What are we going to discuss?

o
12

© MPC and Markov Decision Processes - When is learning beneficial?

Qs (x,m)  L{x,u) + 7E[V (x1) [ x,1]

# samples = 1000000

Plxe | xo]

S. Gros (NT! MDP & SDP Fall, 2023 1/29




What are we going to discuss today?

MPC for MDPs
@ MPC: purpose and usage
@ MPC as a practical solution to tackle MDPs
Planning vs. Policing
Repeated planning as a policy
MPC as an MDP model
Optimal MPC model?
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Model Predictive Control (MPC) Tuning for Performance

MPC: at current state s solve

min

X,

s.t.

T (XN) + i L (Xk, uk)

k=0
X1 = fo (Xk, uk)
h(xk,uk) <0

X0 =S

gives policy wHFC (s) = ug
v

MPC: at current state s solve

min

X,u

S.t.

N—1
To (xn) + Z Lo (xk,ux)
k=0

X1 = o (Xk, uk)
hy (xx,u,) <0

Xo = S

gives policy wHFC (s) = ug
v

]

“Classic” view

@ MPC built around the model fg
@ 0O fits fp to data

@ Model fitting—optimality is tricky

S. Gros (NTNU)

@ “Holistic” view

@ MPC is a model of Q*
@ 0 fits QM to Q*
o

RL — optimality, also BO btw!!
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Model Predictive Control (MPC) Tuning for Performance

MPC: at current state s solve

min
X,u

s.t.

T (xn) + i L (xk, ux)

k=0
Xpp1 = fo (X, uk)
h(xk,uk) <0
X0 =S

gives policy wHFC (s) = uo

MPC: at current state s solve

min  Tp (xn) + Z Lo (xk,ux)

e k=0

st Xk = fo (x4, wk)
hy (xx,u,) <0
X0 =S§

gives policy w5FC (s) = uo

@ “Classic” view
@ MPC built around the model fg
@ 0O fits fp to data

@ Model fitting—optimality is tricky

S. Gros (NTNU)

@ “Holistic” view

@ MPC is a model of Q*
@ 0 fits QM to Q*
o

RL — optimality, also BO btw!!

Can we get QMTC = Q* from tuning the MPC model alone??
Can we get QMYC = Q* from fitting the model to data??

We are unpacking the maths

MDP & SDP Fall, 2023 4/29
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Planning vs. Policing

Infinite horizon & discounted

s, = argminE |:Z 'ykL(xk,uk):|
™ k=0

Policy 7

state — action
belongs to a function space

o = = = RTINS
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Planning vs. Policing

Infinite horizon & discounted

s, = argminE |:Z vkL(xk,uk)
™ k=0

belongs to a function space

] Policy 7t : state — action J

Finite-horizon equivalent:

N—1
.. n—1 = argmin E |:T(XN) + nykL(xk,uk):|

0,...,N—1 k=0

If T=V,, then g n =75
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Planning vs. Policing

Infinite horizon & discounted

oo
75, = argminE |:Z A L(xk, ug)
™ k=0

belongs to a function space

] Policy 7t : state — action J

Finite-horizon equivalent:

N—1
75, N1 = argmin E |:T(XN) + nykL(xk,uk):|
o) 1

,,,,, N— k=0

If T=V,, then g n =75

Xo::S]

Planning instead of policing:

N—1
min E |:T(xN)—|—nykL(xk,uk)
-t k=0

i.e. restrict policies to fixed uo,... n—1
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Planning vs. Policing

Infinite horizon & discounted

oo
75, = argminE |:Z A L(xk, ug)
™ k=0

belongs to a function space

] Policy 7t : state — action J

Finite-horizon equivalent:

0,...,N—1 k=0

N—1
75, N1 = argmin E |:T(XN) + nykL(xk,uk)}

If T=V,, then g n =75

Planning instead of policing: Deterministic approximation:
N—1 W=t
: k
min [E T(xN)—l—nykL(xk,uk) X0 =S$ ﬂ_om“?v 1T(XN)+27 L(xk, ux)
Up,...,N—1 k—0 v k=0

. . .. . s.t Xk+1 — f(xk,uk)
i.e. restrict policies to fixed uo,... nv—1
Xpo =S

i.e. adopt deterministic model

4
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Planning vs. Policing

Infinite horizon & discounted

oo
75, = argminE [Z A L(xk, ug)
™ k=0

belongs to a function space

] Policy 7t : state — action J

Finite-horizon equivalent:

N—1
... n_1 = argmin E | T(xn) + Z’Ykl-(xk,uk) Why attacking the problem in
0, N =0 these ways?

If T=V,, then g n =75

Planning instead of policing: Deterministic approximation:
N—1
S in () + 374 L (e, we)
min |E T(xN)+ny L(xk,uk) | xo = s “omlll?l T v L(xk, uk
Uo,... ,N—1 = N k=0

. . .. . s.t Xk+1 — f(xk,uk)
i.e. restrict policies to fixed uo,... nv—1
Xpo =S

i.e. adopt deterministic model

4
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Planning vs. Policing - lllustration

Planning instead of policing:

N—1
min E [ T(xn) + nykL(xk,uk) X0 =S5
up . N— =
i.e. restrict policies to fixed uo, . nv—1

o = = = RTINS
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Planning vs. Policing - lllustration

Planning instead of policing:

N—1

min E | T(xn) + ka,u Xo =S
n (xn) + D7 L(xk, we) | %o

y
o,... =

i.e. restrict policies to fixed uo,.. n—1
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Planning vs. Policing - lllustration

Planning instead of policing: Policing:
N—1 N—1
min E | T(xy) + Z YFL(xk, ue) | X0 = s min E [ T(xn) + Z YL (%K, ux)
Up,...,N—1 k=0 T0,...,N—1 k=0
i.e. restrict policies to fixed uo, . nv—1 i.e. optimize over policies
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Planning vs. Policing - lllustration

Planning instead of policing: Policing:
N—1 N—1
min K T(XN)+Z’YkL(Xk,Uk) X0 =8 min E T(xN)—l—nykL(xk,uk)
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Planning vs. Policing - lllustration

Planning instead of policing: Policing:
N—1 N—1
in E|T “L = i >
min (xn) + v L(xk,u) | X0 =8 min E [ T(xn) + v L(xk, uk)
Up,...,N—1 — T0,...,N—1
k=0 SR k=0
i.e. restrict policies to fixed uo, . nv—1 i.e. optimize over policies
Il Il
o 1 2 3 4 5 6 7 8 9 10
o 1 2 s a4 s s 71 5 9 w0 | |
] q. 2 3 4 5 6 7 8 9 10
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Planning vs. Policing - lllustration

Planning instead of policing:
N—1
min E | T(xn) + nykL(xk,uk) X0 =S8
Up,...,N—1 —o

i.e. restrict policies to fixed uo,.. n—1

Policing:

i.e.

optimize over policies

N-1
min E T(xN)—l—nykL(xk,uk)

0,...
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Planning vs. Policing - lllustration

Planning instead of policing: Policing:
N—1 N—1
in E|T “L = i >
min (xn) + v L(xk,u) | X0 =8 min E [ T(xn) + v L(xk, uk)
Up,...,N—1 ™0 N—1
= =
i.e. restrict policies to fixed uo, . nv—1 i.e. optimize over policies
o 1 2‘ 3 4 ; 6 7 8 9 1‘0
o 1 2 s a4 s s 71 5 9 w0 | L
] q. 2 3 4 5 6 7 8 9 10
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Planning vs. Policing - lllustration

Planning instead of policing: Policing:
N—1 N—1
min E | T(xy) + Z YFL(xk, ue) | X0 = s min E [ T(xn) + Z YL (%K, ux)
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Planning instead of policing: Policing:
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Planning vs. Policing - lllustration

Deterministic approximation: Policing:
N—1 Wil
min T(xn) + Z VL (%, ui) min E [ T(xn) + Z YL (%K, ux)
Up,...,N—1 k=0 T0,...,N—1 k=0

s.t Xk1=kallk . .. ..
u (1 1) i.e. optimize over policies

Xo =S
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MPC vs. MDP?

Infinite horizon & discounted Deterministic approximation:
* . = k N—1
75, = argminE 27 L(xx, ux) ol T(xn) + kaL(xk,uk)
™ k=0 U, . N—1 —~

st xup1 = f(xk, k)

X0 =S
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MPC vs. MDP?

Infinite horizon & discounted

oo
T = argminE kaL(xk,uk)
™ k=0

Remarks:

@ MPC predictions from f are a
simplified representation of the real
dynamics

@ Finer models can be built, e.g.

scenario trees, more on this in a bit...

@ MPC defines a policy:
P (s) = u§

from repeated planning

S. Gros (NT!

Deterministic approximation:

N—1
min T(xn) + Z AL (%K, ui)

U, N—1 =0

st xup1 = f(xk, k)

X0 =S
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MPC vs. MDP?

Infinite horizon & discounted

oo
Ts, = argminE nykL(xk,uk)
4 k=0

Remarks:

@ MPC predictions from f are a
simplified representation of the real
dynamics

@ Finer models can be built, e.g.

scenario trees, more on this in a bit...

@ MPC defines a policy:

7_‘_MPC (S

) =1
from repeated planning

S. Gros (NT!

Deterministic approximation:

N—-1

T(xn) + Z <L (xk, uk)

k=0
Xpp1 = F(xk, ux)

X0 =S

20
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MPC vs. MDP?

Infinite horizon & discounted Deterministic approximation:
. ) i N N—1
T — arg min E Z’Y L(Xkyuk) min T(XN) + nykl_(xk,uk)
uw k=0 Ug,... ,N—1 =0

St Xpy1 = f(xk, uk)

X0 =S

Remarks:

@ MPC predictions from f are a
simplified representation of the real

dynamics
@ Finer models can be built, e.g. T Fa—

scenario trees, more on this in a bit...
@ MPC defines a policy:

MP
MO (s) = u
from repeated planning | 1] | 1] ‘
o 2 4 6 8 10 12 14 16 18 20
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MPC vs. MDP?

Infinite horizon & discounted Deterministic approximation:
. ) i N N—1
T — arg min E Z’Y L(Xkyuk) min T(XN) + nykl_(xk,uk)
4 k=0 U N1 prd

St Xpy1 = f(xk, uk)

X0 =S

Remarks:

@ MPC predictions from f are a
simplified representation of the real

dynamics
@ Finer models can be built, e.g. W e w2
scenario trees, more on this in a bit...
@ MPC defines a policy:
MPC *
T s) = u,
(s) = wo |
from repeated planning [ ] [ ] |
o 2 4 6 8 10 12 14 16 18 20
MDP & SDP Fall, 2023  8/29
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MPC vs. MDP?

Infinite horizon & discounted

oo
Ts, = argminE nykL(xk,uk)
4 k=0

Remarks:

@ MPC predictions from f are a
simplified representation of the real
dynamics

@ Finer models can be built, e.g.
scenario trees, more on this in a bit...

@ MPC defines a policy:

71_MPC (S)

*
from repeated planning

S. Gros (NT!
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Deterministic approximation:

N—1
min T(xn) + ka,u
i T+ 3 s

s.t xk+1:f(xk,uk)

X0 =S
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MPC vs. MDP?

Infinite horizon & discounted

oo
Ts, = argminE nykL(xk,uk)
4 k=0

Remarks:

@ MPC predictions from f are a
simplified representation of the real
dynamics

@ Finer models can be built, e.g.
scenario trees, more on this in a bit...

@ MPC defines a policy:
P (s) = u§
from repeated planning

S. Gros (NT!
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Deterministic approximation:

N—1
min T(xn) + ka,u
i T+ 3 s
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MPC vs. MDP?

Infinite horizon & discounted

oo
Ts, = argminE nykL(xk,uk)
4 k=0

Remarks:

@ MPC predictions from f are a
simplified representation of the real
dynamics

@ Finer models can be built, e.g.

scenario trees, more on thisin a bit... ° * ¢ ° °® © ®w ® wow
@ MPC defines a policy:
MPC
T (s) =g
from repeated planning ‘
o 2 1‘1 é 8 10 12 1‘4 \‘5 18
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MPC vs. MDP?

Infinite horizon & discounted

w5 = argminE |:Z fykL(xk,uk):|
" k=0

Remarks:

@ MPC predictions from f are a
simplified representation of the real
dynamics

@ Finer models can be built, e.g.

Deterministic approximation:

N—1
min T(xn) + ka,u
i T+ 3 s

s.t xk+1:f(xk,uk)

X0 =S

20

scenario trees, more on thisin a bit... ° * * ° °* © ¢mowowowo®
@ MPC defines a policy:
MPC
T (S) =u; _,_’_f
—
from repeated planning j
o 2 ; é 8 10 12 1‘4 16 18 '
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MPC vs. MDP?

Infinite horizon & discounted Deterministic approximation:
. ) i N N—1
T — arg min E Z’Y L(Xkyuk) min T(XN) + nykl_(xk,uk)
4 k=0 U N1 prd

St Xpy1 = f(xk, uk)

X0 =S

Remarks:
@ MPC predictions from f are a
simplified representation of the real
dynamics

@ Finer models can be built, e.g.

scenario trees, more on this in a bit... et e e e e m
@ MPC defines a policy:
MPC
T (s) =g
from repeated planning ‘
o 2 4 é 8 10 12 1‘4 1‘5 18 2‘0
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MPC vs. MDP?

Infinite horizon & discounted

oo
Ts, = argminE nykL(xk,uk)
4 k=0

Remarks:

@ MPC predictions from f are a
simplified representation of the real
dynamics

@ Finer models can be built, e.g.

scenario trees, more on this in a bit...

@ MPC defines a policy:
P (s) = u§
from repeated planning

S. Gros (NT!

Deterministic approximation:

N—-1

T(xn) + Z <L (xk, uk)

Xpp1 = F(xk, ux)
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MPC vs. MDP?

Infinite horizon & discounted

w5 = argminE |:Z fykL(xk,uk):|
" k=0

Remarks:

@ MPC predictions from f are a
simplified representation of the real
dynamics

@ Finer models can be built, e.g.

scenario trees, more on this in a bit...

@ MPC defines a policy:
P (s) = u§
from repeated planning

S. Gros (NTNU)

Deterministic approximation:

N—-1

T(xn) + Z <L (xk, uk)

k=0
Xpp1 = F(xk, ux)

X0 =S

0 2

0 2
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MPC as a policy

Deterministic MPC:

Uo,...,N—1

N—1
min T(xn) + Z’ykL(xk,uk)
k=0

st Xpp1 = £(xk, uk)

Xp =S
. . —
Defines policy: Nul
ﬂ_MPC (S) _ 116 o 2 P

How does 7#™P€ relate to 7w*?

No reason to match:
@ Planning rather than policing Can we clarify the relationship? J

@ Plan ignores stochasticity

S. Gros (NT! MDP & SDP Fall, 2023 9/29




Some more context on MPC for performance

Historically MPC focuses on constraints
satisfaction & stability. Cost is for
reference tracking, not representative of
the system performance.
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Some more context on MPC for performance

Historically MPC focuses on constraints
satisfaction & stability. Cost is for
reference tracking, not representative of
the system performance.

@ “Tracking MPC"
@ Classic stability theory

@ Uncertainty via

» Robust MPC
» Stochastic MPC

@ “MPC is for constraints
satisfaction” (public statement)
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Some more context on MPC for performance

Historically MPC focuses on constraints More recently, focus on closed-loop
satisfaction & stability. Cost is for performance, e.g. energy, time, money.
reference tracking, not representative of Cost is generic, representative of the
the system performance. system performance.

@ “Tracking MPC"
@ Classic stability theory

@ Uncertainty via

» Robust MPC
» Stochastic MPC

@ “MPC is for constraints
satisfaction” (public statement)
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Some more context on MPC for performance
Historically MPC focuses on constraints More recently, focus on closed-loop
satisfaction & stability. Cost is for

reference tracking, not representative of

the system performance.

Cost is generic, representative of the
system performance.

performance, e.g. energy, time, money.

@ “Tracking MPC" @ “Economic MPC"

@ Classic stability theory @ Dissipativity theory
@ Uncertainty via

» Robust MPC
» Stochastic MPC » Stochastic MPC

@ “MPC is for constraints ... debatable approach for
satisfaction” (public statement) performance

@ Uncertainty via
» Robust MPC
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Some more context on MPC for performance

Historically MPC focuses on constraints More recently, focus on closed-loop

satisfaction & stability. Cost is for performance, e.g. energy, time, money.

Cost is generic, representative of the

reference tracking, not representative of
system performance.

the system performance.

“Tracking MPC" @ "“Economic MPC"
@ Classic stability theory @ Dissipativity theory
@ Uncertainty via

» Robust MPC

» Stochastic MPC

... debatable approach for

@ Uncertainty via

» Robust MPC
» Stochastic MPC

@ “MPC is for constraints
satisfaction” (public statement) performance

MPC for closed-loop performance
@ is not a very old topic

@ unclear in the presence of stochasticity

@ partially clarified by recent results
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MPC as a model of the MDP

Infinite horizon & discounted MPC policy 7wF€ (s) = uf from
oo p N—1
o = argminE ny L(xk,uk) wile T(xn) + Z’Ykl-(xk’uk)
™ =0 U, N—1 =0

st xuq1 = £(xk, wk)

Xo =S
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MPC as a model of the MDP

Infinite horizon & discounted

w5 =argminE |:Z fykL(xk,uk):|

k=0

MPC as a model of the MDP

MPC policy 7wF€ (s) = uf from

N—1
min T(xn) + kL (x il
1111 e (xn) kZ:OW (xk, u)

st xuq1 = £(xk, wk)

Xo =S

N—1
VMPC () := min T(xn) + Z 4L (%k, uk) N ‘
u
k=0 &
St Xkp1 = f(xk,uk)
W =E b T
LT
I T S T T
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MPC as a model of the MDP

Infinite horizon & discounted MPC policy 7wF€ (s) = uf from

w5 =argminE |:Z fykL(xk,uk):|

k=0

MPC as a model of the MDP

N—1
min T(xn) + kL (x il
11111 e (xn) kZ:OW (xk, u)

st xuq1 = £(xk, wk)

Xo =S

N—1
VMPC () .= muin T(xn) + Z 4L (%k, uk)
k=0
St Xkp1 = f(xk,uk)

Xpo =S
N—1
QMPC (Sa a) = m“in T(X’V) + Z 'Vkl-(xkv uk)
k=0

s.t Xk+1 = f(Xk,llk)

X0 = S, Up = a

4
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MPC as a model of the MDP

Infinite horizon & discounted MPC policy 7wF€ (s) = uf from

w5 =argminE |:Z fykL(xk,uk):|

k=0

MPC as a model of the MDP

N—1
min T(xn) + kL (x il
11111 e (xn) kZ:OW (xk, u)

st xuq1 = £(xk, wk)

Xo =S

N—1
VMPC () .= muin T(xn) + Z 4L (%k, uk)
k=0
St Xkp1 = f(xk,uk)

Xpo =S
N—1
QMPC (Sa a) = muin T(X’V) + Z ’Vkl-(xkv uk)
k=0

s.t Xk+1 = f(Xk,llk)

X0 = S, Up = a

4

S. Gros (NTNU) MDP & SDP

MPC is consistent:

VMPC (5) = min QFC (s,a)

wMPC (s) = argmin QMFC (s, a)
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MPC as a model of the MDP

Infinite horizon & discounted MPC policy 7wF€ (s) = uf from

w5 =argminE |:Z fykL(xk,uk):|

k=0

MPC as a model of the MDP

N—1
min T(xn) + kL (x il
11111 e (xn) kzzov (xk, u)

st xuq1 = £(xk, wk)

Xo =S

N—1
VMPC () .= muin T(xn) + Z 4L (%k, uk)
k=0
St Xkp1 = f(xk,uk)

Xpo =S
N—1
QMPC (Sa a) = muin T(X’V) + Z ’Vkl-(xkv uk)
k=0

st Xk = f(Xk,llk)

X0 = S, Up = a

4

MPC is consistent:
yMPC (s) = main QMPe (s,a)
wMPC (s) = argmin QMFC (s, a)
MPC is a complete model of MDP if:
QY7 (s,2) = Q" (5,2)
for all s,a. Then optimality holds:

aMPC (s) =7 (s)

S. Gros (NTNU) MDP & SDP

Fall, 2023 11/29



Outline

© MPC Model for Performance
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MPC as a model of the MDP

Infinite horizon & discounted MPC policy 7FC (s) = uf from
N _ <, N-1
o = argminE Z’y L(Xk, uk) min T(XN) + Z 'ykL(xk7 llk)
™ k=0 up,..., N—1 =
s.t Xk+1 = f(xk, llk)
X0 =S
When does
QMPC (Sa a) = Q* (Sv a)
hold?
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MPC as a model of the MDP

Infinite horizon & discounted MPC policy 7FC (s) = uf from
<, N—1
o = argminE Z’y L(Xk,uk) min T(XN) + Z'ykL(xhuk)
w k=0 LIRS N— k=0

St Xpy1 = f(xk, uk)

X0 =S

Bellman equation for all s,a

When does
Q" (s,a) = L(s,a) + YE[V* (s1) | s, a]
QMPC (Sa a) = Q* (Sv a)
hold?
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MPC as a model of the MDP

Infinite horizon & discounted MPC policy 7FC (s) = uf from
N . <, N—1
o = argminE Z’y L(Xk, uk) min T(XN) + Z 'ykL(xk7 llk)
™ k=0 U, ..., N—1 =

St Xpy1 = f(xk, uk)

X0 =S

Bellman equation for all s,a

Q" (s,a) = L(s,a) + YE[V* (s4) | s, a]

When does

QY (s,2) = Q" (s,a)

hold? Theorem: if T =~+"V*, MPC is a complete MDP
solution® if for some ¢

Q" (s,a) = L(s,a) +yV" (f(s,2)) + ¢

holds for all S, & (with technical assumption)

Tup to a constant
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MPC as a model of the MDP

Infinite horizon & discounted MPC policy 7FC (s) = uf from
* . - k ety
i, =argminE ny L(xx, u) min  T(xn)+ kaL(Xk,llk)
™ k=0 U, ..., N—1 =

St Xpy1 = f(xk, uk)

X0 =S

Bellman equation for all s,a

Q” (s,a) = L(s,a) + YE[V* (s4) |s,a]

When does

QY (s,2) = Q" (s,a)

hold? Theorem: if T =~+"V*, MPC is a complete MDP
solution® if for some ¢

Q" (s,a) = L(s,a) +yV" (f(s,2)) + ¢

holds for all S, & (with technical assumption)

T . . .
up to a constant Proof: telescopic sums, Bellman identities,

properties of the advantage function, some measure
theory, devil is in the details
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MPC as a model of the MDP

Infinite horizon & discounted MPC policy 7FC (s) = uf from
N _ <, N—1
o = argminE Z’y L(Xk, uk) min T(XN) + Z 'ykL(xk7 llk)
™ k=0 U, ..., N—1 =

St Xpy1 = f(Xk, uk)

X0 =S

Bellman equation for all s,a

When does . .
QMPC (S, a) _ Q* (s7 a) Q (Sv a) = L(57 a) +E [V (S+) | Sva]
hold? Theorem: if T =~"V*, MPC is a complete MDP
solution® if for some ¢
What does it mean? Q" (s,a) = L(s,a) +yV* (£(s,a)) + ¢

holds for all S, & (with technical assumption)

t . . "
up to a constant Proof: telescopic sums, Bellman identities,

properties of the advantage function, some measure
theory, devil is in the details
S. Gros (NTNU) MDP & SDP Fall, 2023  13/29



What does that mean?

MPC policy

MPC (S)

= ug from Theorem: if T = 4"V*, MPC is complete
N—1
min T(xn) + Z fykL(xk, uy) Q" (s,a) = L(s,a) +yV" (f(s,a)) + ¢
Uy, ...N —1 =
st xkpr = £(xu, uk)
X0 =S

o = = = RTINS
S. Gros (NTNU) MDP & SDP



What does that mean?

MPC (S)

MPC policy 7 = ug from

N—1
min T(xn) + KL(x ,
AAAAA o (xn) ;7 (xk, u)

st Xuq1 = £(xk, uk)

X0 =S

Theorem: if T = 4"V*, MPC is complete

Q" (s,a) = L(s,a) +yV* (f(s,a)) + ¢

Equivalent statement

E[V" (s+) [s,a] = V" ( (s,a)) + ¢

requirement on model f !!!
v
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What does that mean?

MPC policy 7P (s) = u§ from Theorem: if T =~"V*, MPC is complete
N—1
min T(xn) + Z fykL(xk, uy) Q* (s,a) = L(s,a) + V" (f(s,a)) + ¢
U, ..., N—1 =0
st Xepn = £(xx, ) Equivalent statement
X0 =Ss E[V* (s1) |s,a] = V* (f(s,a)) + ¢

requirement on model f !!!
v

E.g. ¢ =0, V* quadratic

maxofs, [s.a]  E[s. |s,al

N

E[V* (s4) |s,a]

f (s, a)
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What does that mean?

MPC policy 7P (s) = u§ from Theorem: if T =~"V*, MPC is complete
N—1
min T(xn) + Z fykL(xk, uy) Q* (s,a) = L(s,a) + V" (f(s,a)) + ¢
U, ..., N—1 =0
st Xepn = £(xx, ) Equivalent statement
X0 =Ss E[V* (s1) |s,a] = V* (f(s,a)) + ¢

requirement on model f !!!
v

E.g. ¢ =0, V* quadratic

Remark
maxo[ss |s,a] E[si|s,a] Even for a simple V* neither
\ f(s,a) =E[sy|s,a]
nor
E[V* (s+) |s,a] “ f(s,a) = maxg[ss |s,a]
_ make the MPC complete / optimal

f (s, a)
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Why does it matter?

MPC policy 7P (s) = uj from MPC is complete if model f satisfies
N-1 E[V* (s4) |s,a] = V* (f(s,a)) + ¢
min  T(xn)+ Z AR L (xk, uk)
up,..., —il prd
st Xup1 = £(xu, k)
Xo =S

=) = = = RTINS
S. Gros (NTNU) MDP & SDP



Why does it matter?

MPC policy 7P (s) = uj from MPC is complete if model f satisfies
E[V*(s1) |s,a] = V* (f(s,a)) + ¢

N—1
min T(xn) + kaL(xk,uk)

ug,...,N—1 i

st Xup1r = £(xk, uk)

X0 =S

Model f built via Least-Squares fit
N
min 3 o (s24) = sl

Classic approach in SYSID & ML J
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Why does it matter?

MPC policy 7P (s) = uj from

MPC is complete if model f satisfies

f= E[V*(sy) |s,a] = V* (f(s,a)) + ¢
min T(xN)-l-kaL(xk,uk) [V (s+) Is.al (f(s2))
U, N—1 =

st Xup1r = £(xk, uk)

X0 =S

Model f built via Least-Squares fit
N
min 3 1o sk, sl

Classic approach in SYSID & ML

In ideal conditions:

k
fox (s,a) — E[sy]s,a]

Trajectory from simulating fg«
i.e. one-step ahead expected transition

S. Gros (N

MDP & SDP
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Why does it matter?

MPC policy 7MF€ (s)

= ugy from
N—1
min T(xn) + Z vkL(xk, uy)
u, . N—1 =
st Xup1r = £(xk, uk)

X0 =S

Model f built via Least-Squares fit
N
min 3o (51,4 = sl

Classic approach in SYSID & ML

MPC is complete if model f satisfies

E[V7 (s+) [s,a] = V" (f (s,a)) + ¢

In ideal conditions:

fox (s,a) — E[sy]s,a]

i.e. one-step ahead expected transition

S. Gros (NTNU)

MDP & SDP

J

Trajectory from simulating fg«
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Why does it matter?

MPC policy 7MF€ (s)

= u} from MPC is complete if model f satisfies
N-1 E[V* (s4) |s,a] = V* (f(s,a)) + ¢
min T(xn) + Z YL (%K, 1)
up, .. N—1 i
st Xup1r = £(xk, uk)

X0 =S

Model f built via Least-Squares fit
N
min 3 o (s24) = sl

Classic approach in SYSID & ML

In ideal conditions:

for (s,a) — E[s;|s,a]

Trajectory from simulating fg«
i.e. one-step ahead expected transition

Expected trajectory
S. Gros (NTNU)

MDP & SDP

Fall, 2023 15/29



Why does it matter?

MPC policy 7P (s) = uj from MPC is complete if model f satisfies
E[V7(s+) [s,a] = V" (f(s,a)) + ¢ J

N—1
min T(xn) + kaL(xk,uk)

U, ,N—1 =

st Xup1r = £(xk, uk)

X0 =S

The gap in
QMFC (s,a) ~ Q (s,a), mMPC (s) = 7" (s)

when using MPC models based on one-step ahead Least-Squares fitting (PEM) comes
from the lack of commutativity (up to a constant) between V* and E[], i.e.

E[V*(S+) |Saa] -V (E[S+|Sva])#c

To our best knowledge other methods (sim error, max likelihood) do not fix that
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An Important Exception

MPC policy 7MFC (s) = u} from

N—-1
T(xn) + Z YL (xk, ug)
,,,,,, =0
s.t Xk+1 = f(xk,uk)
X0 =S

o = = = RTINS
S. Gros (NTNU) MDP & SDP



An Important Exception - The LQR Case

Consider
. MPC (o) _ %
MPC policy @ (s) = ug from @ L is quadratic, no constraints
N—1
wile T(xn) + Z’YkL(Xk,llk) @ Real dynamics: for some density ¢
up,..., N—1 e

s+ |s,al = p(sy — p(s,a
P ofst|s,a] = ¢ (sy — p(s,a))

X0 =S§ where p is affine

@ MPC model selected as:

f(s,a) =E[sy]s,a]
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An Important Exception - The LQR Case

Consider
. MPC (o) _ %
MPC policy @ (S)N_1uo from @ L is quadratic, no constraints
ol T(xn) + Z’YkL(Xk,llk) @ Real dynamics: for some density ¢
Up,..., N—1 =0
~ ols+ [s.a] = o (s — p(5.0))
St Xky1 = f(xk,uk)
X0 =S where p is affine

@ MPC model selected as:

Then...
f(s,a) =E[sy]s,a]

@ V™ is quadratic
@ f is affine
@ There is ¢ such that
E[V* (s4+) |s,a] = V*(f(s,a)) + ¢
@ MPC is complete for some T, i.e.
QMPC (57 a) — Q* (57 a) ,
71_MPC (S) _ 71'* (S)
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An Important Exception - The LQR Case

Consider
. MPC (o) _ %
MPC policy @ (S)N_1uo from @ L is quadratic, no constraints
wile T(xn) + Z’YkL(Xk,llk) @ Real dynamics: for some density ¢
Up,..., N—1 e
olss [s,a] = o (s — pu(s.a))

St Xky1 = f(xk,uk)
where p is affine

X0 =S

@ MPC model selected as:

Then...
@ V™ is quadratic f(s,a) =E[sy s a]

@ f is affine

@ There is ¢ such that This is LQR + i.i.d state noise!

E[V7 (s4) [s,a] = V7 (f(s,a)) + ¢ Why is this relevant for MPC?

@ MPC is complete for some T, i.e.
QMPC (57 a) — Q* (57 a) ,
71_MPC (S) _ 71'* (S)
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Local Optimality of Classic MPC

Assume:
. MPC () _ . *
MPC policy @ () = ug from @ p[s4 |s,a] is smooth in s, a, for all st
N—1

§ i T(xn) + Z'Ykl-(xkﬂlk) @ L is smooth
Ot k=0 @ 7" is such that system dynamics converge

st Xepr = £(xk, k) to steady state density p, (.) (dissipative)

Xo=S§ which is “off-constraints”
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Local Optimality of Classic MPC

Assume:
. MPC .\ _ . %
MPC policy 7 (s) = ug from o o5, |sa] is smooth in s, a, for all s
N—1
min T(xn) + Z AR L (%, uk) @ L is smooth
B (=0 @ m* is such that system dynamics converge
st Xepr = £(xk, k) to steady state density p, (.) (dissipative)

Xo=S§ which is “off-constraints”

Then MPC based on “expected-value” model
f(s,a) =E[sy|s,a]

yields a locally optimal policy, optimality loss in the order of the moments of p, (.)
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Local Optimality of Classic MPC

Assume:
. MPC (. _ . *
MPC policy @ (s) = ug from @ p[s4 |s,a] is smooth in s, a, for all st
N—1

. min T(xn) + Z'Vkl-(xkﬂlk) @ L is smooth
Ot k=0 @ 7" is such that system dynamics converge

st Xepr = £(xk, k) to steady state density p, (.) (dissipative)

Xo=§ which is “off-constraints”

Then MPC based on “expected-value” model
f(s,a) =E[s+]s, 4]
yields a locally optimal policy, optimality loss in the order of the moments of p, (.)
If problem is smooth & optimal policy
drives and keeps the system “tightly” to its
optimal steady state, then one can expect

the MPC based on an “expected-value”
model to perform well
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Local Optimality of Classic MPC

Assume:
. MPC (. _ . *
MPC policy @ (s) = ug from @ p[s4 |s,a] is smooth in s, a, for all st
N—1

. min T(xn) + ZWkL(Xk,uk) @ L is smooth
Ot k=0 @ 7" is such that system dynamics converge

st Xepr = £(xk, k) to steady state density p, (.) (dissipative)

Xo=§ which is “off-constraints”

Then MPC based on “expected-value” model
f(s,a) =E[s+]s, 4]
yields a locally optimal policy, optimality loss in the order of the moments of p, (.)
If problem is smooth & optimal policy Classic MPC paradigm works well under
drives and keeps the system “tightly” to its these conditions J
optimal steady state, then one can expect

the MPC based on an “expected-value”
model to perform well
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Local Optimality of Classic MPC

Assume:

. MPC (. _ . *
MPC policy @ (s) = ug from @ p[s4 |s,a] is smooth in s, a, for all st
N—1
min T(xn) + ZWkL(Xk,uk) @ L is smooth
Ot k=0 @ 7" is such that system dynamics converge
st Xepr = £(xk, k) to steady state density p, (.) (dissipative)
Xo=§ which is “off-constraints”

Then MPC based on “expected-value” model
f(s,a) =E[s+]s, 4]

yields a locally optimal policy, optimality loss in the order of the moments of p, (.)

If problem is smooth & optimal policy Classic MPC paradigm works well under
drives and keeps the system “tightly” to its these conditions J
optimal steady state, then one can expect .
the MPC based on an “expected-value” Not “classic”?
model to perform well @ Economic / non-smooth cost

@ No dissipativity / “disturbances”

@ Non-smooth problem
S. Gros (NTNU) MDP & SDP Fall, 2023  17/29



[llustrations - Constrained LQR problem

Consider the dynamics: Cost:

_ 2 Y
s —statw L(s,a) =a" + (s —0.5)

Constraints:

with s,a, w € R, and w ~ A/ (0,0) i.i.d. a € [-0.25,025]

on a restricted interval.
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[llustrations - Constrained LQR problem

Consider the dynamics: Cost:

_ 2 Y
s —statw L(s,a) =a" + (s —0.5)

Constraints:

with s,a, w € R, and w ~ N (0,0) i.i.d. a € [-0.25,0.25]

on a restricted interval.

MPC model:
f(s,a)=E[sy|s,a]=s+a
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[llustrations - Constrained LQR problem

Consider the dynamics: Cost:

_ .2 aE)2
i =s+atw L(s,a) =a" + (s —0.5)

Constraints:

with s,a, w € R, and w ~ N (0,0) i.i.d. a € [-0.25,0.25]

on a restricted interval.

MPC model:
f(s,a)=E[sy|s,a]=s+a

If V* is quadratic i.e. V*(s) =s' Ws-+d's+ V then
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[llustrations - Constrained LQR problem

Consider the dynamics: Cost:

_ .2 aE)2
Sy —statw L(s,a) =a" + (s —0.5)

Constraints:

with s,a, w € R, and w ~ N (0,0) i.i.d. a € [-0.25,0.25]

on a restricted interval.

MPC model:
f(s,a)=E[sy|s,a]=s+a
If V* is quadratic i.e. V*(s) =s' Ws-+d's+ V then
E[V* (s1) |s,a] = E [SIWS+ +d"sy + Vo} s,a]
=1f(s,a)’ Wf(s,a)+d f(s,a)+ Vo+E [WTWW]
=V*(f(s,a)) +E [WTWW]

=C
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[llustrations - Constrained LQR problem

Consider the dynamics: Cost:

_ .2 aE)2
Sy —statw L(s,a) =a" + (s —0.5)

Constraints:

with s,a, w € R, and w ~ N (0,0) i.i.d. a € [-0.25,0.25]

on a restricted interval.
MPC model:
f(s,a)=E[sy|s,a]=s+a
If V* is quadratic i.e. V*(s) =s' Ws-+d's+ V then
E[V* (s1) |s,a] = E [SIWS+ +d's; + W } s,a]
=1f(s,a)’ Wf(s,a)+d f(s,a)+ Vo+E [WTWW]
=V*(f(s,a)) +E [WTWW]

=C

Hence theory predicts MPC produces optimal policy!
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[llustrations - Constrained LQR problem

Consider the dynamics: Cost:

_ 2 Y
i =s+atw L(s,a) =a" + (s —0.5)

. .. Constraints:
with s,a, w € R, and w ~ N (0,0) i.i.d.
. . a € [-0.25,0.25]
on a restricted interval.
1.04
0.84
0.64
o
0.4
0.24
0.04
(‘A 11‘)0 2[‘10 3(‘]() 4(‘71) SK‘JU
time
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[llustrations - Constrained LQR problem

Consider the dynamics: Cost:

_ .2 aE)2
i =s+atw L(s,a) =a" + (s —0.5)

Constraints:

with s,a, w € R, and w ~ N (0,0) i.i.d. a € [-0.25,0.25]

on a restricted interval.

1.24
0.2 4
1.04
0.14
0.84
— V*
4 0.0 4
06 —_— MPC
0.4 —0.14
0.24
—0.2 4
0.04
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
S S
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lllustrations - Dissipative / Non-Smooth Problem

Consider the dynamics:
sy =s+a+w

with s,a, w € R, and w ~ N (0, 0)
on a restricted interval.

Cost:
L(s,a) =|al +|s — 0.5]
Constraints:

a € [~0.25,0.25]
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lllustrations - Dissipative / Non-Smooth Problem

Consider the dynamics: Cost:

s, =s+atw L(s,a) = |a| + |s — 0.5]
with s,a, w € R, and w ~ N (0, o) Constraints:
on a restricted interval. a € [-0.25,025]

0.8

0.6 4

0.4

0.24

0.0

0 5 10 15 20
time
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lllustrations - Dissipative / Non-Smooth Problem

Consider the dynamics: Cost:

S+:S+a—|—w L(Saa):|a|+|5—05|
with s,a, w € R, and w ~ A (0,0) Constraints:
on a restricted interval. a € [-0.25,025]

\/
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N 0.1

—_—
61 — pMPC 0.04

—0.14

v —021
04

T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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lllustrations - Non-Dissipative / Non-smooth Problem

Consider the dynamics: Cost:
sy =s+a+w _ a if aSO
L(S’a)_{ 2a if a>0
with s,a, w € R, and w ~ N (0, 0)
on a restricted interval. Constraints:

What is this problem? s € [0,1], a € [-0.25,0.25]
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lllustrations - Non-Dissipative / Non-smooth Problem

Consider the dynamics: Cost:
s+:s—|—a—|—w o a if aSO
L(S’a)_{ 2a if a>0
with s,a, w € R, and w ~ N (0, o)
on a restricted interval. Constraints:
What is this problem? s € [0,1], a € [-0.25,0.25]
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time
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lllustrations - Non-Dissipative / Non-smooth Problem

Consider the dynamics: Cost:
st =s+a+w L(s,a) = a if a<o0
’ 2a if a>0
with s,a, w € R, and w ~ N (0, 0)
on a restricted interval. Constraints:
What is this problem? s € [0,1], a € [-0.25,0.25]
0.75 4 0.05 4
0.50 4 0.00 4
0.25 4
—0.05 4 N
0.00 4 ™
o104 - _MPC
~0.254 010 m
0504 ~0.154
—0.754 —0.20 4
—1.00 4
0.0 ()j2 ()j4 ()jﬁ (178 1.0 0.0 l]T‘Z 0?4 0?6 ()TS 1.0
S S
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MPC model & Optimality

Model f (s, a) such that Stochastic state transition

Vi (£(s,) = E[V* (s1) [s,a] — ¢ (1) ols: [s.a] J

holds for some ¢ 727 | \1. del fikelihood:

o[f(s,a) |s,a] >0

is desired, ideally maximal
v

E[V*(sy)|s,al—¢

S+
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Model f (s, a) such that Stochastic state transition

Vi (£(s,) = E[V* (s1) [s,a] — ¢ (1) ols: [s.a] J

holds for some ¢ 727 | \1. del fikelihood:

o[f(s,a) |s,a] >0

is desired, ideally maximal
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MPC model & Optimality

Model f (s, a) such that Stochastic state transition

Vi (£(s,) = E[V* (s1) [s,a] — ¢ (1) ols: [s.a] J

holds for some ¢ 727 | \1. del fikelihood:

o[f(s,a) |s,a] >0

is desired, ideally maximal
v

Existence yes... but not fully clear yet

For ¢ = 0 and V* continuous and g of
convex support, there is a f (s,a) with
o[f(s,a) |s,a] > 0 and (1) for all s,a.

E[V*(sy)|s,al—¢

S+
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MPC model & Optimality

Model f (s, a) such that
Vi (f(s,a)) =E[V" (s4) [s,a] —c (1)

holds for some ¢ 7?77

f (s, a)

E[V*(sy)|s,al—¢

S4

S. Gros (NTNU)

MDP & SDP

Stochastic state transition

o[s+|s,a]

Model likelihood:
o[f(s,a) |s,a] >0

is desired, ideally maximal
v

Uniqueness no... but max likelihood
f(s,a) = argmax o[84]s,a]
5+

st (1)

would typically fix that
v

Fall, 2023 22/29



MPC model & Optimality

Model f (s, a) such that Stochastic state transition

V*(f(s,a)) =E[V"(sy) |s,a] —c (1) o[s+ s a] |

holds for some ¢ 7?7 | n164el likelihood:

o[f(s,a) |s,a] >0

is desired, ideally maximal
v

Continuity not necessarily... must be
imposed

E[V*(ss)|s,;al—¢

S+
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[llustrations - Optimal MPC model

Consider the dynamics: Cost:
sy =s+a+tw L(s,a) = |a|] + [s — 0.5]
with
@ saweR Constraints:
@ w ~ N (0,0) on a restricted interval s € [0,1], a € [-0.25,0.25]
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[llustrations - Optimal MPC model

Consider the dynamics:

st =s+a+w

Cost:

L(s,a) = |a| + |s — 0.5]

with
@ saweR Constraints:
@ w ~ N (0,0) on a restricted interval s € [0,1], a € [-0.25,0.25]
Expected value model:
E[sy]=s+a
ETE R



[llustrations - Optimal MPC model

Consider the dynamics:

st =s+a+w
with

@ s,a, weR

@ w ~ N (0,0) on a restricted interval

4

Cost:
L(s,a) = |a| + |s — 0.5]
Constraints:

s € [0,1], a € [-0.25,0.25]

Expected value model:

E[sy]=s+a

Max Likelihood optimal model(s)
fc(s,a) =

argmax o[8; |s,a]
8¢

st. V*By)=E[V*(sy) |s,a] — 3

S. Gros (NTNU)
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[llustrations - Optimal MPC model
Consider the dynamics:

st =s+a+w
with
@ s,a, weR

@ w ~ N (0,0) on a restricted interval

4

Cost:
L(s,a) = |a| + |s — 0.5]
Constraints:

s € [0,1], a € [-0.25,0.25]

Expected value model:

E[sy]=s+a

Max Likelihood optimal model(s)

fc(s,a) =

argmax o[8; |s,a]
8¢

s.t.

V*(8:)=E[V*(s4) |s,a] — 3

S. Gros (NTNU)

MDP & SDP

f(s,a)
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[llustrations - Optimal MPC model

Consider the dynamics: Cost:
sy =s+a+tw L(s,a) = |a|] + [s — 0.5]
with
@ saweR Constraints:
@ w ~ N (0,0) on a restricted interval s € [0,1], a € [-0.25,0.25]
Observations os

@ Existence: not for all ¢

@ Continuity: not for all ¢

f(s,a)

@ Both: specific ¢(?)

@ Linearity is lost

00 02 04 06 08 10
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[llustrations - Optimal MPC model

Consider the dynamics: Cost:
sy =s+a+tw L(s,a) = |a|] + [s — 0.5]
with
@ saweR Constraints:
@ w ~ N (0,0) on a restricted interval s € [0,1], a € [-0.25,0.25]
Observations os

@ Existence: not for all ¢

@ Continuity: not for all ¢

f(s,a)

@ Both: specific ¢(?)
@ Linearity is lost
This is to be further investigated

00 02 04 06 08 10
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Optimal MPC model & Safety

What if s,a — possible infeasibility? |.e.
Model f (s,a) such that E[V* (s4) |s,a] = o0 (1)

V* (f(s,a)) = E[V* (s4) |s,a] — ¢ holds.

holds for some c 77?7 | \What should the model do then?

S+
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Optimal MPC model & Safety

What if s,a — possible infeasibility? |.e.
Model f (s,a) such that E[V* (s4) |s,a] = o0 (1)
V* (f(s,a)) = E[V* (s4) |s,a] — ¢ holds.

holds for some c 77?7 | \What should the model do then?

& @ (1) implies that:

P[V*(s1) =cc]|s,a] >0

i.e. s may land where V* is co

S+

S+

S. Gros (NTNU) MDP & SDP Fall, 2023  24/29



Optimal MPC model & Safety

What if s,a — possible infeasibility? |.e.
Model f (s,a) such that E[V* (s4) |s,a] = o0 (1)
V* (f(s,a)) = E[V* (s4) |s,a] — ¢ holds.

holds for some c 77?7 | \What should the model do then?

@ (1) implies that:

P[V*(s.) = ocs,a] > 0

i.e. s may land where V* is co

@ Model must reproduce that, i.e.
V* (f(s,a)) = o0

i.e. f(s,a) picks a point among the
infeasible onesA

S+
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Optimal MPC model & Safety

What if s,a — possible infeasibility? |.e.
Model f (s, a) such that E[V* (s+) |s,a] = o0 (1)
V* (f(s,a)) = E[V* (s4) |s,a] — ¢ holds.

holds for some c 77?7 | \What should the model do then?

@ (1) implies that:

P[V*(s1) =cc]|s,a] >0

i.e. sy may land where V* is co

@ Model must reproduce that, i.e.
V* (f(s,a)) = o0

i.e. f(s,a) picks a point among the
infeasible onesA

Theory requires conservative model for
s+ constraints violations
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MPC with stochastic models?

MPC policy 7MFC (s) = uf from MPC policy wFC (s) = uf from
N—1 N—1
min T (xn) + L (xk,u min E | T(xn) + ka,u
X,u ( N) kZ:O ( , k) Up,7v,..., N—1 ( N) kZ:OfY ( , k)
s.t. Xk+1 — f(Xk, llk) s.t Xk+1 "~ é[ o | Xk, Uk ],
X0 =S x0=s, ux=mk(xk), k>0
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MPC with stochastic models?

MPC policy 77 (s) = u§ from
N-1

min T(XN)—I-ZL(Xk,uk)

X,
k=0
st Xep1 = f (xk, uk)

X0 =S

MPC policy 7P (s) = uf from

N—1
min E|T + kg 7
“07‘“'1,.‘..,N 1 (XN) ;7 (Xk uk)

st Xegr ~ 9. | Xk, uk],

x0=S8, u=nmk(xk), k>0
o

Policy from planning

S. Gros (NTNU) MDP & SDP Fall, 2023  26/29
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MPC with stochastic models - Scenario trees

MPC policy wFC (s) = uf from

N—1
min E [ T(xn) + kL (x i
11111 o (xn) kZ:OW (xk, u)

s.t Xk+1 @[ |xk,uk],

Xo =58, ux=m(xx), k>0

Scenario tree MPC
@ § is a discrete probability distribution
@ Tree of scenarios
@ Implicitly produces decision policies

@ Exploding complexity over horizon

S. Gros (NT!

X3,1
X2,1,U2,1

X3,2

X1,1,U1,1
X3,3

X2,2,U2,2
X3,4

X3,5
X2,3,U2,3

X3,6
X1,2,U1,2

X3,7

X2,4,U2,4
X3,8

MDP & SDP Fall, 2023

27/29



MPC with stochastic models - Other methods

MPC policy wF€ (s) = uf from

N—1
min E [ T(xn) + kL (x i
11111 o (xn) kZ:OW (xk, u)

st Xupr ~ 0f- [ %k, wk],

X0 =5, ux=mk(xx), k>0

“Spectral” representations of §
@ Gaussian Processes
@ Polynomial Chaos Expansion
@ RKHS

Representations of 71, n_1

@ Linear feedback
Tk (Sk) = l_lk — Kk (Sk — §k)
@ More advance forms...
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Optimal MPC from stochastic models?

Model f (s, a) such that
V*(f(s,a)) =E[V*(s4) |s,a] — ¢ J

o = = = RTINS
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Optimal MPC from stochastic models?
Model f (s, a) such that

V*(f(s,a)) =E[V*(s4) |s,a] — ¢ J

Generalization?

Model 8§, ~ §[.|s,a] such that

E[V™(8+) |s,a] =E[V" (s1) [s,a] — ¢ J

o = = = DA
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Optimal MPC from stochastic models?

Model f (s, a) such that
V*(f(s,a)) =E[V*(s4) |s,a] — ¢ J

Generalization?
Model 8§, ~ §[.|s,a] such that

E[V™(8+) |s,a] =E[V" (s1) [s,a] — ¢

4

MPC policy 77 (s) = uf from

N—1
min E | T(xn) + Z YR L(xk, ug)
k=0

st X1~ 9. | Xk, uk],

Xo =5, ux =7k (x«)

yields 7FC (s) = 70* (s) (with correct T)

S. Gros (NTNU) MDP & SDP
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Optimal MPC from stochastic models?

Model f (s, a) such that
V*(f(s,a)) =E[V*(s4) |s,a] — ¢ J

Generalization?
Model 8§, ~ §[.|s,a] such that

E[V* (5:) [s,a] =E[V* (s:) [s,a] —

4

MPC policy 77 (s) = uf from

N—1
min E | T(xn) + ka,u
’’’’’ o (xn) kzzov (%K, ux)

st X1~ 9. | Xk, uk],

Xo =5, ux =7k (x«)

yields 7FC (s) = 70* (s) (with correct T)

To be further explored!
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Optimal MPC from stochastic models?

Model f (s, a) such that

V*(f(s,a)) =E[V*(s4) |s,a] — ¢

Generalization?
Model 8§, ~ §[.|s,a] such that

E[V* (5:) [s,a] =E[V* (s:) [s,a] —

MPC policy 77 (s) = uf from

N—1
E | T(xn) + Z YR L(xk, ug)
k=0

min
ug, Ty N—1
st Xepr ~ 9| Xk, uk ],
Xo =8, Uk = Tk (Xk)
yields 7FC (s) = 70* (s) (with correct T)
v

To be further explored!
S. Gros (NTNU)
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Optimal MPC from stochastic models?

Model f (s, a) such that
V*(f(s,a)) =E[V*(s4) |s,a] — ¢

Discrete Stochastic Model

Models f;,... m (s, a) such that

ZwV i(s,a)) =E[V* (s1) |s,a] —

this describes a scenario tree !!
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X3,3
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