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Policy Gradient Methods

» Up to this point, we represented a model or a value function by some parameterized
function approximator and extracted the policy implicitly
» Today, we are going to talk about Policy Gradient Methods: methods which consider a
parameterized policy
m(als,0) = Pr{A; = a|S; = 5,60, = 0},
with parameters 6

» Policy Gradient Methods are able to represent stochastic policies and scale naturally to
very large or continuous action spaces
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Policy Gradient Methods

» \We update these parameters based on the gradient of some performance measure J(0)
that we want to maximize, i.e. via gradient ascent:

—

0t+1 = at + aVJ(Ht),

where V.J(0;) € R is a stochastic estimate whose expectation approximates the gradient
of the performance measure w.r.t. 6,
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Policy Gradient Theorem

Policy Objective Functions:
> For episodic problems we define performance as: J(8) = 1(mg) = Egsynpo [V (50)]
» For continuing problems: J(6) = Zu( Vo ()

The Policy Gradient Theorem establishes that

Vo (6 Zu )Y 4n(s.0)Vn(als,0)

Reminder: vy, =" m(als)gx(s,a)
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Score Function

> Likelihood ratios exploit the following identity:

We want the
expectation of this

o Vor(als, 8
Veor(als,0) =7r(a|s,0)ﬂ_(a(|s|0))
= m(als,0)Velogm(als, )

Easy to take the expectation
because we can sample from 7!

> Vglogm(als,8) is called the score function

MPC and RL
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Policy Gradient Theorem

Policy Gradient Theorem

For any differentiable policy 7(als, @) and any of the above policy objective functions, the
policy gradient is:
VeJ(0) = Ex[Velogm(als,0)qx(s,a)]
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Score Function: Example

Consider a Gaussian policy, where the mean is a linear combination of state features:
m(als,0) ~ N(s10,0?), i.e.

m(als, 0) = exp(—5——75—)

Derivation of the score function

The log yields
1 1
log7(als, 8) = =5 log(2mo?) — —(5'0 — a)?
o
and the gradient

1 —5'6
Ve logm(als,8) = —@(STH —a)2s = (aa;g)s.
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Lecture Overview

REINFORCE
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REINFORCE

» REINFORCE: Monte Carlo Policy Gradient
» Builds upon Monte Carlo returns as an unbiased sample of ¢,
» However, therefore REINFORCE can suffer from high variance
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REINFORCE

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .

Input: a differentiable policy parameterization 7(als, 0)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € RY (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1, Ar_1, R, following 7 (|-, 9)
Loop for each step of the episode t =0,1,...,T — 1:
G ¢ Ngmyyy 7T Ry (Gy)
0« 0+ ay'GVinm(AS, 0)
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Variance Reduction with Baselines

» Vanilla REINFORCE provides unbiased estimates of the gradient V.J(6), but it can suffer
from high variance

» Goal: reduce variance while remaining unbiased

» Observation: we can generalize the policy gradient theorem by including an arbitrary
action-independent baseline b(s), i.e.

Vo (0) o 3 s) 3 (a5 0) = o)) Vilals)

=37 uls) [ anls, a)Vrlals) () V'S (als)

a
N————’
=0

= Z w(s) Z qr(s,a)V(als)

» Baselines can reduce the variance of gradient estimates significantly!
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Variance Reduction with Baselines

» A constant value can be used as a baseline
» The state-value function can be used as a baseline

Question

Is the Q-function a valid baseline?

Assume an approximation of the state-value function as a baseline. Is REINFORCE then
biased?
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REINFORCE with Baselines

Indeed, an estimate of the state value function, ©(S¢,w), is a very reasonable choice for b(s):

REINFORCE with Baseline (episodic), for estimating mp ~ .

Input: a differentiable policy parameterization 7 (als,0)

Input: a differentiable state-value function parameterization 0(s,w)
Algorithm parameters: step sizes a® > 0, a™ > 0

Initialize policy parameter 8 € RY and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, Ry, ..., Sr_1, Ar_1, Ry, following 7 (+|-, 8)
Loop for each step of the episode t =0,1,..., 7 — 1:
G Yhoppa VT R (Gr)
0 < G — 0(Sg,w)
W W+ aV IV(Se,w)
0 < 0+ a4V Inn(AlS:,0)
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Lecture Overview

Proximal Policy Optimization
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Proximal Policy Optimization

> We collect data with g,
» And we want to optimize some objective to get a new policy g

> We can write n(mg) in terms of mg,,:

77(779> = 77(7T00|d) + Erp [Z 'Yt-Aﬂeo'd (Sta at)]
t=0

where the advantage function is defined as

Aﬂedd (s,a) = ]ETF9781,+1~;D [qﬂeold (s,a) — Uno,q (s)]

=Ergsis1~p [r(s,a) + VVre,, (8/) — Uno,q (s)]

» Advantage: how much better or worse is every action than average?
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Proximal Policy Optimization

Proof:
o0
]ETrs [Z 'yt-ATredd (Stv at)]
00
- ‘ﬂ'e,St+1Np Z fyt Stv at + YVng old (St—i-l) Vo4 (st))]
t=0

= E‘fr975t+1~;n[7v7reo|d (s0) + Z Vtr(sta a)]

t=0
oo
= ESONPO [_Uﬁedd (80)] + Eﬂewst+1~p[z 7tr(5tv at)]
t=0

= *77(7T00|d) + 77(7T9)
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Proximal Policy Optimization

» In PPO, we ignore the change in state distribution and optimize a surrogate objective:
Jold (9) = ES~W9°|d ,arvTeg [*Aﬂ’sow (5’ a‘)]

- E(S’a)ww%ld |: 'A”“’old (S’ a):|

o
T o1

» Improvement Theory: n(mg) > Joid(8) — ¢ - max, KL[mg,,||7e]

» If we keep the KL-divergence between our old and new policies small, optimizing the
surrogate is close to optmizing 7)(7g)!
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Proximal Policy Optimization

» Clipped Surrogate Objective:

o

» Adaptive Penalty Surrogate Objective:

o

Es,a)~moy, [779
old

"47"90|d (87 a) — ﬁKL[ﬂ—Qom | |7T9]:|

for iterationi =1,2,... do
Run policy for T timesteps of N trajectories
Estimate advantage function at all timesteps
Do SGD on one of the above objectives for some number of epochs
In case of the Adaptive Penalty Surrogate: Increase j3 if KL-divergence too high,
otherwise decrease 3
end
Algorithm 1: PPO
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Lecture Overview

Actor-Critic Methods
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Actor-Critic Methods

» Methods that learn approximations to both policy and value functions (and use the critic
for bootstrapping) are called actor-critic methods

actor: learned policy
critic: learned value function (usually a state-value function)

Question: Is REINFORCE-with-baseline considered as an actor-critic method?
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Actor-Critic Methods

» REINFORCE-with-baseline is unbiased, but tends to learn slowly and has high variance

» To gain from advantages of TD methods we use actor-critic methods with a bootstrapping
critic

One-step actor-critic methods

Replace the full return of REINFORCE with one-step return as follows:

Vr(AdlSy, 6,)
(A S;, 0,)
Vr(AlS:, 0,)
(A S5, 0;)

011 =0+ a(Grip1 — 0(St, w))

=0; +« (Rt+1 + ’Y@(St-kla w) = f)(St, w))

VW(At|St, Bt)

:0t+a5t W(At|5t70t)
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Actor-Critic Methods

One-step Actor—Critic (episodic), for estimating mg ~ .

Input: a differentiable policy parameterization m(als, 8)
Input: a differentiable state-value function parameterization (s,w)
Parameters: step sizes a® > 0, o™ > 0
Initialize policy parameter @ € R? and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I+1
Loop while S is not terminal (for each time step):
A~7(-|S,0)
Take action A, observe S, R
0 < R+~9(S",w) — 9(S,w) (if S’ is terminal, then 9(S’,w) = 0)

W w4+ a%VIVi(S,w)
0« 0 +a°I5VInm(A|S,0)
I+ ~I

S+ 9
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Lecture Overview

DDPG
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Deep Deterministic Policy Gradient

>
>
2
>

DDPG is an actor-critic method (Continuous DQN)
Recall the DQN-target: y; = r; + v max, Q(s;j+1,a, W)
In case of continuous actions, the maximization step is not trivial

Therefore, we approximate deterministic actor  representing the arg max, Q(s;+1,a, w)
by a neural network and update its parameters following the Deterministic Policy Gradient
Theorem:

1
Vo N zj: VaQ(Sj’ a, w)|a:/14(8j)vel’[’(sj7 0)

» Exploration by adding Gaussian noise to the output of i
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Deep Deterministic Policy Gradient

MPC and RL

The Q-function is fitted to the adapted TD-target:

y; =15 +7Q(8j41, 1(5541,07), W)

The parameters of target networks u(-,07) and Q(-,-,w™) are then adjusted with a soft
update

w +—(1-7)w +7wand 07 « (1—-7)0" + 76

with 7 € [0, 1]
DDPG is very popular and builds the basis for more SOTA actor-critic algorithms
However, it can be quite unstable and sensitive to its hyperparameters
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Deep Deterministic Policy Gradient

Initialize replay memory D to capacity N

Initialize critic @ and actor p with random weights
for episode i =1,.., M do

fort=1,..,7T do

end
MPC and RL

end

select action a; = u(st, 0) + €, where € ~ N(0, o)

Store transition (s¢, at, S¢+1,7¢) in D

Sample minibatch of transitions (s;, aj, r;, sj4+1) from D

Set 1, = r; ) ) if sj41 is terminal
ri + 7 Q(sj+1, 1(sj+1,07), W) else

Update the parameters of () according to the TD-error

Update the parameters of ;1 according to:

1
Vo Z VaQ(85:a, W)la=u(s;) Vor(ss, 0)
J

Adjust the parameters of the target networks via a soft update
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Lecture Overview

@ TD3
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Overestimation Bias

» In all control algorithms so far, the target policy is created by the maximization of a

value-function
» We thus consider the maximum over estimated values as an estimate of the maximum

value
» This can lead to the so-called overestimation bias

N(=0.1,1)

0 0
. left right
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Overestimation Bias

> Recall the Q-learning target: R;y1 + v max, Q(Sty1,a)
» Imagine two random variables X; and X5:

E[max(Xl, XQ)] Z max(IE[Xl], IE[XQ])

» Q(Stt1,a) is not perfect — it can be noisy:

value comes from Q

max Q(St+1,a) = Q(Se41, arg max Q(Se+1,a))

action comes from Q

» If the noise in these is decorrelated, the problem goes away!
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Double Q-learning

Double Q-learning, for estimating (

Algorithm parameters: step size «« € (0,1], small € > 0
Initialize Q1(s,a) and Q2(s,a), for all s € 8§, a € A(s), such that Q(terminal,-) =0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using the policy e-greedy in Q7 + Q2
Take action A, observe R, S’
With 0.5 probabilility:
Qi(S.4) « Qu(S.4) + a(R +1Qx(S", argmax, Qu(S', a)) — Qu(S, 4))
else:
Qa(8, A) « Qa(S, A) + a(R Q1 (8", argmax, Qs(S', a)) — Qa(S, A))

S+ 9
until S is terminal
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Double Q-learning

MPC and RL
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TD3 adds three adjustments to vanilla DDPG
» Clipped Double Q-Learning
» Delayed Policy Updates
» Target-policy smoothing

J. Boedecker and M. Diehl, University Freiburg
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TD3: Clipped Double Q-Learning

» In order to alleviate the overestimation bias (which is also present in actor-critic methods),
TD3 learns two approximations of the action-value function
» [t the takes the minimum of both predictions as the second part of the TD-target:
i =7 +7 min S S W,
Yj J 71'6{12}@( J+1a/'l/( ]"1‘1)7 7 )

)

400 500
3 300 400
g 300
200
g 200
g
<100 m CDQ - True CDQ g

m DDPG - True DDPG
0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1e6) Time steps (1e6)
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TD3: Delayed Policy Updates

» Due to the mutual dependency between actor and critic updates. . .

values can diverge when the policy leads to overestimation and
the policy will lead to bad regions of the state-action space when the value estimates lack in
(relative) accuracy

» Therefore, policy updates on states where the value-function has a high prediction error
can cause divergent behaviour

» We already know how to compensate for that: target networks
> Freeze target and policy networks between d updates of the value function
This is called a Delayed Policy Update

v
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TD3: Target-policy Smoothing

» Target-policy Smoothing adds Gaussian noise to the next action in target calculation

> It transforms the Q-update towards an Expected SARSA update fitting the value of a
small area around the target-action:

yj =7+ min Q(sjy1,u(sj41) + clip(e, —¢,¢), w; ),
1€{1,2}

where € ~ N(0,0)
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TD3: Ablation

MPC and RL

Table 2. Average return over the last 10 evaluations over 10 trials
of 1 million time steps, comparing ablation over delayed policy
updates (DP), target policy smoothing (TPS), Clipped Double
Q-learning (CDQ) and our architecture, hyper-parameters and
exploration (AHE). Maximum value for each task is bolded.

Method HCheetah Hopper Walker2d Ant
TD3 9532.99 3304.75  4565.24  4185.06
DDPG 3162.50 1731.94 1520.90 816.35
AHE 8401.02 1061.77 2362.13 564.07
AHE + DP 7588.64 1465.11 2459.53 896.13
AHE + TPS 9023.40 907.56 2961.36 872.17
AHE + CDQ 6470.20 1134.14 3979.21 3818.71
TD3 - DP 9590.65 2407.42  4695.50 3754.26
TD3 - TPS 8987.69 2392.59  4033.67 4155.24
TD3 - CDQ 9792.80 1837.32 2579.39 849.75
DQ-AC 9433.87 1773.71 3100.45 2445.97
DDQN-AC 10306.90  2155.75 3116.81 1092.18
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Lecture Overview

Soft Actor-Critic
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Soft Actor-Critic

» Soft Actor-Critic: entropy-regularized value-learning
» The policy is trained to maximize a trade-off between expected return and entropy
(H(P) =E,~p[—log P(x)]), a measure of randomness in the policy:

7. = argmax E ZRtH + aH(mw(:|S: = s¢))
4 t=0

» The value functions are then defined as:
(o)
vr(s) = E”[Z Riy1 4+ aH(m(-|S: = s¢))|So = s, Ag = q]
t=0

and

qr(s,a) = E“[Z Ryy1+ aZ’ytH(w(-|St =¢))|So = 5,49 = d]
t=0 t=1

» And their relation as: v (s) = Ex[¢x(s,a)] + aH(7(:|S; = ))

MPC and RL J. Boedecker and M. Diehl, University Freiburg 40



Soft Actor-Critic

» The corresponding Bellman equation for ¢, is

Qr(Styat) = Ex p[Ret1 + Y(qr(St41, ar41) + aH (7 (:[Se41 = 5¢41))]
=Erp[Res1 +70r(5141))

» Loss for the Q-networks:

LweD)= B [(@saw) ~y(rs))’]

where the target is:

() =t (i Q (' wy) — alogmy (@) @~ -] )
j=1,2 J
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Soft Actor-Critic

> We want to find a policy which maximizes expected future return and expected future
entropy, i.e. which maximizes V7 (s):

V7(s) = Ex [Q7(s,a)] + aH (n(- | 5))
=E- [Q"(s,a) — alogm(a | 5)]

» To optimize the policy despite the sampling of actions, we make use of the
reparameterization trick:

ag(s, &) = tanh (ug(s) + o9(s) @), &~N(0,1)

» We can thus rewrite the expectation from above as:

Ex, [Q7(s,a) —alogmg(a | s)] = E¢ [Q™ (5, a0(s,£)) — alogm (ag(s, &) | s)]
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MPC and RL

> Final policy loss is then:

Hlé’iX Es,& |:j—i11,12 Q (57 Zl‘9(87 5)7 Wj_) - OélOg o (d9(87 5) | 8):|

» Performance comparison from (Haarnoja et al., 2018):

1000 G000

. e
P
w0 e or o " 5 10 .1s a0 2 1
Bion 25 i seps
(@) Hopper-v1 (b) Walker2d-vi (©) HalfCheetah-v1
o an sac
oy o
o Ay
£ oo fow W,n..,mm’f'mw g s A
e e /| M il " —— TD3 (concuifent)
% S s { v

2000 |

1 6 1 6
millon steps million steps

(d) Ant-vl (e) Humanoid-v1 (f) Humanoid (rllab)
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Further ressources

If you want to get an even more detailed overview about the current SOTA, you can have a
look at OpenAl SpinningUp:

https://spinningup.openai.com/en/latest/index.html
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