Model Predictive Control and Reinforcement Learning

— On- and Off-Policy RL with Function Approximation —

Joschka Boedecker and Moritz Diehl

University Freiburg

October 6, 2023

universitatfreiburg

Lecture Overview

Function Approximation in Reinforcement Learning

Linear Methods

On-policy Control with Function Approximation

Off-policy Learning

Problems of Off-policy Learning with Function Approximation

[@ Deep Q-learning

MPC and RL J. Boedecker and M. Diehl, University Freiburg 1

Acknowledgement

Slide contents are partially based on Reinforcement Learning: An Introduction by Sutton and
Barto and the Reinforcement Learning lecture by David Silver.

MPC and RL J. Boedecker and M. Diehl, University Freiburg 2

Lecture Overview

Function Approximation in Reinforcement Learning

MPC and RL J. Boedecker and M. Diehl, University Freiburg 3

Function Approximation in Reinforcement Learning

MPC and RL

Up to this point, we represented all elements of our RL systems by tables (value functions,
models and policies)

If the state and action spaces are very large or infinite, this is not a feasible solution

We can apply function approximation to find a more compact representation of RL
components and to generalize over states and actions

Reinforcement Learning with function approximation comes with new issues that do not
arise in Supervised Learning — such as non-stationarity, bootstrapping and delayed targets

J. Boedecker and M. Diehl, University Freiburg

Function Approximation in Reinforcement Learning

> Here: we estimate value-functions v, (-) and ¢, (+,-) by function approximators ¥(-,w) and
(-, -, w), parameterized by weights w

St St ag

| N |
A A A
| | —

lA](st,W) Q(Stvatiw) Q(St7a17w) (j(st’ao’w) (j(st,a2,w)

» But we can also represent models or policies

MPC and RL J. Boedecker and M. Diehl, University Freiburg 5

Function Approximation in Reinforcement Learning

We can use different types of function approximators:
» Linear combinations of features
» Neural networks
» Decision trees
» Gaussian processes
» Nearest neighbor methods
> ..

Here: We focus on differentiable FAs and update the weights via gradient descent.

MPC and RL J. Boedecker and M. Diehl, University Freiburg 6

Function Approximation in Reinforcement Learning

We want to update our weights w.r.t. the Mean Squared Value Error of our prediction:

1 .
Wil = Wi — iaV[Uﬂ(St) — U(St,Wt)]2
= Wy + CK[UW(St) — ’i)(St7 Wt)]v’[}(St, Wt)

However, we don't have v, (S;).

MPC and RL J. Boedecker and M. Diehl, University Freiburg 7

Function Approximation in Reinforcement Learning

Gradient MC

w — W + a[Gy — 0(S, W)V (S, w)

Semi-gradient TD(0)
W W+ a[Ry 1 + v0(Stq1, W) — 0(St, w)|VO(Se, W)

MPC and RL J. Boedecker and M. Diehl, University Freiburg 8

Lecture Overview

Linear Methods

MPC and RL J. Boedecker and M. Diehl, University Freiburg 9

Linear Methods

> Represent state s by feature vector x(s) = (z1(s),22(s),...,2%(s)) "
> These features can also be non-linear functions/combinations of state dimensions
» Linear methods approximate the value function by a linear combination of these features

d
(s, w) =w'x(s) = Zwlacl(s)
i=1
Therefore, Vi 0(s, w) = x(s)

Gradient MC prediction converges under linear FA

On-policy linear semi-gradient TD(0) is stable

vvyyvYyy

Unfortunately, this does not hold for non-linear FA

MPC and RL J. Boedecker and M. Diehl, University Freiburg 10

Fixed point of on-policy linear semi-gradient TD

» The update at each time step t is:

T T
Wil = Wi + « (Rt+1 + YWy X1 — Wy Xt) Xt

=w; +a« (RtJrlxt — x¢(xp — 'yXHl)TWt)
» The expected next weight vector can thus be written:
E[wii1|wi] = wi + a(b — Awy),

where b = E[R;;1%;] and A = E[x;(x; — yX¢11) "]

» If the system converges, it has to converge to the fixed point:

WD = A7 'b

MPC and RL J. Boedecker and M. Diehl, University Freiburg 11

Least Squares TD

» Recall the fixed point: wip = A™'b
» Why don't we calculate A and b directly?
» LSTD does exactly that:

t—1 t—1
At = Zxk(xk — ’}/X].H_l)—r + el and bt = ZRk'HXk
k=0 k=0

» LSTD is more data-efficient, but also has quadratic runtime (compared to semi-gradient
TD(0) — which is linear)

MPC and RL J. Boedecker and M. Diehl, University Freiburg 12

Least Squares TD

LSTD for estimating o = w'x(-) ~ v, (O(d?) version)

Input: feature representation x : 8% — R¢ such that x(terminal) = 0
Algorithm parameter: small € > 0

Al 1 A d x d matrix
b+ 0 A d-dimensional vector
Loop for each episode:
Initialize S; x < x(5)
Loop for each step of episode:
Choose and take action A ~ 7(-|.S), observe R, S"; x’ + x(S")
vV X\—l—r(x —yx')
A1l A1 (FX)VT/(l +v'x)
b+ b+ Rx
w« A b
S+ 8 x+x
until S’ is terminal

MPC and RL J. Boedecker and M. Diehl, University Freiburg 13

Coarse Coding

Divide the state space in circles/tiles/shapes and check in which some state is inside. This is a
binary representation of the location of a state and leads to generalization.

Irregular

Log stripes Diagonal stripes
Tl I S -
Tiling 3 ;
. Tiling 4 ol NN RN .
Continuous Hine h i Four active
! " tiles/features
2D state kel i i i |- overlap the point
pac] | and are used to
Point in I St B s o represent it
state space ~ ! ! 1 -
tobe S S s L
represented

MPC and RL

J. Boedecker and M. Diehl, University Freiburg

Lecture Overview

On-policy Control with Function Approximation

MPC and RL J. Boedecker and M. Diehl, University Freiburg 15

On-policy Control with Function Approximation

» Again, up to this point we discussed Policy Evaluation based on state value functions

» In order to apply FA in control, we parameterize the action-value function

Semi-gradient SARSA

W W + a[Rit1 + YG(St41, Arg1, W) — G(St, A, W)V G(S, A, w)

MPC and RL J. Boedecker and M. Diehl, University Freiburg 16

Semi-gradient SARSA

MPC and RL

Episodic Semi-gradient Sarsa for Estimating ¢ ~ q.

Input: a differentiable action-value function parameterization ¢ : 8§ x A x R* — R
Algorithm parameters: step size a > 0, small € > 0
Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
S, A + initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If S’ is terminal:
w <« w+a[R— (S, A,w)|V§(S, A,w)
Go to next episode
Choose A’ as a function of ¢(5',-,w) (e.g., e-greedy)
W w+a[R+74(S", A, w) — 4(S, A, w)|Vi(S, A, w)
S5
A A

J. Boedecker and M. Diehl, University Freiburg

Semi-gradient SARSA

MOUNTAIN CAR Goal .

Figure 10.1: The Mountain Car task (upper left pancl) and the cost-to-go function
(= max, §(s,a, w)) learned during one run

MPC and RL J. Boedecker and M. Diehl, University Freibu

Semi-gradient SARSA

MPC and RL

Mountain Car
Steps per episode

log scale
averaged over 100 runs

1000

400

200

100

l
0 500

Episode

J. Boedecker and M. Diehl, University Freiburg 19

Lecture Overview

Off-policy Learning

MPC and RL J. Boedecker and M. Diehl, University Freiburg

Off-policy Learning

» We want to learn the optimal policy, but we have to account for the problem of
maintaining exploration

» We call the (optimal) policy to be learned the target policy m and the policy used to
generate behaviour the behaviour policy b

> We say that learning is from data off the target policy — thus, those methods are referred
to as off-policy learning

MPC and RL J. Boedecker and M. Diehl, University Freiburg 21

Importance Sampling

» Weight returns according to the relative probability of target and behaviour policy

> Define state-transition probabilities p(s'|s, a) as
p(s'[s,a) = Pr{S; = §'|S;_1 =8, A1 =a} =) cpp(sr|s,a)
» The probability of the subsequent trajectory under any policy =, starting in S, then is:

Pr{At, St+17 At+17 ce ST|St7 Aproq ~ 7T}
= m(Ae|St)p(St+1St, Ae)m (A1 Ses1) -+ p(ST|ST—1, AT—1)

T-1
= H 7 (Ak|Sk)p(Sk+1|Sk, Ak)
k=t

MPC and RL J. Boedecker and M. Diehl, University Freiburg 22

Importance Sampling

The relative probability therefore is:

Definition: Importance Sampling Ratio

i = sz_tl 7(Ak|Sk)P(Sk+1|Sk, Ak) _ Hfz_tl 7(Ag|Sk)

rr b(Ak|Sk)D(Skt1|Sk, Ax) T b(AR|Sk)

The expectation of the returns by b is E[G;|S; = s] = vy(s). However, we want to estimate the
expectation under 7. Given the importance sampling ratio, we can transform the MC returns
by b to yield the expectation under 7:

Elpt.r—1G| St = s| = vx(s).

Importance Sampling can come with a vast increase in variance.

MPC and RL J. Boedecker and M. Diehl, University Freiburg 23

Off-policy MC Prediction and Semi-gradient TD(0)

To use importance sampling with function approximation, replace the update to an array to an
update to weight vector w, and correct it with the importance sampling weight.

Off-policy MC Prediction
W — W+ apt;Tfl[Gt — @(St, W)]VIA)(St, W)

Semi-gradient Off-policy TD(0)

W < W+ ap:6:V(Ss, W)
where 6; = Ry + ’yﬁ(St_;,_l, W) = @(St,w)

MPC and RL J. Boedecker and M. Diehl, University Freiburg 24

Lecture Overview

Problems of Off-policy Learning with Function Approximation

MPC and RL J. Boedecker and M. Diehl, University Freiburg 25

Baird's Counterexample

<« - >

e
\ \ :! : /‘/ (solid]) = 1

b(dashed|-) = 6/7
b(solid|-) =1/7
\ -
\ Prd
\ g
\\

~ =0.99

The reward is 0 for all transitions, hence v;(s) = 0. This could be exactly approximated by
w = 0.
MPC and RL

J. Boedecker and M. Diehl, University Freiburg

Baird's Counterexample

Semi-gradient DP

W W+ 157> e s (B[R + 70(Ses1, W)|St = s] — 0(s, w)) Vi (s, w)

Semi-gradient Off-policy TD

Semi-gradient DP

W1—We

1000
Sweeps

MPC and RL J. Boedecker and M. Diehl, University Freiburg

The Deadly Triad

The combination of
» Function Approximation,
» Bootstrapping and

» Off-policy Learning
is known as the Deadly Triad, since it can lead to stability issues and divergence.

MPC and RL J. Boedecker and M. Diehl, University Freiburg

Lecture Overview

[@ Deep Q-learning

MPC and RL J. Boedecker and M. Diehl, University Freiburg 29

Neural Fitted-Q Iteration (NFQ) [Riedmiller 2005]

» Model-free off-policy RL algorithm that works on continuous state and discrete action
spaces

» Q-function is represented by a multi-layer perceptron
» One of the first approaches that combined RL with ANNSs, predecessor of DQN

MPC and RL J. Boedecker and M. Diehl, University Freiburg 30

Neural Fitted-Q Iteration (NFQ) [Riedmiller 2005]

for iterationi=1,..,N do

sample trajectory with e-greedy exploration and add to memory D
initialize network weights randomly

generate pattern set P = {(z;,y;)|j = 1..|D|} with

T if 5; is terminal
73 = (85,05) and y; = 7 +ymax, Q(sj41,a’,w;) else
for iteration k =1,.., K do

Fit weights according to:
|D]

Liwi) T D& Z Qwj, wi))?

end

end
Algorithm 1: NFQ

MPC and RL J. Boedecker and M. Diehl, University Freiburg

Deep Q-Networks (DQN)

DQN provides a stable solution to deep RL:
> Use experience replay (as in NFQ)
» Sample minibatches (as opposed to Full Batch in NFQ)
> Freeze target Q-networks (no target networks in NFQ)
» Optional: Clip rewards or normalize network adaptively to sensible range

MPC and RL J. Boedecker and M. Diehl, University Freiburg 32

Deep Q-Networks: Experience Replay

To remove correlations, build data set from agent's own experience
» Take action a; according to e-greedy policy
» Store transition (s, at,T¢41, St41) in replay memory D
» Sample random mini-batch of transitions (s, a,r,s’) from D
» Optimize MSE between Q-network and Q-learning targets, e.g.

L(W) - Es,a,r,s’ND [(’f’ + ’YI’I};}X Q(sl7 alv W) - Q(S, a, W))2]

MPC and RL J. Boedecker and M. Diehl, University Freiburg 33

Deep Q-Networks: Target Networks

To avoid oscillations, fix parameters used in Q-learning target
» Compute Q-learning targets w.r.t. old, fixed parameters w—

r+~vyargmaxQ(s’,a’,w™)
» Optimize MSE between Q-network and Q-learning targets
L(W) = Es aps~p[(r +ymaxQ(s',a',w™) = Q(s,a,w))?]
a/
» Periodically update fixed parameters w= + w

hard update: update target network every N steps
slow update: slowly update weights of target network every step by

w o+~ (1-7)w 47w

MPC and RL J. Boedecker and M. Diehl, University Freiburg 34

Deep Q-Networks (DQN)

Initialize replay memory D to capacity N

Initialize action-value function @) with random weights
for episode i =1,.., M do

fort=1,..,7T do

end

MPC and RL

end

select action a; e-greedily
Store transition (s, at, S¢41,7¢) in D
Sample minibatch of transitions (s;, aj, 7, sj41) from D

T if sj41 is terminal

Set y; = J , i+l
r; + v maxy Q(sj41,a ,w™) else

Update the parameters of Q according to:

VWsz(Wz) -]Es,a,s,'rND [(y] - Q(87 a, WZ))VW1 Q(Sv a, Wl)]

Update target network

J. Boedecker and M. Diehl, University Freiburg 35

Deep Q-Networks: Reinforcement Learning in Atari

MPC and RL J. Boedecker and M. Diehl, University Freiburg 36

Deep Q-Networks: Reinforcement Learning in Atari

» End-to-end learning of values Q(s,a) from pixels s
» Input state s is a stack of raw pixels from the last 4 frames
» Output is Q(s,a) for 18 joystick/button positions

» Reward is change in score for that step

MPC and RL J. Boedecker and M. Diehl, University Freiburg 37

How much does DQN help?

DQN
Q-Learning Q-Learning Q-Learning Q-learning
+ Replay + Replay

+ Target Q + Target Q
Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 831 2894
Space Invaders 302 373 826 1089

MPC and RL J. Boedecker and M. Diehl, University Freiburg 38

	Function Approximation in Reinforcement Learning
	Linear Methods
	On-policy Control with Function Approximation
	Off-policy Learning
	Problems of Off-policy Learning with Function Approximation
	Deep Q-learning

