
Model Predictive Control and Reinforcement Learning

– Lecture 8: Transformers –

J. Hoffmann and Y. Zhang

University of Freiburg

October 9, 2023



Rise of Transformers

▶ Transformers were introduced in the paper “Attention is All You Need” [Vaswani et al. 2017]

▶ They are now used everywhere from Reinforcement Learning, Computer Vision to Natural
Language Processing.

Figure: Drastic increase in the number of transformer-based papers.

[Image source: Khan et al. 2021]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 1

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2101.01169


Motivating Example: Translation

many to many

e.g. Translation

[Credit: nvidia]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 2



Motivating Example: Text Generation (ChatGPT)

many to one

e.g. Text Generation

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 3



Recurrent Neural Networks

Figure: Recurrent Neural Network

Recurrent Neural Networks

ht = fh(ht−1, xt)

ŷt = fy(ht)

▶ Recurrent Neural Networks encode past information in their hidden state h.

▶ In theory, they can store information of arbitrary long sequences in h.

▶ However, they are are hard to train for long sequences (backprop through time).

[Image source: Geiger 2022]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 4

https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-vision/lectures/deep-learning/


Transformers are Autoregressive Models

Figure: Autoregressive Model

Autoregressive Model

ŷt = f(xt, xt−1, . . . , xt−N )

▶ An autoregressive model with block size N is a feedforward model which predicts the
output ŷt based on the last N previous variables xt−1, xt−2, . . . xt−N .

▶ Often a prediction ŷt is the next steps input, ŷt = xt+1, thus the term autoregressive.

▶ Assumption: Our prediction ŷt is independent of {xi | i < t−N}!
[Definition and image source: Geiger 2022]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 5

https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-vision/lectures/deep-learning/


Overview

1 Transformer

2 Attention Masks

3 Embedding

4 Applications

Figure: Original Transformer

[Image source: Vaswani et al. 2017]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 6

https://arxiv.org/abs/1706.03762


Overview

1 Transformer

2 Attention Masks

3 Embedding

4 Applications

Figure: Original Transformer

[Image source: Vaswani et al. 2017]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 7

https://arxiv.org/abs/1706.03762


High-Level View of the Encoder-Decoder Architecture

Figure: The encoder-decoder transformer architecture was designed for translation tasks.

▶ Encoder (decoder) blocks share the same architecture but have different trainable weights.

[Image source: https://jalammar.github.io/illustrated-transformer/]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 8

https://jalammar.github.io/illustrated-transformer/


Zooming into the Encoder and Decoder Blocks

▶ Encoder and decoder blocks share two main components:
▶ Self-Attention Layer
▶ Feed Forward (Fully Connected Layer)

▶ The third component allows the decoder to focus on relevant parts of the input sentence:
▶ Encoder-Decoder Attention

Figure: Components of the encoder and decoder blocks.

[Image source: https://jalammar.github.io/illustrated-transformer/]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 9

https://jalammar.github.io/illustrated-transformer/


Flow of Vectors Through the Encoder

▶ Each input is encoded into a vector xi ∈ R1×de (e.g. de = 512).
▶ An encoder block takes an input vector and outputs a vector with the same dimension de.

Figure: How vectors are processed in an encoder layer.

▶ The self-attention block operates on all inputs jointly.
▶ The feedforward block operates on each word separately.
▶ The vector of each word gets transformed to take into account the entire sentence.

[Adapted from: Foundations of Deep Learning (Hutter and Valada)]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 10

https://ml.informatik.uni-freiburg.de/teaching/


Self-Attention: Attention as Soft Retrieval from a Database

▶ Assume we have a list of keys K ∈ RN×dk , a list of values V ∈ RN×dv

and a single query q ∈ R1×dk .

▶ We denote with bi, the i-th row vector of a matrix B ∈ Rd×d.

▶ Database retrieval: compare q to keys and try to find the exact match

retrieval(q,K, V ) =
∑N

i=1 1q=ki
vi

▶ Attention: compare q to keys and return weighted average of values

attention(q,K, V ) =
∑N

i=1 ai vi,

where the weight is calculated by the softmax of the inner product:

ai =
exp

(
qkTi /

√
dk

)
∑N

j=1 exp
(
qkTj /

√
dk

) .

k1 v1
k2 v2
. .
. .
. .
kN vN

[Adapted from: Foundations of Deep Learning (Hutter and Valada)]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 11

https://ml.informatik.uni-freiburg.de/teaching/


Self-Attention: Obtaining Keys, Values and Queries

Figure: A self-attention block induces 3 trainable
weight matrices

(
WQ,WK ,WV

)
, that linearly

transforms inputs xi to yield qi, ki and vi.

▶ Linear mapping for key and query:

qi := xiW
Q

ki := xiW
K with WQ,WK ∈ Rde×dk

▶ Linear mapping for value:

vi := xiW
V with WV ∈ Rde×dv

[Image source: https://jalammar.github.io/illustrated-transformer/]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 12

https://jalammar.github.io/illustrated-transformer/


Self-Attention: Exemplary Calculation of Self-Attention

[Image source: https://jalammar.github.io/illustrated-transformer/]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 13

https://jalammar.github.io/illustrated-transformer/


Self-Attention: Matrix Form

1. Calculate query, key and value for X ∈ RN×de :

K = XWK ∈ RN×dk

Q = XWQ ∈ RN×dk

V = XWV ∈ RN×dv

2. Calculate softmax attention scores row-wise:

A = softmax

(
QKT

√
dk

)
∈ RN×N

3. Apply ”soft retrieval”:

Z = AV ∈ RN×dv

[Image source: https://jalammar.github.io/illustrated-transformer/]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 14

https://jalammar.github.io/illustrated-transformer/


Self-Attention: Attending to more than one concept?

Figure: Single Attention Figure: Multi-headed Attention

▶ More heads might lead to better training dynamics as indicated in Michel et al. 2019.

[Image source: https://jalammar.github.io/illustrated-transformer/]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 15

https://proceedings.neurips.cc/paper_files/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://jalammar.github.io/illustrated-transformer/


Self-Attention: Multi-headed Attention

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 16



Finalizing the Encoder Block

Skip Connections (dashed lines):

▶ Are of the form y = layer(x) + x

▶ Allow information to bypass intermediate layers

▶ No vanishing gradients and ”network can choose its
own depth”

LayerNorm:

▶ Normalizes features based on all outputs of one layer

▶ Leads to more stable and faster training

[Image source: https://jalammar.github.io/illustrated-transformer/]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 17

https://jalammar.github.io/illustrated-transformer/


Wrapping up the Encoder-Decoder Architecture

▶ Encoder and decoders are very similar.
▶ Decoders also have encoder-decoder attention layers.
▶ The encoder-decoder layers get the keys K and values V from the last self-attention layer

of the encoder.

[Image source: https://jalammar.github.io/illustrated-transformer/]MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 18

https://jalammar.github.io/illustrated-transformer/


Autoregressive Inference of the Transformer

[Image source: https://jalammar.github.io/illustrated-transformer/]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 19

https://jalammar.github.io/illustrated-transformer/


Autoregressive Inference of the Transformer

[Image source: https://jalammar.github.io/illustrated-transformer/]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 20

https://jalammar.github.io/illustrated-transformer/


Autoregressive Inference of the Transformer

[Image source: https://jalammar.github.io/illustrated-transformer/]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 21

https://jalammar.github.io/illustrated-transformer/


Autoregressive Inference of the Transformer

[Image source: https://jalammar.github.io/illustrated-transformer/]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 22

https://jalammar.github.io/illustrated-transformer/


Overview

1 Transformer

2 Attention Masks

3 Embedding

4 Applications

Figure: Original Transformer

[Image source: Vaswani et al. 2017]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 23

https://arxiv.org/abs/1706.03762


Attention Masks in Transformers

▶ Full attention: Quadratic complexity O(n2), used in Encoder architecture
▶ Local attention: Linear complexity O(n)
▶ Causal attention: Quadratic complexity O(n2), used in Decoder architecture:

▶ Different to RNNs, this allows the Decoder to train on a whole sentence in parallel.
▶ Predictions can only access past information preventing attention to future parts.

[Image source: https://fleuret.org/dlc/]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 24

https://fleuret.org/dlc/


Overview

1 Transformer

2 Attention Masks

3 Embedding

4 Applications

Figure: Original Transformer

[Image source: Vaswani et al. 2017]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 25

https://arxiv.org/abs/1706.03762


Self-Attention is Permutation Invariant

▶ Given a permutation σ and a matrix B ∈ Rd×d, we will use the following notation for the
permutation of the rows σ(B)i = Bσ(i).

▶ Remember the formula for attention was defined as

attention(q,K, V ) =
∑N

i=1 similarity(q, ki) vi.

▶ Due to summing up, it directly follows that the standard attention operation is
permutation invariant regarding K and V :

attention(q, σ(K), σ(V )) = attention(q,K, V )

▶ Thus, in general the attention can not see whether a word is the first one in a sentence!

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 26



Adding positional Embeddings

▶ Add positional information into the embedding vector.

▶ This information can then be used by the query and key matrices.

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 27



How to embed words?

Figure: For each possible integer value a vector is assigned.

▶ Each possible word or token gets an embedding vector x assigned.

▶ The embedding vectors are also optimized via backpropagation.

[Image source: PyTorch Embeddings Tutorial]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 28

https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html


Overview

1 Transformer

2 Attention Masks

3 Embedding

4 Applications

Figure: Original Transformer

[Image source: Vaswani et al. 2017]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 29

https://arxiv.org/abs/1706.03762


Generative Pre-Trained Transformers (GPT)

Figure: The GPT architecture consists out of the decoder part with slightly different skip connections.

▶ Simple architecture used for GPT1, GPT2, GPT3 and ChatGPT.

▶ The exercise is based on the GPT architecture.

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 30



Vision Transformer

Figure: The vision transformer splits an image into patches that are handled as a sequence.

▶ The continuous input variables are only preprocessed by a linear projection.

[Image source: Dosovitskiy et al. 2021]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 31

https://browse.arxiv.org/pdf/2010.11929v2.pdf


Sequential decision-making: Trajectory Transformer

▶ With Transformer we can learn a world model that allows us to optimal decision making.
▶ The Trajectory Transformer treats Reinforcement Learning as a single sequence problem.

Figure: The Trajectory Transformer treats each dimension of states and actions separately and
discretizes the state and action space.

▶ Optimization is done by conditioning on returns (the reward-to-go becomes an additional
input in the sequence).

▶ We then can ask the Trajectory Transformer to create state-action-reward trajectories that
have a high return.

[Janner et al. 2021]

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 32

https://arxiv.org/pdf/2106.02039.pdf


Generalist agents: RT-2

▶ Transformer can flexibly handle multiple modalities like images, natural language or
control signals at the same time.

▶ In robotics, Large Language Models (LLM) are now used regularly to encode task
description and allow to have a better understanding of the environment.

Figure: RT-2 is a novel vision-language-action (VLA) model that learns from both web and robotics
data and translates this knowledge into generalised instructions for robotic control.

[Image source: Brohan et al. 2023]
MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 33

https://robotics-transformer2.github.io/


Some Advantages and Disadvantages of Transformers

Advantages:

▶ State-of-the-Art Performance: Transformers have
achieved remarkable results in natural language
processing as well as computer vision.

▶ Long-Range Dependencies: They handle
long-range dependencies well, making them
suitable for tasks that require capturing global
context.

▶ Multi-Modality Fusion: Transformers excel at
fusing information from different modalities like
images, language or time series data, making
them versatile in handling multi-modal data.

Drawbacks:

▶ Computational Complexity: Transformers can be
computationally expensive and memory-intensive,
limiting their scalability.

▶ Data Requirements: Training Transformers often
requires large datasets as they have less inductive
bias.

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 34



Further Material

▶ The Illustrated Transformer (a lot of visualizations in this lecture are based on it):
https://jalammar.github.io/illustrated-transformer/

▶ Minimal GPT3 implementation (our exercise is based on this implementation):
https://github.com/karpathy/minGPT

▶ A clear algorithmic description for Transformers:
https://arxiv.org/abs/2207.09238

MPC and RL – Lecture 8: Transformers J. Hoffmann and Y. Zhang, University Freiburg 35

https://jalammar.github.io/illustrated-transformer/
https://github.com/karpathy/minGPT
https://arxiv.org/abs/2207.09238

	Transformer
	Attention Masks
	Embedding
	Applications

