yield q_{i}, k_{i} and v_{i}.

Self-Attention: Exemplary Calculation of Self-Attention

Input	Thinking	Machines
Embedding	$\mathrm{x}_{1} \square 1 \pm$	$x_{2} \square \square \square$
Queries	$\mathrm{q}_{1} \square \square$	$\mathrm{q}_{2} \square \square$
Keys	$\mathrm{k}_{1} \quad \square$	$\mathrm{k}_{2} \square \square$
Values	$\mathrm{v}_{1} \square \square$	$\mathrm{v}_{2} \square$
Score	$\mathrm{q}_{1} \cdot \mathrm{k}_{1}=112$	$\mathrm{q}_{1} \cdot \mathrm{k}_{2}=96$
Divide by $8\left(\sqrt{d_{k}}\right)$	14	12
Softmax	0.88	0.12
$\begin{aligned} & \text { Softmax } \\ & X \\ & \text { Value } \end{aligned}$	$\mathrm{v}_{1} \square \square$	$\mathrm{v}_{2} \square$
sum	$z_{1} \quad \square \square$	$\mathrm{z}_{2} \square \square$

[Image source: https://jalammar.github.io/illustrated-transformer/]

Self-Attention: Matrix Form

1. Calculate query, key and value for $X \in \mathbb{R}^{N \times d_{\mathrm{e}}}$:

$$
\begin{aligned}
K & =X W^{K} \in \mathbb{R}^{N \times d_{\mathrm{k}}} \\
Q & =X W^{Q} \in \mathbb{R}^{N \times d_{\mathrm{k}}} \\
V & =X W^{V} \in \mathbb{R}^{N \times d_{\mathrm{v}}}
\end{aligned}
$$

2. Calculate softmax attention scores row-wise:

$$
A=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) \in \mathbb{R}^{N \times N}
$$

3. Apply "soft retrieval":

$$
Z=A V \in \mathbb{R}^{N \times d_{\mathrm{v}}}
$$

[Image source: https://jalammar.github.io/illustrated-transformer/]

Self-Attention: Attending to more than one concept?

Figure: Single Attention

Figure: Multi-headed Attention

- More heads might lead to better training dynamics as indicated in Michel et al. 2019.

Self-Attention: Multi-headed Attention

```
1) This is our 2) We embed
input sentence* each word*
```

3) Split into 8 heads.

We multiply X or
R with weight matrices

Thinking
Machines

* In all encoders other than \#0, we don't need embedding. We start directly with the output of the encoder right below this one

4) Calculate attention using the resulting Q/K/V matrices
5) Concatenate the resulting Z matrices, then multiply with weight matrix W^{0} to produce the output of the layer

$\mathrm{W}_{1} \mathrm{Q}$

...
$W_{7}{ }^{Q}$

...

...

Finalizing the Encoder Block

Skip Connections (dashed lines):

- Are of the form $y=\operatorname{layer}(x)+x$
- Allow information to bypass intermediate layers
- No vanishing gradients and "network can choose its own depth"

LayerNorm:

- Normalizes features based on all outputs of one layer
- Leads to more stable and faster training

Wrapping up the Encoder-Decoder Architecture

- Encoder and decoders are very similar.
- Decoders also have encoder-decoder attention layers.
- The encoder-decoder layers get the keys K and values V from the last self-attention layer of the encoder.

Autoregressive Inference of the Transformer

Decoding time step: 1 (2) 3456 OUTPUT ।

[Image source: https://jalammar.github.io/illustrated-transformer/]

Autoregressive Inference of the Transformer

```
Decoding time step: 12 (3) 456
OUTPUT
I am
```


[Image source: https://jalammar.github.io/illustrated-transformer/]

Autoregressive Inference of the Transformer

Decoding time step: 123 (4)56
OUTPUT I am a

[Image source: https://jalammar.github.io/illustrated-transformer/]

Autoregressive Inference of the Transformer

Decoding time step: 12 | | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | OUTPUT | | |

Overview

1 Transformer

2 Attention Masks

3 Embedding

4 Applications

Figure: Original Transformer

Attention Masks in Transformers

Full attention

Local attention

$$
|i-j|>\Delta \Rightarrow A_{i, j}=0
$$

Causal attention
$j>i \Rightarrow A_{i, j}=0$

- Full attention: Quadratic complexity $\mathcal{O}\left(n^{2}\right)$, used in Encoder architecture
- Local attention: Linear complexity $\mathcal{O}(n)$
- Causal attention: Quadratic complexity $\mathcal{O}\left(n^{2}\right)$, used in Decoder architecture:
$>$ Different to RNNs, this allows the Decoder to train on a whole sentence in parallel.
$>$ Predictions can only access past information preventing attention to future parts.

Overview

1 Transformer

2 Attention Masks

3 Embedding

4 Applications

Figure: Original Transformer

Self-Attention is Permutation Invariant

- Given a permutation σ and a matrix $B \in \mathbb{R}^{d \times d}$, we will use the following notation for the permutation of the rows $\sigma(B)_{i}=B_{\sigma(i)}$.
- Remember the formula for attention was defined as

$$
\operatorname{attention}(q, K, V)=\sum_{i=1}^{N} \operatorname{similarity}\left(q, k_{i}\right) v_{i} .
$$

- Due to summing up, it directly follows that the standard attention operation is permutation invariant regarding K and V :

$$
\operatorname{attention}(q, \sigma(K), \sigma(V))=\operatorname{attention}(q, K, V)
$$

- Thus, in general the attention can not see whether a word is the first one in a sentence!

Adding positional Embeddings

- Add positional information into the embedding vector.
- This information can then be used by the query and key matrices.

How to embed words?

word_to_ix = \{"hello": 0, "world": 1\}
embeds $=\mathbf{n n}$.Embedding $(2,5)$ \# 2 words in vocab, 5 dimensional embeddings
lookup_tensor $=$ torch.tensor([word_to_ix["hello"]], dtype=torch.long)
hello_embed $=$ embeds(lookup_tensor)
print(hello_embed)

Out:
tensor([[0.6614, 0.2669, 0.0617, 0.6213, -0.4519]], grad_fn=<EmbeddingBackward0>)

Figure: For each possible integer value a vector is assigned.

- Each possible word or token gets an embedding vector x assigned.
- The embedding vectors are also optimized via backpropagation.

Overview

1 Transformer

2 Attention Masks

3 Embedding

4 Applications

Figure: Original Transformer

Generative Pre-Trained Transformers (GPT)

Figure: The GPT architecture consists out of the decoder part with slightly different skip connections.

- Simple architecture used for GPT1, GPT2, GPT3 and ChatGPT.
- The exercise is based on the GPT architecture.

Vision Transformer

Figure: The vision transformer splits an image into patches that are handled as a sequence.

- The continuous input variables are only preprocessed by a linear projection.

Sequential decision-making: Trajectory Transformer

- With Transformer we can learn a world model that allows us to optimal decision making.
- The Trajectory Transformer treats Reinforcement Learning as a single sequence problem.

Figure: The Trajectory Transformer treats each dimension of states and actions separately and discretizes the state and action space.

- Optimization is done by conditioning on returns (the reward-to-go becomes an additional input in the sequence).
- We then can ask the Trajectory Transformer to create state-action-reward trajectories that have a high return.

Generalist agents: RT-2

- Transformer can flexibly handle multiple modalities like images, natural language or control signals at the same time.
- In robotics, Large Language Models (LLM) are now used regularly to encode task description and allow to have a better understanding of the environment.

Internet-Scale VQA + Robot Action Data

Figure: RT-2 is a novel vision-language-action (VLA) model that learns from both web and robotics data and translates this knowledge into generalised instructions for robotic control.

Some Advantages and Disadvantages of Transformers

Advantages:

- State-of-the-Art Performance: Transformers have achieved remarkable results in natural language processing as well as computer vision.
- Long-Range Dependencies: They handle long-range dependencies well, making them suitable for tasks that require capturing global context.
- Multi-Modality Fusion: Transformers excel at fusing information from different modalities like images, language or time series data, making them versatile in handling multi-modal data.

Drawbacks:

- Computational Complexity: Transformers can be computationally expensive and memory-intensive, limiting their scalability.
- Data Requirements: Training Transformers often requires large datasets as they have less inductive bias.

Further Material

- The Illustrated Transformer (a lot of visualizations in this lecture are based on it): https://jalammar.github.io/illustrated-transformer/
- Minimal GPT3 implementation (our exercise is based on this implementation): https://github.com/karpathy/minGPT
- A clear algorithmic description for Transformers:
https://arxiv.org/abs/2207.09238

