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Agent and Environment

Environment

Agent

St+1

St At

Rt+1

Rt

Time steps t: 0, 1, 2, . . .
States: S0, S1, S2, . . .
Actions: A0, A1, A2, . . .
Rewards: R1, R2, R3, . . .

MPC and RL J. Boedecker and M. Diehl, University Freiburg 4



Finite Markov Decision Processes

A finite Markov Decision Process (MDP) is a 4-tuple 〈S,A, p,R〉, where

I S is a finite set of states,

I A is a finite set of actions,

I p is the transition probability function p : S ×R× S ×A 7→ [0, 1],

I and R is a finite set of scalar rewards. We can then define expected reward
r(s, a) = E[Rt+1|St = s,At = a] and r(s, a, s′) = E[Rt+1|St = s,At = a, St+1 = s′].

Markov Property

A state-reward pair (St+1, Rt+1) has the Markov property iff:

Pr{St+1, Rt+1|St, At} = Pr{St+1, Rt+1|St, At, . . . , S0, A0}.

The future is independent of the past given the present.
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Finite Markov Decision Processes

A finite Markov Decision Process (MDP) is a 4-tuple 〈S,A, p,R〉, where

I S is a finite set of states,

I A is a finite set of actions,

I p is the transition probability function p : S ×R× S ×A 7→ [0, 1],

I and R is a finite set of scalar rewards. We can then define expected reward
r(s, a) = E[Rt+1|St = s,At = a] and r(s, a, s′) = E[Rt+1|St = s,At = a, St+1 = s′].

A deterministic system is a special case of an MDP:

p(st+1|st, ut) =

{
1 st+1 = f(st, at)

0 otherwise
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Rewards

I A reward Rt in time step t is a scalar feedback signal.

I Rt indicates how well an agent is performing at single time step t.

Reward Hypothesis

All of what we mean by goals and purposes can be well thought of as the
maximization/minimization of the expected value of the cumulative sum of a received scalar
signal (called reward/cost).

Examples:

I Chess: +1 for winning, -1 for losing

I Walking: +1 for every time step not falling over

I Investment Portfolio: difference in value between two time steps
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Return

I The agent aims at maximizing the expected cumulative reward

I Non-discounted: Gt = Rt+1 +Rt+2 +Rt+3 + · · ·+RT

I Discounted: Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1

I Discounting with γ ∈ [0, 1] to prevent from infinite returns (e.g. in infinite horizon control
problems)

I Returns at successive time steps are related to each other:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + . . .

= Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + . . . )

= Rt+1 + γGt+1
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MDP: Example

Description

Imagine a house cleaning robot. It can have three charge levels: high, low and none. At every
point in time, the robot can decide to recharge or to explore unless it has no battery. When
exploring, the charge level can reduce with probability ρ. Exploring is preferable to recharging,
however it has to avoid running out of battery.

Formalize the above problem as an MDP.
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MDP: Example

Solution

For the given problem, we set:

I S = {high, low, none}
I A = {explore, recharge}
I R = {+1,−1,−100} for exploring, recharging, and transitions leading to none,

respectively.

I p has entries with value 1 for transitions (high,−1, high, recharge),
(low,−1, high, recharge) and (none, 0, none, ·). It further has entries with value ρ for
transitions (high,+1, low, explore) and (low,−100, none, explore) and entries with value
1− ρ for transitions (high,+1, high, explore) and (low,+1, low, explore).
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MDP: Example

Solution

The transition graph therefore is:

high low none

explore
1− ρ, +1 ρ, +1

explore
1− ρ, +1 ρ, −100

recharge, −1

recharge, −1

MPC and RL J. Boedecker and M. Diehl, University Freiburg 11



Lecture Overview

1 Markov Decision Processes

2 Policies and Value Functions

3 Policy and Value Iteration

4 Monte Carlo Reinforcement Learning

5 Monte Carlo Prediction

6 Monte Carlo Control

7 TD Prediction

8 TD Control (SARSA, Q-Learning)

MPC and RL J. Boedecker and M. Diehl, University Freiburg 12



Policies

I The policy defines the behaviour of the agent:
I can be stochastic: π(a|s) = P[At = a|St = s]
I or deterministic: π(s) = a

I Due to the Markov property, knowledge of the current state s is sufficient to make an
informed decision.
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Value Functions

I Value Function vπ(s) is the expected return when starting in s and following π:

vπ(s) = Eπ[Gt|St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]

I Action-Value Function qπ is the expected return when starting in s, taking action a and
following π thereafter:

qπ(s, a) = Eπ[Gt|St = s,At = a] = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s,At = a

]

I Simple connection:
vπ(s) = Eπ[qπ(s, π(s))] (1)
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Bellman Equation

I The Bellman Equation expresses a relationship between the value of a state and the values
of its successor states

I The value function vπ is the unique solution to its Bellman Equation

vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a) [r + γEπ[Gt+1|St+1 = s′]]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)]

Bellman Equation for vπ

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)] .
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Bellman Equation

For a deterministic system and a deterministic policy, the Bellman Equation simplifies to:

Bellman equation for value-function vπ for a deterministic system and policy

vπ(s) = r + γvπ(f(s, π(s))).

We equivalently obtain a corresponding system of equations for the Q-function:

Bellman Equation for action-value function qπ

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)

[
r + γ

∑
a′

π(a′|s′)qπ(s′, a′)

]
.
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Optimality of Policies

We consider a policy as optimal if the value (i.e. its expected return under the policy) in every
state is at least as high as for any other policy:

Optimality of a policy π∗

A policy π∗ is called optimal :⇔
For all s ∈ S :

vπ∗(s) ≥ vπ(s) for all π (2)

The corresponding optimal value function is denoted by v∗.

I This requires a search among all, possibly infinitely many, policies. This seems to be
rather impractical.

I Is there an easier way to check if a policy π and corresponding value function vπ is
actually optimal?
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Bellman Optimality Equation

Intuitively, the Bellman Optimality Equation expresses the fact that the value of a state under
an optimal policy must equal the expected return for the best action from that state:

v∗(s) = max
a

qπ∗(s, a)

= max
a

Eπ∗ [Rt+1 + γGt+1|St = s,At = a]

= max
a

Eπ∗ [Rt+1 + γv∗(St+1)|St = s,At = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)]

Bellman Optimality Equation for v∗

The Bellman Equation for the optimal value function v∗ is defined as:

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)].
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Bellman Optimality Equation

For a deterministic system and a deterministic policy, the Bellman Optimality Equation
simplifies to:

Bellman equation for the optimal value-function v∗ for a deterministic system and policy

v∗(s) = max
a

[r + γv∗(f(s, a))].

Equivalently, there exists a Bellman optimality equation for Q-functions:

Bellman equation for the optimal action-value function q∗

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)].

How can we turn these equations into practical algorithms to find optimal policies π∗?
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Policy Iteration: Overview

Idea: Alternate evaluating the value function vπ and improving the policy π to convergence.

π0
E−−−→ vπ0

I−−−→ π1
E−−−→ vπ1

I−−−→ π2
E−−−→ · · · I−−−→ π∗

E−−−→ v∗
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Policy Evaluation

Compute the state-value function vπ for an arbitrary policy π.
∀s ∈ S :

vπ(s)
.
=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)]

If the environments dynamics are completely known, this is a system of |S| simultaneous linear
equations in |S| unknowns. With the Bellman equation, we can iteratively update an initial
approximation v0:

vk+1(s)
.
= Eπ [Rt+1 + γvk(St+1)|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvk(s
′)]
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Policy Evaluation
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Policy Improvement

Once we have the value function for a policy, we consider which action a to select in a state s
when we follow our old policy π afterwards. To decide this, we look at the Bellman equation of
the state-action value function:

qπ(s, a)
.
= E [Rt+1 + γvπ(St+1)|St = s,At = a]

=
∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)]

Policy improvement theorem

Let π and π′ be any pair of deterministic policies. If, ∀s ∈ S,

qπ(s, π
′(s)) ≥ vπ(s),

then the policy π′ must be as good as, or better than, π. It follows that, ∀s ∈ S:

vπ′(s) ≥ vπ(s)
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Policy Improvement

To implement this, we compute qπ(s, a) for all states and all actions, and consider the greedy
policy:

π′(s)
.
= argmax

a
qπ(s, a)

= argmax
a

E [Rt+1 + γvπ(St1)|St = s,At = a]

= argmax
a

∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)]
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Policy Iteration
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Value Iteration

Performing policy evaluation to convergence in every iteration is costly and often not necessary.
A special case is to evaluate just once and combine it with the policy improvement step:

vk+1(s)
.
= max

a
E [Rt+1 + γvk(St+1)|St = s,At = a]

= max
a

∑
s′,r

p(s′, r|s, a) [r + γvk(s
′)]
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Value Iteration
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Generalized Policy Iteration

I Policy Evaluation: estimate vπ
I Policy Improvement: greedy
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Summary

I MDPs allow us to formalize RL (and more generally, stochastic optimal control) problems,
4-tuple 〈S,A, p,R〉, assume Markov Property holds

I Bellman Equations express a relationship between the value of a state and the values of its
successor states, provide structure to search for an optimal policy intelligently

I Policy Iteration and Value iteration use the structure of the Bellman Equations and turn
them into iterative algorithms for finding optimal policies given an MDP (with and
without explicit representation of the policy)
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Monte Carlo Reinforcement Learning

Estimate / Optimize the value function of an unknown MDP.

I MC methods learn from episodes of experiences
experiences = sequences of states, actions, and rewards

I MC is model-free: no knowledge required about MDP dynamics

I MC learns from complete episodes (no bootstrapping), based on averaging sample returns
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Monte Carlo Prediction

I Goal: learn the state-value function vπ for a given policy π

S0, A0, R1, ..., ST ∼ π
I Idea: estimate it from experience by average the returns observed after visits to that state

I Recall: the return is the total discounted reward

Gt = Rt+1 + γRt+2 + ...+ γT−1RT

I Recall: the value function is the expected return

vπ(s) = Eπ[Gt|St = s]

I Monte-Carlo policy prediction uses the empirical mean return instead of expected return
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Incremental and Running Mean

I We can compute the mean of a sequence x1, x2, . . . incrementally:

µk =
1

k

k∑
j=1

xj

=
1

k

xk + k−1∑
j=1

xj


=

1

k
(xk + (k − 1)µk−1)

= µk−1 +
1

k
(xk − µk−1)
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Incremental and Running Mean

I Thus, we can update V (s) incrementally by:

V (s)← V (s) +
1

N(s)
(Gt − V (s)),

where 1
N(s) is the state-visitation counter

I Instead 1
k , we can use step size α to calculate a running mean:

V (s)← V (s) + α(Gt − V (s))
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Monte Carlo Prediction
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Generalized Policy Iteration with MC Evaluation

I Monte Carlo Policy Evaluation: V ≈ vπ
I Policy Improvement: greedy?
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Monte Carlo Estimation of Action Values

I Greedy policy improvement over V (s) requires a model of the MDP

π(s) = argmax
a∈A

∑
s′,r

p(s′, r|s, a)[r + γV (s′)]

I Greedy policy improvement over Q(s, a) is model-free

π(s) = argmax
a∈A

Q(s, a)

Generalized Policy Iteration with action-value function:

I Monte Carlo Policy Evaluation: Q ≈ qπ
I Policy Improvement: greedy?
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ε-greedy Policy Improvement

I We have to ensure that each state-action pair is visited a sufficient (infinite) number of
times

I Simple idea: ε-greedy

I All actions have non-zero probability

I With probability ε choose a random action, with probability 1− ε take the greedy action.

π(a|s) =

{
ε
|A| + 1− ε if a = argmaxa′∈AQ(s, a′)
ε
|A| otherwise
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On-policy First-visit MC Control
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Temporal Difference Learning

Estimate/ optimize the value function of an unknown MDP using Temporal Difference
Learning.

I TD is a combination of Monte Carlo and dynamic programming ideas

I Similar to MC methods, TD methods learn directly raw experiences without a dynamic
model

I TD learns from incomplete episodes by bootstrapping

I Bootstrapping: update estimated based on other estimates without waiting for a final
outcome (update a guess towards a guess)
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TD Prediction

Monte Carlo Update

Update value V (St) towards the actual return Gt.

V (st)← V (St) + α[Gt − V (St)]

α is a step-size parameter.

Simplest temporal-difference learning algorithm: TD(0)

Update value V (St) towards the estimated return Rt+1 + γV (St+1).

V (st)← V (St) + α[Rt+1 + γV (St+1)− V (St)]

I Rt+1 + γV (St+1) is called the TD target

I δt = Rt+1 + γV (St+1)− V (St) is called the TD error
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TD Prediction
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Driving Home Example

Elapsed Time Predicted Predicted
State (minutes) Time to Go Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43
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TD Prediction
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MC vs TD

I TD can learn online after every step, MC has to wait for the final outcome/return

I TD can even learn without ever getting a final outcome, which is especially important for
infinite horizon tasks

I The return Gt depends on many random actions, transitions and rewards, the TD-target
depends on one random action, transition and reward

I Therefore, the TD-target has lower variance than the return

I But the TD-target is a biased estimate of vπ
I This is known as the bias/variance trade-off
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MC vs TD

I MC and TD converge if every state and every action are visited an infinite number of times

I What about finite experience?

Imagine two states, A and B, and the following transitions:

A,0,B,0 B,1
B,1 B,1
B,1 B,1
B,1 B,0

What are the values of A and B given this data?
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MC vs TD

I W.r.t. B, the process terminated immediately 6/8 times with a return of 1, 0 otherwise

I Thus, it is reasonable to assume a value of 0.75

I What about A?

A led to B in all cases. Thus, A could have a value of
0.75 as well. This answer is based on first modelling the
Markov Process and then computing the values given the
model. TD is leading to this value. MC gives a value of
0 – which is also the solution with 0 MSE on the given
data. One can assume, however, that the former gives
lower error on future data.
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MC vs TD

I Batch MC converges to the solution with minimum MSE on the observed returns

I Batch TD converges to the solution of the maximum-likelihood Markov model

I Given this model, we can compute the estimate of the value-function that would be
exactly correct, if the model were exactly correct

I This is called the Certainty Equivalence
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MC vs TD: Example

Assume that the agent encounters the
following set of trajectories at every it-
eration i (where i mod 4 = 0):

ti : s0 → s1 → s3 → s4
ti+1 : s0 → s1 → s3 → s4
ti+2 : s0 → s1 → s3 → s4
ti+3 : s0 → s2 → s3 → s5

s0 s1

s2

s3

s4

s5

a

( 12 ,+0)

( 12 ,+0)

a

a

(1,+0) a

( 34 ,+1)

( 14 ,−1)

Description

Given these trajectories, explain why TD-learning is better fitted to estimate the value function
compared to MC. Assume no discount and that the value function is initialized with zeros. To
which value function is MC going to converge, given a suitable learning rate α? What about
TD?
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MC vs TD

s0 s1

s2

s3

s4

s5

a

( 12 ,+0)

( 12 ,+0)

a

a

(1,+0) a

( 34 ,+1)

( 14 ,−1)

Solution

MC always takes the full return to update its values. Therefore, s1 only updates on return +1,
whereas s2 only updates on return −1. TD takes this into account due to bootstrapping. MC
converges to: v(s0) = v(s3) = 0.5, v(s1) = +1 and v(s2) = −1. TD converges to the true
value function v(s0) = v(s1) = v(s2) = v(s3) = 0.5 and v(s4) = v(s5) = 0, since 3

4
trajectories end with a return of +1 and 1

4 with a return of −1 – which corresponds to the true
distribution of the MDP.
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SARSA

I SARSA: State, Action, Reward, State, Action

I Why is it considered an on-policy method?
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Q-learning

I Why is it considered an off-policy method?
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Summary

I Monte Carlo RL methods average sample returns from episodes of experience interacting
with the environment, making it possible to learn without a given transition model

I Temporal Differenc methods learn from incomplete episodes by bootstrapping, combining
ideas from of Monte Carlo and dynamic programming

I TD can learn online after every step, MC has to wait for the final outcome/return

I TD target has lower variance than the MC return, but is biased due to bootstrapping with
wrong initial values

I Q-Learning can learn to approximate q∗ even while gathering data with a different policy
(off-policy learning)
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