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Policy Gradient Methods

I Up to this point, we represented a model or a value function by some parameterized
function approximator and extracted the policy implicitly

I Today, we are going to talk about Policy Gradient Methods: methods which consider a
parameterized policy

π(a|s,θ) = Pr{At = a|St = s,θt = θ},

with parameters θ

I Policy Gradient Methods are able to represent stochastic policies and scale naturally to
very large or continuous action spaces
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Policy Gradient Methods

I We update these parameters based on the gradient of some performance measure J(θ)
that we want to maximize, i.e. via gradient ascent:

θt+1 = θt + α∇̂J(θt),

where ∇̂J(θt) ∈ Rd is a stochastic estimate whose expectation approximates the gradient
of the performance measure w.r.t. θt
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Policy Gradient Theorem

Policy Objective Functions:

I For episodic problems we define performance as: J(θ) = η(πθ) = Es0∼ρ0 [vπθ
(s0)]

I For continuing problems: J(θ) =
∑
s
µ(s)vπθ

(s)

The Policy Gradient Theorem establishes that

∇θJ(θ) ∝
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s,θ)

Reminder: vπθ
=
∑
a π(a|s)qπ(s, a)
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Score Function

I Likelihood ratios exploit the following identity:

We want the
expectation of this︷ ︸︸ ︷
∇θπ(a|s,θ) = π(a|s,θ)∇θπ(a|s,θ)

π(a|s,θ)
= π(a|s,θ)∇θ log π(a|s,θ)︸ ︷︷ ︸

Easy to take the expectation
because we can sample from π!

I ∇θ log π(a|s,θ) is called the score function
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Policy Gradient Theorem

Policy Gradient Theorem

For any differentiable policy π(a|s,θ) and any of the above policy objective functions, the
policy gradient is:

∇θJ(θ) = Eπ[∇θ log π(a|s,θ)qπ(s, a)]
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Score Function: Example

Consider a Gaussian policy, where the mean is a linear combination of state features:
π(a|s,θ) ∼ N (s>θ, σ2), i.e.

π(a|s,θ) = 1√
2πσ2

exp(−1

2

(s>θ − a)2

σ2
)

Derivation of the score function

The log yields

log π(a|s,θ) = −1

2
log(2πσ2)− 1

2σ2
(s>θ − a)2

and the gradient

∇θ log π(a|s,θ) = −
1

2σ2
(s>θ − a)2s = (a− s>θ)s

σ2
.
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REINFORCE

I REINFORCE: Monte Carlo Policy Gradient

I Builds upon Monte Carlo returns as an unbiased sample of qπ
I However, therefore REINFORCE can suffer from high variance
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REINFORCE
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Variance Reduction with Baselines

I Vanilla REINFORCE provides unbiased estimates of the gradient ∇J(θ), but it can suffer
from high variance

I Goal: reduce variance while remaining unbiased
I Observation: we can generalize the policy gradient theorem by including an arbitrary

action-independent baseline b(s), i.e.

∇θJ(θ) ∝
∑
s

µ(s)
∑
a

(qπ(s, a)− b(s))∇π(a|s)

=
∑
s

µ(s)

∑
a

qπ(s, a)∇π(a|s)− b(s)∇
∑
a

π(a|s)︸ ︷︷ ︸
=0


=
∑
s

µ(s)
∑
a

qπ(s, a)∇π(a|s)

I Baselines can reduce the variance of gradient estimates significantly!
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Variance Reduction with Baselines

I A constant value can be used as a baseline

I The state-value function can be used as a baseline

Question

Is the Q-function a valid baseline?

Question

Assume an approximation of the state-value function as a baseline. Is REINFORCE then
biased?
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REINFORCE with Baselines

Indeed, an estimate of the state value function, v̂(St, w), is a very reasonable choice for b(s):
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Proximal Policy Optimization

I We collect data with πθold

I And we want to optimize some objective to get a new policy πθ
I We can write η(πθ) in terms of πθold

:

η(πθ) = η(πθold
) + Eπθ

[
∞∑
t=0

γtAπθold
(st, at)]

where the advantage function is defined as

Aπθold
(s, a) = Eπθ,st+1∼p[qπθold

(s, a)− vπθold
(s)]

= Eπθ,st+1∼p[r(s, a) + γvπθold
(s′)− vπθold

(s)]

I Advantage: how much better or worse is every action than average?
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Proximal Policy Optimization

Proof:

Eπθ
[

∞∑
t=0

γtAπθold
(st, at)]

= Eπθ,st+1∼p[

∞∑
t=0

γt(r(st, at) + γvπθold
(st+1)− vπθold

(st))]

= Eπθ,st+1∼p[−vπθold
(s0) +

∞∑
t=0

γtr(st, at)]

= Es0∼p0 [−vπθold
(s0)] + Eπθ,st+1∼p[

∞∑
t=0

γtr(st, at)]

= −η(πθold
) + η(πθ)
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Proximal Policy Optimization

I In PPO, we ignore the change in state distribution and optimize a surrogate objective:

Jold(θ) = Es∼πθold
,a∼πθ

[Aπθold
(s, a)]

= E(s,a)∼πθold

[
πθ
πθold

Aπθold
(s, a)

]
I Improvement Theory: η(πθ) ≥ Jold(θ)− c ·maxs KL[πθold

||πθ]
I If we keep the KL-divergence between our old and new policies small, optimizing the

surrogate is close to optmizing η(πθ)!
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Proximal Policy Optimization

I Clipped Surrogate Objective:

E(s,a)∼πθold

[
min(

πθ
πθold

Aπθold
(s, a), clip(

πθ
πθold

, 1− ε, 1 + ε)Aπθold
(s, a))

]
I Adaptive Penalty Surrogate Objective:

E(s,a)∼πθold

[
πθ
πθold

Aπθold
(s, a)− βKL[πθold

||πθ]
]

for iteration i = 1, 2, . . . do
Run policy for T timesteps of N trajectories
Estimate advantage function at all timesteps
Do SGD on one of the above objectives for some number of epochs
In case of the Adaptive Penalty Surrogate: Increase β if KL-divergence too high,

otherwise decrease β
end

Algorithm 1: PPO
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Actor-Critic Methods

I Methods that learn approximations to both policy and value functions (and use the critic
for bootstrapping) are called actor-critic methods
actor: learned policy
critic: learned value function (usually a state-value function)

Question: Is REINFORCE-with-baseline considered as an actor-critic method?

MPC and RL J. Boedecker and M. Diehl, University Freiburg 22



Actor-Critic Methods

I REINFORCE-with-baseline is unbiased, but tends to learn slowly and has high variance

I To gain from advantages of TD methods we use actor-critic methods with a bootstrapping
critic

One-step actor-critic methods

Replace the full return of REINFORCE with one-step return as follows:

θt+1 = θt + α (Gt:t+1 − v̂(St,w))
∇π(At|St,θt)
π(At|St,θt)

= θt + α (Rt+1 + γv̂(St+1,w)− v̂(St,w))
∇π(At|St,θt)
π(At|St,θt)

= θt + αδt
∇π(At|St,θt)
π(At|St,θt)
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Actor-Critic Methods
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Deep Deterministic Policy Gradient

I DDPG is an actor-critic method (Continuous DQN)

I Recall the DQN-target: yj = rj + γmaxaQ(sj+1, a,w
−)

I In case of continuous actions, the maximization step is not trivial

I Therefore, we approximate deterministic actor µ representing the argmaxaQ(sj+1, a,w)
by a neural network and update its parameters following the Deterministic Policy Gradient
Theorem:

∇θ ←
1

N

∑
j

∇aQ(sj , a,w)|a=µ(sj)∇θµ(sj ,θ)

I Exploration by adding Gaussian noise to the output of µ
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Deep Deterministic Policy Gradient

I The Q-function is fitted to the adapted TD-target:

yj = rj + γQ(sj+1, µ(sj+1,θ
−),w−)

I The parameters of target networks µ(·,θ−) and Q(·, ·,w−) are then adjusted with a soft
update

w− ← (1− τ)w− + τw and θ− ← (1− τ)θ− + τθ

with τ ∈ [0, 1]

I DDPG is very popular and builds the basis for more SOTA actor-critic algorithms

I However, it can be quite unstable and sensitive to its hyperparameters
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Deep Deterministic Policy Gradient

Initialize replay memory D to capacity N
Initialize critic Q and actor µ with random weights
for episode i = 1, ..,M do

for t = 1, .., T do
select action at = µ(st,θ) + ε, where ε ∼ N (0, σ)
Store transition (st, at, st+1, rt) in D
Sample minibatch of transitions (sj , aj , rj , sj+1) from D

Set yj =

{
rj if sj+1 is terminal

rj + γ Q(sj+1, µ(sj+1,θ
−),w−) else

Update the parameters of Q according to the TD-error
Update the parameters of µ according to:

∇θ ←
1

N

∑
j

∇aQ(sj , a,w)|a=µ(sj)∇θµ(sj ,θ)

Adjust the parameters of the target networks via a soft update
end

end
Algorithm 2: DDPGMPC and RL J. Boedecker and M. Diehl, University Freiburg 28
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Overestimation Bias

I In all control algorithms so far, the target policy is created by the maximization of a
value-function

I We thus consider the maximum over estimated values as an estimate of the maximum
value

I This can lead to the so-called overestimation bias
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Overestimation Bias

I Recall the Q-learning target: Rt+1 + γmaxaQ(St+1, a)

I Imagine two random variables X1 and X2:

E[max(X1, X2)] ≥ max(E[X1],E[X2])

I Q(St+1, a) is not perfect – it can be noisy :

max
a

Q(St+1, a) =

value comes from Q︷ ︸︸ ︷
Q(St+1, argmax

a
Q(St+1, a)︸ ︷︷ ︸

action comes from Q

)

I If the noise in these is decorrelated, the problem goes away!
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Double Q-learning
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Double Q-learning
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TD3

TD3 adds three adjustments to vanilla DDPG

I Clipped Double Q-Learning

I Delayed Policy Updates

I Target-policy smoothing
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TD3: Clipped Double Q-Learning

I In order to alleviate the overestimation bias (which is also present in actor-critic methods),
TD3 learns two approximations of the action-value function

I It the takes the minimum of both predictions as the second part of the TD-target:

yj = rj + γ min
i∈{1,2}

Q(sj+1, µ(sj+1),w
−
i )
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TD3: Delayed Policy Updates

I Due to the mutual dependency between actor and critic updates. . .
I values can diverge when the policy leads to overestimation and
I the policy will lead to bad regions of the state-action space when the value estimates lack in

(relative) accuracy

I Therefore, policy updates on states where the value-function has a high prediction error
can cause divergent behaviour

I We already know how to compensate for that: target networks

I Freeze target and policy networks between d updates of the value function

I This is called a Delayed Policy Update
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TD3: Target-policy Smoothing

I Target-policy Smoothing adds Gaussian noise to the next action in target calculation

I It transforms the Q-update towards an Expected SARSA update fitting the value of a
small area around the target-action:

yj = rj + γ min
i∈{1,2}

Q(sj+1, µ(sj+1) + clip(ε,−c, c),w−i ),

where ε ∼ N (0, σ)
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TD3: Ablation
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Soft Actor-Critic

I Soft Actor-Critic: entropy-regularized value-learning
I The policy is trained to maximize a trade-off between expected return and entropy

(H(P ) = Ex∼P [− logP (x)]), a measure of randomness in the policy:

π∗ = argmax
π

Eπ

[ ∞∑
t=0

Rt+1 + αH(π(·|St = st))

]
I The value functions are then defined as:

vπ(s) = Eπ[
∞∑
t=0

Rt+1 + αH(π(·|St = st))|S0 = s,A0 = a]

and

qπ(s, a) = Eπ[
∞∑
t=0

Rt+1 + α

∞∑
t=1

γtH(π(·|St = st))|S0 = s,A0 = a]

I And their relation as: vπ(s) = Eπ[qπ(s, a)] + αH(π(·|St = s))
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Soft Actor-Critic

I The corresponding Bellman equation for qπ is

qπ(st, at) = Eπ,p[Rt+1 + γ(qπ(st+1, at+1) + αH(π(·|St+1 = st+1))]

= Eπ,p[Rt+1 + γvπ(st+1)]

I Loss for the Q-networks:

L (wi,D) = E
(s,a,r,s′)∼D

[
(Q(s, a,wi)− y (r, s′))

2
]

where the target is:

y (r, s′) = r + γ

(
min
j=1,2

Q
(
s′, ã′,w−j

)
− α log πθ (ã

′ | s′)
)
, ã′ ∼ πθ (· | s′)
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Soft Actor-Critic

I We want to find a policy which maximizes expected future return and expected future
entropy, i.e. which maximizes V π(s):

V π(s) = Eπ [Q
π(s, a)] + αH(π(· | s))

= Eπ [Q
π(s, a)− α log π(a | s)]

I To optimize the policy despite the sampling of actions, we make use of the
reparameterization trick:

ãθ(s, ξ) = tanh (µθ(s) + σθ(s)� ξ) , ξ ∼ N (0, I)

I We can thus rewrite the expectation from above as:

Eπθ [Q
πθ (s, a)− α log πθ(a | s)] = Eξ [Q

πθ (s, ãθ(s, ξ))− α log πθ (ãθ(s, ξ) | s)]
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Soft Actor-Critic

I Final policy loss is then:

max
θ

Es,ξ

[
min
j=1,2

Q
(
s, ãθ(s, ξ),w

−
j

)
− α log πθ (ãθ(s, ξ) | s)

]
I Performance comparison from (Haarnoja et al., 2018):Soft Actor-Critic
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Figure 1. Training curves on continuous control benchmarks. Soft actor-critic (yellow) performs consistently across all tasks and
outperforming both on-policy and off-policy methods in the most challenging tasks.

for all hyperparameter). Using off-policy data from a replay
buffer is feasible because both value estimators and the pol-
icy can be trained entirely on off-policy data. The algorithm
is agnostic to the parameterization of the policy, as long as
it can be evaluated for any arbitrary state-action tuple.

5. Experiments
The goal of our experimental evaluation is to understand
how the sample complexity and stability of our method
compares with prior off-policy and on-policy deep rein-
forcement learning algorithms. We compare our method
to prior techniques on a range of challenging continuous
control tasks from the OpenAI gym benchmark suite (Brock-
man et al., 2016) and also on the rllab implementation of
the Humanoid task (Duan et al., 2016). Although the easier
tasks can be solved by a wide range of different algorithms,
the more complex benchmarks, such as the 21-dimensional
Humanoid (rllab), are exceptionally difficult to solve with
off-policy algorithms (Duan et al., 2016). The stability of
the algorithm also plays a large role in performance: eas-
ier tasks make it more practical to tune hyperparameters
to achieve good results, while the already narrow basins of
effective hyperparameters become prohibitively small for
the more sensitive algorithms on the hardest benchmarks,
leading to poor performance (Gu et al., 2016).

We compare our method to deep deterministic policy gra-
dient (DDPG) (Lillicrap et al., 2015), an algorithm that
is regarded as one of the more efficient off-policy deep
RL methods (Duan et al., 2016); proximal policy optimiza-
tion (PPO) (Schulman et al., 2017b), a stable and effective
on-policy policy gradient algorithm; and soft Q-learning
(SQL) (Haarnoja et al., 2017), a recent off-policy algorithm
for learning maximum entropy policies. Our SQL imple-
mentation also includes two Q-functions, which we found
to improve its performance in most environments. We addi-
tionally compare to twin delayed deep deterministic policy
gradient algorithm (TD3) (Fujimoto et al., 2018), using
the author-provided implementation. This is an extension
to DDPG, proposed concurrently to our method, that first
applied the double Q-learning trick to continuous control
along with other improvements. We have included trust re-
gion path consistency learning (Trust-PCL) (Nachum et al.,
2017b) and two other variants of SAC in Appendix E. We
turned off the exploration noise for evaluation for DDPG
and PPO. For maximum entropy algorithms, which do not
explicitly inject exploration noise, we either evaluated with
the exploration noise (SQL) or use the mean action (SAC).
The source code of our SAC implementation1 and videos2

are available online.
1github.com/haarnoja/sac
2sites.google.com/view/soft-actor-critic
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Further ressources

If you want to get an even more detailed overview about the current SOTA, you can have a
look at OpenAI SpinningUp:

https://spinningup.openai.com/en/latest/index.html
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