RL and MPC Safety, Stability, and some more recent results

Sébastien Gros

Dept. of Cybernetic, NTNU Faculty of Information Tech.

Freiburg PhD School

Outline

2 Stability-constrained Learning with MPC

Some more results (in brief)

Applications & Reflections

What are we going to discuss?

Learning for MPC - A focus on closed-loop performance

- Safety & stability in Learning for MPC
- Image MPC and Markov Decision Processes When is learning beneficial?

samples = 1000000

 $Q_{+}(\mathbf{x},\mathbf{u}) \leftarrow L(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}\left[V\left(\mathbf{x}_{+}\right) \mid \mathbf{x},\mathbf{u}\right]$

Outline

Safe RL via MPC

2 Stability-constrained Learning with MPC

3 Some more results (in brief)

4 Applications & Reflections

Robust MPC - Uncertainty model

 $\begin{array}{ll} \mbox{True system:} & s_{+} \sim \mathbb{P}\left[\,\cdot\,|s,a\,\right] \\ \mbox{Deterministic model:} & \hat{s}_{+} = f_{\boldsymbol{\theta}}\left(s,a\right) \end{array}$

< □ > < □ > < □ > < □ > < □ >

< ∃ > < ∃

Robust MPC - Uncertainty model

$$\begin{array}{rll} \mbox{True system:} & s_{+} \sim \mathbb{P}\left[\cdot | s, a \right] \\ \mbox{Deterministic model:} & \hat{s}_{+} = f_{\theta}\left(s, a \right) \\ \mbox{ispersion:} & f_{\theta}\left(s, a \right) + \mathbb{W}_{\theta} \mbox{ contains the support of } \\ & \mathbb{P}\left[\cdot | s, a \right], \mbox{ i.e.} \\ & s_{+} \in f_{\theta}\left(s, a \right) + \mathbb{W}_{\theta} \mbox{ (1) } \\ & \mbox{ with probability 1 } \end{array} \right)$$

Remarks:

D

- Identifying W_θ is a set-membership identification problem, well studied
- Obviously \mathbb{W}_{θ} is not unique
- Ensuring probability 1 from data is impossible
 → probabilistic guarantees
- Model parameters θ must be such that (1) holds on every known data point

S. Gros (NTNU)

4 3 > 4 3

Wө

- Identifying W_θ is a set-membership identification problem, well studied
- Obviously \mathbb{W}_{θ} is not unique
- Ensuring probability 1 from data is impossible
 → probabilistic guarantees
- Model parameters θ must be such that (1) holds on every known data point

S. Gros (NTNU)

(日)

- Identifying W_θ is a set-membership identification problem, well studied
- Obviously \mathbb{W}_{θ} is not unique
- Ensuring probability 1 from data is impossible
 → probabilistic guarantees
- Model parameters θ must be such that (1) holds on every known data point

S. Gros (NTNU)

ightarrow constraints on $oldsymbol{ heta}$

Containing the model-system mismatch becomes constraints in

the parameters θ . Constraints can

be readily formulated in terms of

data.

Robust (N)MPC delivers policy $\pi_{\theta}(x_0) = u_0^{\star}$ from

$$\begin{aligned} \mathbf{u}^{\star} &= \arg\min_{\mathbf{u}} \max_{\mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N}} T_{\boldsymbol{\theta}}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} L_{\boldsymbol{\theta}}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \\ &\text{s.t.} \quad \mathbf{u}_{0, \dots, N} \in \mathbb{U} \end{aligned}$$

- $\mathbf{x}_{0,...,N}$ is the propagation of the state dispersion
- max cost treats worst-case scenario, required for "classic" stability
- $\mathbf{w} = {\mathbf{w}_0, \dots, \mathbf{w}_N}$ is the disturbance with $\mathbf{w}_k \in \mathbb{W}_{\theta}$

< ∃ > < ∃

Robust (N)MPC delivers policy $\pi_{\theta}(\mathbf{x}_0) = \mathbf{u}_0^{\star}$ from

$$\begin{split} \mathbf{u}^{\star} &= \arg\min_{\mathbf{u}} \ \max_{\mathbf{w} \in \mathbb{W}_{\theta}^{N}} \ \mathcal{T}_{\theta}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \ \mathcal{L}_{\theta}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \\ &\text{s.t.} \ \mathbf{u}_{0, \dots, N} \in \mathbb{U} \\ &\mathbf{x}_{1, \dots, N-1}\left(\mathbf{u}, \mathbf{x}_{0}, \boldsymbol{\theta}, \mathbf{w}\right) \in \mathbb{X}, \quad \forall \, \mathbf{w} \in \mathbb{W}_{\theta}^{N-1} \end{split}$$

- $\mathbf{x}_{0,...,N}$ is the propagation of the state dispersion
- max cost treats worst-case scenario, required for "classic" stability
- $\mathbf{w} = {\mathbf{w}_0, \dots, \mathbf{w}_N}$ is the disturbance with $\mathbf{w}_k \in \mathbb{W}_{\theta}$
- $\mathbf{x}_{1,...,N-1}\left(\mathbf{u},\mathbf{x}_{0},oldsymbol{ heta},\mathbf{w}
 ight)$ are the trajectories subject to \mathbf{w} and $\mathbf{f}_{oldsymbol{ heta}}$
- X is the "safe" set where the state should be at all time

Robust (N)MPC delivers policy $\pi_{\theta}(\mathbf{x}_0) = \mathbf{u}_0^{\star}$ from

$$\begin{split} \mathbf{u}^{\star} &= \arg\min_{\mathbf{u}} \; \max_{\mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N}} \; T_{\boldsymbol{\theta}}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} L_{\boldsymbol{\theta}}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \\ &\text{s.t.} \; \; \mathbf{u}_{0,...,N} \in \mathbb{U} \\ & \mathbf{x}_{1,...,N-1}\left(\mathbf{u}, \mathbf{x}_{0}, \boldsymbol{\theta}, \mathbf{w}\right) \in \mathbb{X}, \quad \forall \, \mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N-1} \\ & \mathbf{x}_{N}\left(\mathbf{u}, \mathbf{x}_{0}, \boldsymbol{\theta}, \mathbf{w}\right) \in \mathbb{T}_{\boldsymbol{\theta}}, \quad \forall \, \mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N-1} \end{split}$$

- **x**_{0,...,N} is the propagation of the state dispersion
- max cost treats worst-case scenario, required for "classic" stability
- $\mathbf{w} = {\mathbf{w}_0, \dots, \mathbf{w}_N}$ is the disturbance with $\mathbf{w}_k \in \mathbb{W}_{\theta}$
- $\mathbf{x}_{1,...,N-1}(\mathbf{u},\mathbf{x}_{0},\boldsymbol{\theta},\mathbf{w})$ are the trajectories subject to \mathbf{w} and $\mathbf{f}_{\boldsymbol{\theta}}$
- X is the "safe" set where the state should be at all time
- Terminal set \mathbb{T}_{θ} (required for recursive feasibility & stability)

Robust (N)MPC delivers policy $\pi_{\theta}(\mathbf{x}_0) = \mathbf{u}_0^{\star}$ from

$$\begin{split} \mathbf{u}^{\star} &= \arg\min_{\mathbf{u}} \; \max_{\mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N}} \; \mathcal{T}_{\boldsymbol{\theta}} \left(\mathbf{x}_{N} \right) + \sum_{k=0}^{N-1} \, \mathcal{L}_{\boldsymbol{\theta}} \left(\mathbf{x}_{k}, \mathbf{u}_{k} \right) \\ &\text{s.t.} \; \; \mathbf{u}_{0, \dots, N} \in \mathbb{U} \\ & \mathbf{x}_{1, \dots, N-1} \left(\mathbf{u}, \mathbf{x}_{0}, \boldsymbol{\theta}, \mathbf{w} \right) \in \mathbb{X}, \quad \forall \, \mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N-1} \\ & \mathbf{x}_{N} \left(\mathbf{u}, \mathbf{x}_{0}, \boldsymbol{\theta}, \mathbf{w} \right) \in \mathbb{T}_{\boldsymbol{\theta}}, \quad \forall \, \mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N-1} \end{split}$$

- $\mathbf{x}_{0,...,N}$ is the propagation of the state dispersion
- max cost treats worst-case scenario, required for "classic" stability
- $\mathbf{w} = {\mathbf{w}_0, \dots, \mathbf{w}_N}$ is the disturbance with $\mathbf{w}_k \in \mathbb{W}_{\theta}$
- $\mathbf{x}_{1,...,N-1}(\mathbf{u},\mathbf{x}_{0},\boldsymbol{ heta},\mathbf{w})$ are the trajectories subject to \mathbf{w} and $\mathbf{f}_{\boldsymbol{ heta}}$
- X is the "safe" set where the state should be at all time
- Terminal set $\mathbb{T}_{ heta}$ (required for recursive feasibility & stability)
- If θ is such that \mathbb{W}_{θ} encloses state dispersion, MPC yields safe policy

Robust (N)MPC delivers policy $\pi_{\theta}(\mathbf{x}_0) = \mathbf{u}_0^{\star}$ from

$$\begin{split} \mathbf{u}^{\star} &= \arg\min_{\mathbf{u}} \; \max_{\mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N}} \; \mathcal{T}_{\boldsymbol{\theta}}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}_{\boldsymbol{\theta}}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \\ &\text{s.t.} \; \; \mathbf{u}_{0,...,N} \in \mathbb{U} \\ & \mathbf{x}_{1,...,N-1}\left(\mathbf{u}, \mathbf{x}_{0}, \boldsymbol{\theta}, \mathbf{w}\right) \in \mathbb{X}, \quad \forall \, \mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N-1} \\ & \mathbf{x}_{N}\left(\mathbf{u}, \mathbf{x}_{0}, \boldsymbol{\theta}, \mathbf{w}\right) \in \mathbb{T}_{\boldsymbol{\theta}}, \quad \forall \, \mathbf{w} \in \mathbb{W}_{\boldsymbol{\theta}}^{N-1} \end{split}$$

- $\mathbf{x}_{0,...,N}$ is the propagation of the state dispersion
- max cost treats worst-case scenario, required for "classic" stability
- $\mathbf{w} = {\mathbf{w}_0, \dots, \mathbf{w}_N}$ is the disturbance with $\mathbf{w}_k \in \mathbb{W}_{\theta}$
- $\mathbf{x}_{1,...,N-1}(\mathbf{u},\mathbf{x}_{0},\boldsymbol{ heta},\mathbf{w})$ are the trajectories subject to \mathbf{w} and $\mathbf{f}_{\boldsymbol{ heta}}$
- X is the "safe" set where the state should be at all time
- Terminal set \mathbb{T}_{θ} (required for recursive feasibility & stability)
- If θ is such that \mathbb{W}_{θ} encloses state dispersion, MPC yields safe policy

Closed-loop stability under some conditions on θ (not trivial), need $\gamma = 1$ (for now)

Robust (N)MPC delivers policy $\pi_{\theta}(\mathbf{x}_{0}) = \mathbf{u}_{0}^{\star}$ from $\mathbf{u}^{\star} = \arg \min_{\mathbf{u}} \max_{\mathbf{w} \in \mathbb{W}_{\theta}^{N}} T_{\theta}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} L_{\theta}(\mathbf{x}_{k}, \mathbf{u}_{k})$ s.t. $\mathbf{u}_{0,...,N} \in \mathbb{U}$ $\mathbf{x}_{1,...,N-1}(\mathbf{u}, \mathbf{x}_{0}, \theta, \mathbf{w}) \in \mathbb{X}, \quad \forall \mathbf{w} \in \mathbb{W}_{\theta}^{N-1}$ $\mathbf{x}_{N}(\mathbf{u}, \mathbf{x}_{0}, \theta, \mathbf{w}) \in \mathbb{T}_{\theta}, \quad \forall \mathbf{w} \in \mathbb{W}_{\theta}^{N-1}$

- $\mathbf{x}_{0,...,N}$ is the propagation of the state dispersion
- max cost treats worst-case scenario, required for "classic" stability
- $\mathbf{w} = {\mathbf{w}_0, \dots, \mathbf{w}_N}$ is the disturbance with $\mathbf{w}_k \in \mathbb{W}_{\boldsymbol{\theta}}$
- $\mathbf{x}_{1,...,N-1}(\mathbf{u},\mathbf{x}_{0},\boldsymbol{ heta},\mathbf{w})$ are the trajectories subject to \mathbf{w} and $\mathbf{f}_{\boldsymbol{ heta}}$
- X is the "safe" set where the state should be at all time
- Terminal set \mathbb{T}_{θ} (required for recursive feasibility & stability)
- If θ is such that \mathbb{W}_{θ} encloses state dispersion, MPC yields safe policy

Closed-loop stability under some conditions on θ (not trivial), need $\gamma = 1$ (for now)

Image: A image: A

Robust NMPC parameters θ

Policy gradient

 $\nabla_{\boldsymbol{\theta}} J = \mathbb{E} \left[\nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}} \nabla_{\mathbf{u}} A_{\pi_{\boldsymbol{\theta}}} \right]$

adjusts θ for performance

Condition

$$\mathbf{s}_{+} - \mathbf{f} \left(\mathbf{s}, \mathbf{a}, oldsymbol{ heta}
ight) \in \mathbb{W}_{oldsymbol{ heta}}$$

< ロト < 同ト < ヨト < ヨト

enforces safety through θ

Robust NMPC parameters θ

Policy gradient

 $\nabla_{\boldsymbol{\theta}} J = \mathbb{E}\left[\nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}} \nabla_{\mathbf{u}} A_{\pi_{\boldsymbol{\theta}}}\right]$

adjusts θ for performance

- No clear connection to SYSID
- Sometimes does opposite of SYSID

Condition

$$\mathbf{s}_{+} - \mathbf{f}\left(\mathbf{s}, \mathbf{a}, oldsymbol{ heta}
ight) \in \mathbb{W}_{oldsymbol{ heta}}$$

enforces safety through heta

(4) (2) (3)

Robust NMPC parameters θ

Policy gradient

 $\nabla_{\theta} J = \mathbb{E}\left[\nabla_{\theta} \pi_{\theta} \nabla_{\mathbf{u}} A_{\pi_{\theta}}\right]$

adjusts θ for performance

- No clear connection to SYSID
- Sometimes does opposite of SYSID

Condition

$$\mathbf{s}_{+}-\mathbf{f}\left(\mathbf{s},\mathbf{a},oldsymbol{ heta}
ight)\in\mathbb{W}_{oldsymbol{ heta}}$$

enforces safety through heta

 Can be interpreted as a form of SYSID (see set-membership)

(3)

Robust NMPC parameters θ

Policy gradient

 $\nabla_{\boldsymbol{\theta}} J = \mathbb{E} \left[\nabla_{\boldsymbol{\theta}} \boldsymbol{\pi}_{\boldsymbol{\theta}} \nabla_{\mathbf{u}} \boldsymbol{A}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}} \right]$

adjusts θ for performance

- No clear connection to SYSID
- Sometimes does opposite of SYSID

Condition

$$\mathbf{s}_{+} - \mathbf{f}\left(\mathbf{s}, \mathbf{a}, oldsymbol{ heta}
ight) \in \mathbb{W}_{oldsymbol{ heta}}$$

enforces safety through heta

 Can be interpreted as a form of SYSID (see set-membership)

イロト イポト イヨト イヨト

How to do Safe RL?

Classic RL steps: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} J$

Robust NMPC parameters θ

Policy gradient

 $\nabla_{\boldsymbol{\theta}} J = \mathbb{E} \left[\nabla_{\boldsymbol{\theta}} \boldsymbol{\pi}_{\boldsymbol{\theta}} \nabla_{\mathbf{u}} \boldsymbol{A}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}} \right]$

adjusts θ for performance

- No clear connection to SYSID
- Sometimes does opposite of SYSID

Condition

$$\mathbf{s}_{+} - \mathbf{f}\left(\mathbf{s}, \mathbf{a}, oldsymbol{ heta}
ight) \in \mathbb{W}_{oldsymbol{ heta}}$$

enforces safety through heta

 Can be interpreted as a form of SYSID (see set-membership)

イロト イポト イヨト イヨト

How to do Safe RL?

Classic RL steps: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} J$ Also reads as:

 $oldsymbol{ heta} \leftarrow oldsymbol{ heta} + \Delta oldsymbol{ heta}$

$$\Delta \boldsymbol{\theta} = \arg \min_{\Delta \boldsymbol{\theta}} \frac{1}{2\alpha} \| \Delta \boldsymbol{\theta} \|^2 + \nabla_{\boldsymbol{\theta}} J^{\top} \Delta \boldsymbol{\theta}$$

Robust NMPC parameters θ

Policy gradient

 $\nabla_{\boldsymbol{\theta}} J = \mathbb{E} \left[\nabla_{\boldsymbol{\theta}} \boldsymbol{\pi}_{\boldsymbol{\theta}} \nabla_{\mathbf{u}} \boldsymbol{A}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}} \right]$

adjusts θ for performance

- No clear connection to SYSID
- Sometimes does opposite of SYSID

Condition

$$\mathbf{s}_{+} - \mathbf{f}\left(\mathbf{s}, \mathbf{a}, oldsymbol{ heta}
ight) \in \mathbb{W}_{oldsymbol{ heta}}$$

enforces safety through heta

 Can be interpreted as a form of SYSID (see set-membership)

How to do Safe RL?

Classic RL steps: $\theta \leftarrow \theta - \alpha \nabla_{\theta} J$ Also reads as:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$$
$$\Delta \boldsymbol{\theta} = \arg \min_{\Delta \boldsymbol{\theta}} \frac{1}{2\alpha} \|\Delta \boldsymbol{\theta}\|^2 + \nabla_{\boldsymbol{\theta}} J^{\top} \Delta \boldsymbol{\theta}$$

$$\begin{split} \text{Safe RL steps } \boldsymbol{\theta} &\leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta} \text{:} \\ \Delta \boldsymbol{\theta} &= \arg\min_{\Delta \boldsymbol{\theta}} \frac{1}{2\alpha} \left\| \Delta \boldsymbol{\theta} \right\|^2 + \nabla_{\boldsymbol{\theta}} J^\top \Delta \boldsymbol{\theta} \\ \text{s.t. } \mathbf{s}_+ &- \mathbf{f} \left(\mathbf{s}, \mathbf{a}, \boldsymbol{\theta} + \Delta \boldsymbol{\theta} \right) \in \mathbb{W}_{\boldsymbol{\theta} + \Delta \boldsymbol{\theta}} \\ &\forall \left(\mathbf{s}, \mathbf{a}, \mathbf{s}_+ \right) \text{ in data set} \end{split}$$

Robust NMPC parameters θ

Policy gradient

 $\nabla_{\boldsymbol{\theta}} J = \mathbb{E} \left[\nabla_{\boldsymbol{\theta}} \boldsymbol{\pi}_{\boldsymbol{\theta}} \nabla_{\mathbf{u}} \boldsymbol{A}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}} \right]$

adjusts θ for performance

- No clear connection to SYSID
- Sometimes does opposite of SYSID

Condition

$$\mathbf{s}_{+} - \mathbf{f}\left(\mathbf{s}, \mathbf{a}, oldsymbol{ heta}
ight) \in \mathbb{W}_{oldsymbol{ heta}}$$

enforces safety through heta

 Can be interpreted as a form of SYSID (see set-membership)

How to do Safe RL?

Classic RL steps: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} J$ Also reads as:

 $oldsymbol{ heta} \leftarrow oldsymbol{ heta} + \Delta oldsymbol{ heta} \ \Delta oldsymbol{ heta} = rg\min_{\Delta oldsymbol{ heta}} rac{1}{2lpha} \|\Delta oldsymbol{ heta}\|^2 +
abla_{oldsymbol{ heta}} J^ op \Delta oldsymbol{ heta}$

$$\begin{split} \text{Safe RL steps } \boldsymbol{\theta} &\leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta} \text{:} \\ \Delta \boldsymbol{\theta} &= \arg\min_{\Delta \boldsymbol{\theta}} \frac{1}{2\alpha} \left\| \Delta \boldsymbol{\theta} \right\|^2 + \nabla_{\boldsymbol{\theta}} J^\top \Delta \boldsymbol{\theta} \\ \text{s.t. } \mathbf{s}_+ - \mathbf{f} \left(\mathbf{s}, \mathbf{a}, \boldsymbol{\theta} + \Delta \boldsymbol{\theta} \right) \in \mathbb{W}_{\boldsymbol{\theta} + \Delta \boldsymbol{\theta}} \\ &\quad \forall \left(\mathbf{s}, \mathbf{a}, \mathbf{s}_+ \right) \text{ in data set} \end{split}$$

Safe RL steps seek performance under safety constraints

S. Gros (NTNU)

MPC & RI

Fall 2023 7 / 25

 RL can discover policy parameters θ such that policy π_θ(s) has good closed-loop performances, ignoring safety (e.g. π_θ stems from a DNN). "Learning" safety implicitly is difficult.

- RL can discover policy parameters θ such that policy π_θ(s) has good closed-loop performances, ignoring safety (e.g. π_θ stems from a DNN). "Learning" safety implicitly is difficult.
- If safe action set $\mathbb{S}(s)$ is somehow known, then we can

- RL can discover policy parameters θ such that policy π_θ(s) has good closed-loop performances, ignoring safety (e.g. π_θ stems from a DNN). "Learning" safety implicitly is difficult.
- If safe action set $\mathbb{S}(s)$ is somehow known, then we can

More formally, safe policy e.g. reads as...

$$\begin{aligned} \pi_{\theta}^{\perp}\left(\mathbf{s}\right) &= \arg\min_{\mathbf{a}} \quad \left\|\mathbf{a} - \pi_{\theta}\left(\mathbf{s}\right)\right\|^{2} \\ \text{s.t.} \quad \mathbf{a} \in \mathbb{S}\left(\mathbf{s}\right) \end{aligned}$$

- RL can discover policy parameters θ such that policy π_θ(s) has good closed-loop performances, ignoring safety (e.g. π_θ stems from a DNN). "Learning" safety implicitly is difficult.
- If safe action set $\mathbb{S}(s)$ is somehow known, then we can

More formally, safe policy e.g. reads as...

$$\begin{aligned} \pi_{\theta}^{\perp}\left(\mathbf{s}\right) &= \arg\min_{\mathbf{a}} \quad \left\|\mathbf{a} - \pi_{\theta}\left(\mathbf{s}\right)\right\|^{2} \\ \text{s.t.} \quad \mathbf{a} \in \mathbb{S}\left(\mathbf{s}\right) \end{aligned}$$

Is that a good idea?

S. Gros (NTNU)

Fall 2023 8 / 25

- RL can discover policy parameters θ such that policy π_θ(s) has good closed-loop performances, ignoring safety (e.g. π_θ stems from a DNN). "Learning" safety implicitly is difficult.
- If safe action set $\mathbb{S}(s)$ is somehow known, then we can

More formally, safe policy e.g. reads as...

$$\begin{aligned} \pi_{\theta}^{\perp}\left(\mathbf{s}\right) &= \arg\min_{\mathbf{a}} \quad \left\|\mathbf{a} - \pi_{\theta}\left(\mathbf{s}\right)\right\|^{2} \\ \text{s.t.} \quad \mathbf{a} \in \mathbb{S}\left(\mathbf{s}\right) \end{aligned}$$

Is that a good idea? It depends...

S. Gros (NTNU)

Fall 2023 8 / 25

- RL can discover policy parameters θ such that policy $\pi_{\theta}(s)$ has good closed-loop performances, ignoring safety (e.g. π_{θ} stems from a DNN). "Learning" safety implicitly is difficult.
- If safe action set S(s) is somehow known, then we can

$$\begin{aligned} \pi_{\theta}^{\perp}\left(\mathbf{s}\right) &= \arg\min_{\mathbf{a}} \quad \|\mathbf{a} - \pi_{\theta}\left(\mathbf{s}\right)\|^{2} \\ \text{s.t.} \quad \mathbf{a} \in \mathbb{S}\left(\mathbf{s}\right) \end{aligned}$$

- Built from "Robust MPC" methods?
- Interaction with learning?

Is that a good idea? It depends...

S. Gros (NTNU)

MPC & RL

Fall 2023 8 / 25

Q learning: $Q_{\theta} \approx Q^*$ learned via classic RL, ignoring safety.

Q learning: $Q_{\theta} \approx Q^{\star}$ learned via classic RL, ignoring safety. Then

$$\begin{array}{ll} \pi_{\theta}^{\perp}\left(s\right) = \arg\min_{a} & \left\|a - \pi_{\theta}\left(s\right)\right\|^{2} \\ & \text{s.t.} & a \in \mathbb{S}\left(s\right) \end{array} \qquad \text{where} \qquad \pi_{\theta}\left(s\right) = \arg\min_{a} \, \mathcal{Q}_{\theta}\left(s,a\right)$$

Q learning: $Q_{\theta} \approx Q^*$ learned via classic RL, ignoring safety. Then

Q learning: $Q_{\theta} \approx Q^{\star}$ learned via classic RL, ignoring safety. Then $\pi_{\theta}^{\perp}(s) = \arg\min_{a} \quad Q_{\theta}(s, a)$ s.t. $a \in S(s)$

instead of a least-squares approach. Provably optimal (safe) policy.

< ロト < 同ト < ヨト < ヨト

Q learning: $Q_{\theta} \approx Q^{\star}$ learned via classic RL, ignoring safety. Then $\pi_{\theta}^{\perp}(s) = \arg\min_{a} \quad Q_{\theta}(s, a)$ s.t. $a \in S(s)$

instead of a least-squares approach. Provably optimal (safe) policy.

Deterministic Policy gradient (actor-critic): the "regular expression"

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\pi}_{\boldsymbol{\theta}}) = \mathbb{E}\left[\nabla_{\boldsymbol{\theta}} \boldsymbol{\pi}_{\boldsymbol{\theta}} \nabla_{\mathbf{a}} A_{\boldsymbol{\pi}_{\boldsymbol{\theta}}^{\perp}}\right]$$

yields incorrect gradients

Q learning: $Q_{\theta} \approx Q^{\star}$ learned via classic RL, ignoring safety. Then $\pi_{\theta}^{\perp}(s) = \arg\min_{a} \quad Q_{\theta}(s, a)$ s.t. $a \in S(s)$

instead of a least-squares approach. Provably optimal (safe) policy.

Deterministic Policy gradient (actor-critic): make sure to evaluate the gradient using

$$\nabla_{\theta} J\left(\pi_{\theta}^{\perp}\right) = \mathbb{E}\left[\nabla_{\theta} \pi_{\theta}^{\perp} \nabla_{\mathbf{a}} A_{\pi_{\theta}^{\perp}}\right] \qquad \text{where} \qquad \begin{array}{c} \pi_{\theta}^{\perp}\left(s\right) = \arg\min_{\mathbf{a}} & \|\mathbf{a} - \pi_{\theta}\left(s\right)\|^{2} \\ & \text{s.t.} \quad \mathbf{a} \in \mathbb{S}\left(s\right) \end{array}$$

i.e. account for projection (⇒differentiate NLP). Provably correct gradients.

イロト 不得 トイラト イラト 一日

Q learning: $Q_{\theta} \approx Q^{\star}$ learned via classic RL, ignoring safety. Then $\pi_{\theta}^{\perp}(s) = \arg\min_{a} \quad Q_{\theta}(s, a)$ s.t. $a \in S(s)$

instead of a least-squares approach. Provably optimal (safe) policy.

Deterministic Policy gradient (actor-critic): make sure to evaluate the gradient using

$$\nabla_{\boldsymbol{\theta}} J\left(\boldsymbol{\pi}_{\boldsymbol{\theta}}^{\perp}\right) = \mathbb{E}\left[\nabla_{\boldsymbol{\theta}} \boldsymbol{\pi}_{\boldsymbol{\theta}}^{\perp} \nabla_{\mathbf{a}} \boldsymbol{A}_{\boldsymbol{\pi}_{\boldsymbol{\theta}}^{\perp}}\right] \qquad \text{where} \qquad \begin{array}{c} \boldsymbol{\pi}_{\boldsymbol{\theta}}^{\perp}\left(s\right) = \arg\min_{\mathbf{a}} & \|\mathbf{a} - \boldsymbol{\pi}_{\boldsymbol{\theta}}\left(s\right)\|^{2} \\ & \text{s.t.} \quad \mathbf{a} \in \mathbb{S}\left(s\right) \end{array}$$

i.e. account for projection (⇒differentiate NLP). Provably correct gradients.

Stochastic policy gradient: where π_{θ} is a probability density over the actions

$$\nabla_{\boldsymbol{\theta}} J\left(\pi_{\boldsymbol{\theta}}^{\perp}\right) = \mathbb{E}\left[\log \nabla_{\boldsymbol{\theta}} \pi_{\boldsymbol{\theta}} A_{\pi_{\boldsymbol{\theta}}^{\perp}}\right]$$

i.e. do not account for projection. Provably correct gradients.

イロト イポト イヨト イヨト

S. Gros (NTNU)

Safe (feasible) exploration with MPC

Learning requires exploration. E.g. apply $a = \pi_{\theta}(s) + d$ to the real system where d is a "disturbance"

< ∃ ►
Learning requires exploration. E.g. apply $a = \pi_{\theta}(s) + d$ to the real system where d is a "disturbance"

- Clearly an arbitrary "policy disturbance" $\pi_{ heta}\left(\mathrm{s}
 ight)+\mathrm{d}$ is a poor idea...
- NLP-based policy: "disturb" the cost function instead! (different options)

Learning requires exploration. E.g. apply $a = \pi_{\theta}(s) + d$ to the real system where d is a "disturbance"

Explore while keeping feasibility?

- Clearly an arbitrary "policy disturbance" $\pi_{ heta}(\mathrm{s}) + \mathrm{d}$ is a poor idea...
- NLP-based policy: "disturb" the cost function instead! (different options)

$$\begin{split} \text{Feasible exploration: } & \pi_{\theta}^{\text{e}}(\mathbf{s}) = \mathbf{a}_{0}^{\star}:\\ \min_{\mathbf{x},\mathbf{u}} \quad \mathcal{T}\left(\mathbf{x}_{N}\right) - \mathbf{d}^{\top}\mathbf{u}_{0} + \sum_{k=0}^{N-1} \mathcal{L}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right)\\ \text{s.t.} \quad \mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right)\\ & \mathbf{h}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq 0, \quad \mathbf{x}_{0} = \mathbf{s} \end{split}$$

satisfies the constraints by construction

・ 戸 ト ・ ヨ ト ・ ヨ ト

Learning requires exploration. E.g. apply $a = \pi_{\theta}(s) + d$ to the real system where d is a "disturbance"

Explore while keeping feasibility?

- Clearly an arbitrary "policy disturbance" $\pi_{ heta}(\mathrm{s}) + \mathrm{d}$ is a poor idea...
- NLP-based policy: "disturb" the cost function instead! (different options)

$$\begin{split} \text{Feasible exploration: } & \pi_{\theta}^{\text{e}}(\mathbf{s}) = \mathbf{a}_{0}^{\star}:\\ \min_{\mathbf{x},\mathbf{u}} \quad \mathcal{T}\left(\mathbf{x}_{N}\right) - \mathbf{d}^{\top}\mathbf{u}_{0} + \sum_{k=0}^{N-1} \mathcal{L}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right)\\ \text{s.t.} \quad \mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right)\\ & \mathbf{h}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq 0, \quad \mathbf{x}_{0} = \mathbf{s} \end{split}$$

satisfies the constraints by construction

・ 戸 ト ・ ヨ ト ・ ヨ ト

Learning requires exploration. E.g. apply $a = \pi_{\theta}(s) + d$ to the real system where d is a "disturbance"

- Clearly an arbitrary "policy disturbance" $\pi_{\theta}(s) + d$ is a poor idea...
- NLP-based policy: "disturb" the cost function instead! (different options)

Feasible exploration:
$$\pi_{\theta}^{e}(\mathbf{s}) = \mathbf{a}_{0}^{*}$$
:

$$\min_{\mathbf{x},\mathbf{u}} \quad \mathcal{T}(\mathbf{x}_{N}) - \mathbf{d}^{\top} \mathbf{u}_{0} + \sum_{k=0}^{N-1} \mathcal{L}(\mathbf{x}_{k}, \mathbf{u}_{k})$$
s.t. $\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_{k}, \mathbf{u}_{k})$
 $\mathbf{h}(\mathbf{x}_{k}, \mathbf{u}_{k}) \leq 0, \quad \mathbf{x}_{0} = \mathbf{s}$
satisfies the constraints by construction

Learning requires exploration. E.g. apply $a = \pi_{\theta}(s) + d$ to the real system where d is a "disturbance"

- Clearly an arbitrary "policy disturbance" $\pi_{ heta}(\mathrm{s}) + \mathrm{d}$ is a poor idea...
- NLP-based policy: "disturb" the cost function instead! (different options)

Feasible exploration:
$$\pi_{\theta}^{e}(\mathbf{s}) = \mathbf{a}_{0}^{\star}$$
:

$$\min_{\mathbf{x},\mathbf{u}} \quad T(\mathbf{x}_{N}) - \mathbf{d}^{\top} \mathbf{u}_{0} + \sum_{k=0}^{N-1} L(\mathbf{x}_{k}, \mathbf{u}_{k})$$
s.t. $\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_{k}, \mathbf{u}_{k})$
h $(\mathbf{x}_{k}, \mathbf{u}_{k}) \leq 0, \quad \mathbf{x}_{0} = \mathbf{s}$
satisfies the constraints by construction

Learning requires exploration. E.g. apply $a = \pi_{\theta}(s) + d$ to the real system where d is a "disturbance"

- Clearly an arbitrary "policy disturbance" $\pi_{ heta}(\mathrm{s}) + \mathrm{d}$ is a poor idea...
- NLP-based policy: "disturb" the cost function instead! (different options)

Feasible exploration:
$$\pi_{\theta}^{e}(\mathbf{s}) = \mathbf{a}_{0}^{\star}$$
:

$$\min_{\mathbf{x},\mathbf{u}} \quad T(\mathbf{x}_{N}) - \mathbf{d}^{\top}\mathbf{u}_{0} + \sum_{k=0}^{N-1} L(\mathbf{x}_{k}, \mathbf{u}_{k})$$
s.t. $\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_{k}, \mathbf{u}_{k})$
h $(\mathbf{x}_{k}, \mathbf{u}_{k}) \leq 0, \quad \mathbf{x}_{0} = \mathbf{s}$
satisfies the constraints by construction

Learning requires exploration. E.g. apply $a = \pi_{\theta}(s) + d$ to the real system where d is a "disturbance"

Explore while keeping feasibility?

- Clearly an arbitrary "policy disturbance" $\pi_{ heta}(\mathrm{s}) + \mathrm{d}$ is a poor idea...
- NLP-based policy: "disturb" the cost function instead! (different options)

 $\mbox{Feasible exploration: } \pi^{\rm e}_{\boldsymbol{\theta}}(s) = a^{\star}_{0}:$

$$\min_{\mathbf{x},\mathbf{u}} \quad \mathcal{T}\left(\mathbf{x}_{N}\right) - \mathbf{d}^{\top}\mathbf{u}_{0} + \sum_{k=0}^{N-1} \mathcal{L}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right)$$

s.t.
$$\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_k, \mathbf{u}_k)$$

 $\mathbf{h}(\mathbf{x}_k, \mathbf{u}_k) \leq \mathbf{0}, \quad \mathbf{x}_0 = \mathbf{s}$

satisfies the constraints by construction

Remarks:

- Exploration $e = \pi_{\theta}^{e} \pi_{\theta}$ is not centred-isotopric
- Can create some technical issues with actor-critic methods (linear compatible $A_{\pi_{\theta}}$), yields biased policy gradient estimation

<ロト <部ト <注ト < 注ト = 三

Bias seems small in practice

Outline

1 Safe RL via MPC

2 Stability-constrained Learning with MPC

3 Some more results (in brief)

4 Applications & Reflections

$$\begin{array}{l} \textbf{Policy } \boldsymbol{\pi}^{\mathrm{MPC}} \ \textbf{from} \\ \underset{x,\mathbf{u}}{\min} \quad \mathcal{T} \left(\mathbf{x}_{\textit{N}} \right) + \sum_{k=0}^{N-1} \mathcal{L} \left(\mathbf{x}_{k}, \mathbf{u}_{k} \right) \\ \mathrm{s.t.} \quad \mathbf{x}_{k+1} = \mathbf{f} \left(\mathbf{x}_{k}, \mathbf{u}_{k} \right), \ \mathbf{x}_{0} = \mathbf{s} \\ \quad \mathbf{h} \left(\mathbf{x}_{k}, \mathbf{u}_{k} \right) \leq \mathbf{0} \end{array}$$

$$\begin{split} & \text{Policy } \boldsymbol{\pi}^{\mathrm{MPC}} \text{ from} \\ & \underset{x,\mathbf{u}}{\min} \quad \mathcal{T} \left(\mathbf{x}_{\textit{N}} \right) + \sum_{k=0}^{N-1} \mathcal{L} \left(\mathbf{x}_{k}, \mathbf{u}_{k} \right) \\ & \text{s.t.} \quad \mathbf{x}_{k+1} = \mathbf{f} \left(\mathbf{x}_{k}, \mathbf{u}_{k} \right), \ \mathbf{x}_{0} = \mathbf{s} \\ & \quad \mathbf{h} \left(\mathbf{x}_{k}, \mathbf{u}_{k} \right) \leq \mathbf{0} \end{split}$$

MPC scheme is (nominally) stabilizing if there is λ such that $\ell(\mathbf{s}, \mathbf{a}) := L(\mathbf{s}, \mathbf{a}) + \lambda(\mathbf{s}) - \lambda(\mathbf{f}(\mathbf{s}, \mathbf{a})) \ge \kappa(||\mathbf{s} - \mathbf{s}_{\mathbf{s}}||), \quad \forall \mathbf{s}, \mathbf{a}$ where κ is K_{∞} (+conditions on τ)

イロト イボト イヨト イヨト

 $\begin{array}{l} \text{Policy } \pi^{\mathrm{MPC}} \text{ from} \\ \min_{\mathbf{x},\mathbf{u}} \quad \mathcal{T}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ \mathrm{s.t.} \quad \mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), \ \mathbf{x}_{0} = \mathbf{s} \\ \mathbf{h}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq \mathbf{0} \end{array}$

Equivalent MPC $\begin{array}{l} \underset{\mathbf{s},\mathbf{a}}{\min} \quad -\lambda\left(\mathbf{s}\right) + \tilde{\mathcal{T}}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \ell\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ \text{s.t.} \quad \mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), \ \mathbf{x}_{0} = \mathbf{s} \\ \mathbf{h}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq \mathbf{0} \\ \text{brings us back to classic stability theory} \end{array}$

MPC scheme is (nominally) stabilizing if there is λ such that $\ell(\mathbf{s}, \mathbf{a}) := L(\mathbf{s}, \mathbf{a}) + \lambda(\mathbf{s}) - \lambda(\mathbf{f}(\mathbf{s}, \mathbf{a})) \ge \kappa(||\mathbf{s} - \mathbf{s}_{\mathbf{s}}||), \quad \forall \mathbf{s}, \mathbf{a}$ where κ is K_{∞} (+conditions on τ)

イロト 不得 トイラト イラト 一日

Policy $\pi^{ ext{MPC}}$ from						
min _{x,u}	$T\left(\mathbf{x}_{N} ight)+\sum_{k=0}^{N-1}L\left(\mathbf{x}_{k},\mathbf{u}_{k} ight)$					
s.t.	$\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right), \ \mathbf{x}_{0} = \mathbf{s}$					
	$\mathbf{h}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right)\leq0$					

Equivalent MPC

$$\begin{array}{l} \underset{\mathbf{s},\mathbf{a}}{\min} \quad -\lambda\left(\mathbf{s}\right) + \tilde{T}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \ell\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ \text{s.t.} \quad \mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), \ \mathbf{x}_{0} = \mathbf{s} \\ \mathbf{h}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq \mathbf{0} \\ \end{array}$$
brings us back to classic stability theory

MPC scheme is (nominally) stabilizing if there is λ such that $\ell(\mathbf{s}, \mathbf{a}) := L(\mathbf{s}, \mathbf{a}) + \lambda(\mathbf{s}) - \lambda(\mathbf{f}(\mathbf{s}, \mathbf{a})) \ge \kappa(||\mathbf{s} - \mathbf{s}_{\mathbf{s}}||), \quad \forall \mathbf{s}, \mathbf{a}$ where κ is K_{∞} (+conditions on τ)

Remarks

- Modifying the MPC cost is a concept already present in dissipativity theory!
- Aligned with modifying the cost for MPC performance
- $\bullet \rightarrow$ Merge the RL & stability modifications for "Stability by design"

S. Gros (NTNU)

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Given arbitrary stage cost
$$L(\mathbf{s}, \mathbf{a})$$
, build a
stable policy $\pi_{\theta}^{\text{MPC}}$ minimizing:
 $J(\pi_{\theta}^{\text{MPC}}) = \sum_{k=0}^{\infty} L(\mathbf{s}_k, \mathbf{a}_k)$

< □ > < 同 > < 回 > < 回

Given arbitrary stage cost L(s, a), build a stable policy π_{θ}^{MPC} minimizing:

$$J\left(\pi_{\theta}^{\mathrm{MPC}}
ight) = \sum_{k=0}^{\infty} L\left(\mathbf{s}_{k}, \mathbf{a}_{k}
ight)$$

 $\begin{array}{ll} \textbf{Parametrized policy } \pi_{\theta}^{\text{MPC}} \text{ from:} \\ \underset{\textbf{x},\textbf{u}}{\min} & -\lambda_{\theta}\left(\textbf{s}\right) + T_{\theta}\left(\textbf{x}_{N}\right) + \sum_{k=0}^{N-1} L_{\theta}\left(\textbf{x}_{k},\textbf{u}_{k}\right) \\ \text{s.t.} & \textbf{x}_{k+1} = \textbf{f}_{\theta}\left(\textbf{x}_{k},\textbf{u}_{k}\right), \ \textbf{x}_{0} = \textbf{s} \\ & \textbf{h}_{\theta}\left(\textbf{x}_{k},\textbf{u}_{k}\right) \leq 0 \end{array}$

Given arbitrary stage cost $L(\mathbf{s}, \mathbf{a})$, build a stable policy $\pi_{\theta}^{\text{MPC}}$ minimizing:

$$J\left(\pi_{ heta}^{ ext{MPC}}
ight) = \sum_{k=0}^{\infty} L\left(\mathbf{s}_k, \mathbf{a}_k
ight)$$

- Learning based on L
- Impose constraint:

 $L_{oldsymbol{ heta}}\left(\mathbf{s},\mathbf{a}
ight)\geq\kappa\left(\left\|\mathbf{s}-\mathbf{s}_{\mathrm{s}}
ight\|
ight),\quadorall\,\mathbf{s},\mathbf{a}$

throughout the learning

*L*_θ different than *L* from constraint & model error

 $\begin{array}{ll} \textbf{Parametrized policy } \pi_{\theta}^{\text{MPC}} \text{ from:} \\ \min_{\mathbf{x},\mathbf{u}} & -\lambda_{\theta}\left(\mathbf{s}\right) + \mathcal{T}_{\theta}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ \text{s.t.} & \mathbf{x}_{k+1} = \mathbf{f}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), \ \mathbf{x}_{0} = \mathbf{s} \\ & \mathbf{h}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq \mathbf{0} \end{array}$

通 ト イ ヨ ト イ ヨ ト

Given arbitrary stage cost L(s, a), build a stable policy π_{θ}^{MPC} minimizing:

$$J\left(\pi_{\theta}^{\mathrm{MPC}}
ight) = \sum_{k=0}^{\infty} L\left(\mathbf{s}_{k}, \mathbf{a}_{k}
ight)$$

- Learning based on L
- Impose constraint:

 $L_{oldsymbol{ heta}}\left(\mathbf{s},\mathbf{a}
ight)\geq\kappa\left(\left\|\mathbf{s}-\mathbf{s}_{\mathrm{s}}
ight\|
ight),\quadorall\,\mathbf{s},\mathbf{a}$

throughout the learning

*L*_θ different than *L* from constraint & model error

 $\begin{array}{ll} \textbf{Parametrized policy } \pi_{\theta}^{\text{MPC}} \text{ from:} \\ \underset{\textbf{x},\textbf{u}}{\text{min}} & -\lambda_{\theta}\left(\textbf{s}\right) + \mathcal{T}_{\theta}\left(\textbf{x}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}_{\theta}\left(\textbf{x}_{k},\textbf{u}_{k}\right) \\ \text{s.t.} & \textbf{x}_{k+1} = \textbf{f}_{\theta}\left(\textbf{x}_{k},\textbf{u}_{k}\right), \ \textbf{x}_{0} = \textbf{s} \\ & \textbf{h}_{\theta}\left(\textbf{x}_{k},\textbf{u}_{k}\right) \leq \textbf{0} \end{array}$

Theorem: under some conditions

- $\pi_{ heta}^{ ext{MPC}} o \pi_{\star}$ if π_{\star} is stabilizing
- $\pi_{ heta}^{\mathrm{MPC}}
 ightarrow$ best stabilizing policy otherwise

イロト 不得 トイラト イラト 一日

Given arbitrary stage cost L(s, a), build a stable policy π_{θ}^{MPC} minimizing:

$$J\left(\pi_{\theta}^{\mathrm{MPC}}
ight) = \sum_{k=0}^{\infty} L\left(\mathbf{s}_{k}, \mathbf{a}_{k}
ight)$$

- Learning based on L
- Impose constraint:

 $L_{oldsymbol{ heta}}\left(\mathbf{s},\mathbf{a}
ight)\geq\kappa\left(\left\|\mathbf{s}-\mathbf{s}_{\mathrm{s}}
ight\|
ight),\quadorall\,\mathbf{s},\mathbf{a}$

throughout the learning

L_θ different than L from constraint & model error

 $\begin{array}{ll} \textbf{Parametrized policy } \pi_{\boldsymbol{\theta}}^{\mathrm{MPC}} \text{ from:} \\ \min_{\mathbf{x},\mathbf{u}} & -\lambda_{\boldsymbol{\theta}}\left(\mathbf{s}\right) + \mathcal{T}_{\boldsymbol{\theta}}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}_{\boldsymbol{\theta}}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ \text{s.t.} & \mathbf{x}_{k+1} = \mathbf{f}_{\boldsymbol{\theta}}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), \ \mathbf{x}_{0} = \mathbf{s} \\ & \mathbf{h}_{\boldsymbol{\theta}}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq \mathbf{0} \end{array}$

Theorem: under some conditions

- $\pi_{ heta}^{ ext{MPC}} o \pi_{\star}$ if π_{\star} is stabilizing
- $\pi_{ heta}^{ ext{MPC}}
 ightarrow$ best stabilizing policy otherwise

 $\begin{array}{l} \mbox{Change of philosophy from "classic"} \\ \mbox{dissipativity framework:} \\ \mbox{stability analysis} \rightarrow \mbox{stable design} \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given arbitrary stage cost L(s, a), build a stable policy π_{θ}^{MPC} minimizing:

$$J\left(\boldsymbol{\pi}_{\boldsymbol{ heta}}^{\mathrm{MPC}}
ight) = \sum_{k=0}^{\infty} \boldsymbol{L}\left(\mathbf{s}_{k},\mathbf{a}_{k}
ight)$$

Constraint

$$\mathcal{L}_{oldsymbol{ heta}}\left(\mathbf{s},\mathbf{a}
ight)\geq\kappa\left(\left\|\mathbf{s}-\mathbf{s}_{\mathrm{s}}
ight\|
ight),\quadorall\mathbf{s},\mathbf{a}$$

is semi-infinite programming, not trivial

Some solutions:

- Sum-of-Squares (SOS) prog.
- Convex L_{θ} (+ radially unbounded)
- Something else?

 $\begin{array}{ll} \textbf{Parametrized policy } \pi_{\theta}^{\text{MPC}} \text{ from:} \\ \min_{\mathbf{x},\mathbf{u}} & -\lambda_{\theta}\left(\mathbf{s}\right) + \mathcal{T}_{\theta}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ \text{s.t.} & \mathbf{x}_{k+1} = \mathbf{f}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), \ \mathbf{x}_{0} = \mathbf{s} \\ & \mathbf{h}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq \mathbf{0} \end{array}$

Theorem: under some conditions

- $\pi_{ heta}^{ ext{MPC}} o \pi_{\star}$ if π_{\star} is stabilizing
- $\pi_{ heta}^{ ext{MPC}}
 ightarrow$ best stabilizing policy otherwise

Change of philosophy from "classic" dissipativity framework: stability analysis → stable design

<ロト < 団ト < 団ト < 団ト = 三 -

MPC & RL

Fall 2023 13 / 25

Given arbitrary stage cost L(s, a), build a stable policy π_{θ}^{MPC} minimizing:

$$J\left(\boldsymbol{\pi}^{\mathrm{MPC}}_{\boldsymbol{ heta}}
ight) = \sum_{k=0}^{\infty} \boldsymbol{L}\left(\mathbf{s}_{k},\mathbf{a}_{k}
ight)$$

Note that λ_{θ} is redundant for policy gradient, needed for Q-learning... Combining both is meaningful! $\begin{array}{ll} \textbf{Parametrized policy } \pi_{\theta}^{\mathrm{MPC}} \text{ from:} \\ \underset{\mathbf{x},\mathbf{u}}{\min} & -\lambda_{\theta}\left(\mathbf{s}\right) + \mathcal{T}_{\theta}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ \mathrm{s.t.} & \mathbf{x}_{k+1} = \mathbf{f}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), \ \mathbf{x}_{0} = \mathbf{s} \\ & \mathbf{h}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq \mathbf{0} \end{array}$

Theorem: under some conditions

- $\pi_{ heta}^{ ext{MPC}} o \pi_{\star}$ if π_{\star} is stabilizing
- $\pi_{ heta}^{\mathrm{MPC}}
 ightarrow$ best stabilizing policy otherwise

 $\begin{array}{l} \mbox{Change of philosophy from "classic"} \\ \mbox{dissipativity framework:} \\ \mbox{stability analysis} \rightarrow \mbox{stable design} \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given arbitrary stage cost L(s, a), build a stable policy π_{θ}^{MPC} minimizing:

$$J\left(\pi_{\theta}^{\mathrm{MPC}}
ight) = \sum_{k=0}^{\infty} L\left(\mathbf{s}_{k}, \mathbf{a}_{k}
ight)$$

Extension to stable policy for MDPs?

- Need stability with discount
- Need "stochastic dissipativity"

$$\begin{array}{ll} \textbf{Parametrized policy } \pi_{\theta}^{\text{MPC}} \text{ from:} \\ \min_{\mathbf{x},\mathbf{u}} & -\lambda_{\theta}\left(\mathbf{s}\right) + \mathcal{T}_{\theta}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ \text{s.t.} & \mathbf{x}_{k+1} = \mathbf{f}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), \ \mathbf{x}_{0} = \mathbf{s} \\ & \mathbf{h}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq \mathbf{0} \end{array}$$

Theorem: under some conditions

- $\pi_{ heta}^{ ext{MPC}} o \pi_{\star}$ if π_{\star} is stabilizing
- $\pi_{ heta}^{\mathrm{MPC}}
 ightarrow$ best stabilizing policy otherwise

 $\begin{array}{l} \mbox{Change of philosophy from "classic"} \\ \mbox{dissipativity framework:} \\ \mbox{stability analysis} \rightarrow \mbox{stable design} \end{array}$

Given arbitrary stage cost L(s, a), build a stable policy π_{θ}^{MPC} minimizing:

$$J\left(\boldsymbol{\pi}^{\mathrm{MPC}}_{\boldsymbol{ heta}}
ight) = \sum_{k=0}^{\infty} \boldsymbol{L}\left(\mathbf{s}_{k},\mathbf{a}_{k}
ight)$$

Extension to stable policy for MDPs?

- Need stability with discount
- Need "stochastic dissipativity"

MDP dissipativity: (2x Automatica '22)

- Use Strong Discounted Strict Dissipativity conditions
- Form the dissipativity equations in the measure space of the MDP

 $\begin{array}{ll} \textbf{Parametrized policy } \pi_{\theta}^{\text{MPC}} \text{ from:} \\ \min_{\mathbf{x},\mathbf{u}} & -\lambda_{\theta}\left(\mathbf{s}\right) + \mathcal{T}_{\theta}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ \text{s.t.} & \mathbf{x}_{k+1} = \mathbf{f}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), \ \mathbf{x}_{0} = \mathbf{s} \\ & \mathbf{h}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq \mathbf{0} \end{array}$

Theorem: under some conditions

- $\pi_{ heta}^{ ext{MPC}} o \pi_{\star}$ if π_{\star} is stabilizing
- $\pi_{ heta}^{ ext{MPC}}
 ightarrow$ best stabilizing policy otherwise

Change of philosophy from "classic" dissipativity framework: stability analysis \rightarrow stable design

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given arbitrary stage cost L(s, a), build a stable policy π_{θ}^{MPC} minimizing:

$$J\left(\pi_{\theta}^{\mathrm{MPC}}
ight) = \sum_{k=0}^{\infty} L\left(\mathbf{s}_{k}, \mathbf{a}_{k}
ight)$$

Extension to stable policy for MDPs?

- Need stability with discount
- Need "stochastic dissipativity"

MDP dissipativity: (2x Automatica '22)

- Use Strong Discounted Strict Dissipativity conditions
- Form the dissipativity equations in the measure space of the MDP

 $\begin{array}{ll} \textbf{Parametrized policy } \pi_{\theta}^{\text{MPC}} \text{ from:} \\ \min_{\mathbf{x},\mathbf{u}} & -\lambda_{\theta}\left(\mathbf{s}\right) + \mathcal{T}_{\theta}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ \text{s.t.} & \mathbf{x}_{k+1} = \mathbf{f}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right), \ \mathbf{x}_{0} = \mathbf{s} \\ & \mathbf{h}_{\theta}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq \mathbf{0} \end{array}$

Theorem: under some conditions

- $\pi_{ heta}^{ ext{MPC}} o \pi_{\star}$ if π_{\star} is stabilizing
- $\pi_{ heta}^{ ext{MPC}}
 ightarrow$ best stabilizing policy otherwise

Change of philosophy from "classic" dissipativity framework: stability analysis \rightarrow stable design

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

We have the maths to treat this, not yet the algorithms...

S. Gros (NTNU)

Policy	π_{MPC} from						
min _{x,u}	${\mathcal{T}}\left({{{\mathbf{x}}_N}} ight) + \sum\limits_{k = 0}^{N - 1} {L\left({{{\mathbf{x}}_k},{{\mathbf{u}}_k}} ight)}$						
s.t.	$\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right)$						
	$\mathbf{h}(\mathbf{x}_k,\mathbf{u}_k) \leq 0, \mathbf{x}_0 = \mathbf{s}$						

MDP:	\min_{π}	\mathbb{E}_{π}	$\left[\sum_{k=0}^{\infty}L\left(\mathbf{s}\right)\right]$	$_{k},\mathbf{a}_{k})$			
where $\mathbf{a}_{k}=\mathbf{\pi}\left(\mathbf{s}_{k} ight)$ and system dynamics							
$\mathbf{s}_{k+1} \sim \mathbb{P}\left[\cdot \mathbf{s}_k, \mathbf{a}_k ight]$							

 $\begin{array}{l} \textbf{Policy } \boldsymbol{\pi}_{\mathrm{MPC}} \ \textbf{from} \\ \min_{\mathbf{x},\mathbf{u}} \quad \mathcal{T}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} L\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ \mathrm{s.t.} \quad \mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ \quad \mathbf{h}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq 0, \quad \mathbf{x}_{0} = \mathbf{s} \end{array}$

$$\begin{split} \textbf{MDP:} & \min_{\boldsymbol{\pi}} \quad \mathbb{E}_{\boldsymbol{\pi}} \left[\sum_{k=0}^{\infty} L\left(\mathbf{s}_{k}, \mathbf{a}_{k}\right) \right] \\ \text{where } \mathbf{a}_{k} = \boldsymbol{\pi}\left(\mathbf{s}_{k}\right) \text{ and system dynamics} \\ & \mathbf{s}_{k+1} \sim \mathbb{P}\left[\cdot | \, \mathbf{s}_{k}, \mathbf{a}_{k} \, \right] \end{split}$$

Classic stability via Lyapunov:

• $V^{\rm MPC}(s)$ decrease along the system trajectories, i.e.

$$V^{ ext{MPC}}\left(ext{f}\left(ext{s}, \pi^{ ext{MPC}}\left(ext{s}
ight)
ight) < V^{ ext{MPC}}\left(ext{s}
ight)$$

is ensured by construction

・ 戸 ト ・ ヨ ト ・ ヨ ト

 $\begin{array}{l} \textbf{Policy } \boldsymbol{\pi}_{\mathrm{MPC}} \ \textbf{from} \\ \underset{\mathbf{x},\mathbf{u}}{\min} \quad \mathcal{T}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} L\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ \text{s.t.} \quad \mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ \quad \mathbf{h}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq 0, \quad \mathbf{x}_{0} = \mathbf{s} \end{array}$

MDP:

$$\min_{\boldsymbol{\pi}} \quad \mathbb{E}_{\boldsymbol{\pi}} \left[\sum_{k=0}^{\infty} L\left(\mathbf{s}_{k}, \mathbf{a}_{k}\right) \right]$$
where $\mathbf{a}_{k} = \boldsymbol{\pi}\left(\mathbf{s}_{k}\right)$ and system dynamics
 $\mathbf{s}_{k+1} \sim \mathbb{P}\left[\cdot | \mathbf{s}_{k}, \mathbf{a}_{k} \right]$

Classic stability via Lyapunov:

• $V^{\rm MPC}(s)$ decrease along the system trajectories, i.e.

$$oldsymbol{V}^{ ext{MPC}}\left(ext{f}\left(ext{s}, oldsymbol{\pi}^{ ext{MPC}}\left(ext{s}
ight)
ight) < oldsymbol{V}^{ ext{MPC}}\left(ext{s}
ight)$$

is ensured by construction

• What if $\mathbf{s}_{+} \sim \mathbb{P}[\,.\,|\,\mathbf{s}, \boldsymbol{\pi}^{\star}\left(\mathbf{s}\right)]$ is stochastic (with know density)?

$$oldsymbol{V}^{\mathrm{MPC}}\left(\mathrm{s}_{+}
ight) < oldsymbol{V}^{\mathrm{MPC}}\left(\mathrm{s}
ight), \quad orall \,\mathrm{s}$$

in some sense? Not really... (unless strong assumptions)

 $\begin{array}{l} \textbf{Policy } \pi_{\text{MPC}} \ \textbf{from} \\ \underset{x,u}{\text{min}} \quad \mathcal{T} \left(x_{N} \right) + \sum_{k=0}^{N-1} \mathcal{L} \left(x_{k}, u_{k} \right) \\ \text{s.t.} \quad x_{k+1} = \mathbf{f} \left(x_{k}, u_{k} \right) \\ \quad \mathbf{h} \left(x_{k}, u_{k} \right) \leq 0, \quad x_{0} = \mathbf{s} \end{array}$

$$\begin{split} \textbf{MDP:} & \min_{\boldsymbol{\pi}} \quad \mathbb{E}_{\boldsymbol{\pi}} \left[\sum_{k=0}^{\infty} L\left(\mathbf{s}_{k}, \mathbf{a}_{k}\right) \right] \\ \text{where } \mathbf{a}_{k} = \boldsymbol{\pi}\left(\mathbf{s}_{k}\right) \text{ and system dynamics} \\ & \mathbf{s}_{k+1} \sim \mathbb{P}\left[\cdot \mid \mathbf{s}_{k}, \mathbf{a}_{k} \right] \end{split}$$

E.g. thought experiment: $V^{\rm MPC}$ convex, s at the minimum...

伺 ト イ ヨ ト イ ヨ ト

 $\begin{array}{l} \textbf{Policy } \boldsymbol{\pi}_{\mathrm{MPC}} \ \textbf{from} \\ \min_{\mathbf{x},\mathbf{u}} \quad \mathcal{T}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} L\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ \mathrm{s.t.} \quad \mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ \quad \mathbf{h}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq 0, \quad \mathbf{x}_{0} = \mathbf{s} \end{array}$

MDP: $\min_{\boldsymbol{\pi}} \quad \mathbb{E}_{\boldsymbol{\pi}} \left[\sum_{k=0}^{\infty} L(\mathbf{s}_k, \mathbf{a}_k) \right]$ where $\mathbf{a}_k = \boldsymbol{\pi}(\mathbf{s}_k)$ and system dynamics $\mathbf{s}_{k+1} \sim \mathbb{P}[\cdot | \mathbf{s}_k, \mathbf{a}_k]$

E.g. thought experiment: $V^{\rm MPC}$ convex, s at the minimum...

A Lyapunov stability theory for MDP in terms of state (beyond "stability to a set") is in general not possible.

Yet MDPs can be stable

 $\begin{array}{l} \textbf{Policy } \boldsymbol{\pi}_{\text{MPC}} \ \textbf{from} \\ \min_{\mathbf{x},\mathbf{u}} \quad \mathcal{T}(\mathbf{x}_N) + \sum_{k=0}^{N-1} \mathcal{L}(\mathbf{x}_k,\mathbf{u}_k) \\ \text{s.t.} \quad \mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_k,\mathbf{u}_k) \\ \quad \mathbf{h}(\mathbf{x}_k,\mathbf{u}_k) \leq \mathbf{0}, \quad \mathbf{x}_0 = \mathbf{s} \end{array}$

MDP:

$$\min_{\boldsymbol{\pi}} \quad \mathbb{E}_{\boldsymbol{\pi}} \left[\sum_{k=0}^{\infty} L(\mathbf{s}_{k}, \mathbf{a}_{k}) \right]$$
where $\mathbf{a}_{k} = \boldsymbol{\pi}(\mathbf{s}_{k})$ and system dynamics
 $\mathbf{s}_{k+1} \sim \mathbb{P} \left[\cdot | \mathbf{s}_{k}, \mathbf{a}_{k} \right]$

E.g. thought experiment: $V^{\rm MPC}$ convex, s at the minimum...

A Lyapunov stability theory for MDP in terms of state (beyond "stability to a set") is in general not possible.

Yet MDPs can be stable

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Policy π_{MPC} from $\min_{\mathbf{x},\mathbf{u}} \quad \mathcal{T}(\mathbf{x}_N) + \sum_{k=0}^{N-1} \mathcal{L}(\mathbf{x}_k, \mathbf{u}_k)$ s.t. $\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_k, \mathbf{u}_k)$ $\mathbf{h}(\mathbf{x}_k, \mathbf{u}_k) \leq \mathbf{0}, \quad \mathbf{x}_0 = \mathbf{s}$ MDP: $\min_{\boldsymbol{\pi}} \quad \mathbb{E}_{\boldsymbol{\pi}} \left[\sum_{k=0}^{\infty} L(\mathbf{s}_{k}, \mathbf{a}_{k}) \right]$ where $\mathbf{a}_{k} = \boldsymbol{\pi}(\mathbf{s}_{k})$ and system dynamics $\mathbf{s}_{k+1} \sim \mathbb{P}[\cdot | \mathbf{s}_{k}, \mathbf{a}_{k}]$

E.g. thought experiment: $V^{\rm MPC}$ convex, s at the minimum...

A Lyapunov stability theory for MDP in terms of state (beyond "stability to a set") is in general not possible.

Yet MDPs can be stable

Key idea: Lyapunov stability in the state measure rather than state space

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Policy π_{MPC} from $\min_{\mathbf{x},\mathbf{u}} \quad \mathcal{T}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} \mathcal{L}(\mathbf{x}_{k},\mathbf{u}_{k})$ s.t. $\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_{k},\mathbf{u}_{k})$ $\mathbf{h}(\mathbf{x}_{k},\mathbf{u}_{k}) \leq 0, \quad \mathbf{x}_{0} = \mathbf{s}$

$$\begin{split} \textbf{MDP:} & \min_{\boldsymbol{\pi}} \quad \mathbb{E}_{\boldsymbol{\pi}} \left[\sum_{k=0}^{\infty} \mathcal{L} \left(\mathbf{s}_{k}, \mathbf{a}_{k} \right) \right] \\ \text{where } \mathbf{a}_{k} = \boldsymbol{\pi} \left(\mathbf{s}_{k} \right) \text{ and system dynamics} \\ & \mathbf{s}_{k+1} \sim \mathbb{P} \left[\cdot \, | \, \mathbf{s}_{k}, \mathbf{a}_{k} \, \right] \end{split}$$

Key idea: Lyapunov stability in the state measure rather than state space

Functional dissipativity: if there is a functional λ such that:

$$\mathcal{L}\left[
ho, \pi
ight] - \lambda\left[
ho_{+}
ight] + \lambda\left[
ho
ight] \geq \kappa\left(D\left(
ho\left|\left|
ho^{\mathrm{s}}
ight)
ight), \qquad \mathrm{s}\sim
ho, \; \mathrm{s}_{+}\sim
ho_{+}$$

then the state distribution ρ converges to $\rho^{\rm s}$

where

- \mathcal{L} is the problem cost functional, e.g. $\mathcal{L} = \mathbb{E}\left[L\left(s,a\right)\right]$
- $D(\cdot || \cdot)$ is a dissimilarity measure, e.g. Kullback-Liebler Divergence
- Choice of dissimilarity measure defines the form of stability

Policy π_{MPC} from $\min_{\mathbf{x},\mathbf{u}} \quad \mathcal{T}(\mathbf{x}_{N}) + \sum_{k=0}^{N-1} \mathcal{L}(\mathbf{x}_{k},\mathbf{u}_{k})$ s.t. $\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_{k},\mathbf{u}_{k})$ $\mathbf{h}(\mathbf{x}_{k},\mathbf{u}_{k}) \leq 0, \quad \mathbf{x}_{0} = \mathbf{s}$

$$\begin{split} \textbf{MDP:} & \min_{\boldsymbol{\pi}} \quad \mathbb{E}_{\boldsymbol{\pi}} \left[\sum_{k=0}^{\infty} \mathcal{L} \left(\mathbf{s}_k, \mathbf{a}_k \right) \right] \\ \text{where } \mathbf{a}_k = \boldsymbol{\pi} \left(\mathbf{s}_k \right) \text{ and system dynamics} \\ & \mathbf{s}_{k+1} \sim \mathbb{P} \left[\cdot | \, \mathbf{s}_k, \mathbf{a}_k \, \right] \end{split}$$

Key idea: Lyapunov stability in the state measure rather than state space

Functional dissipativity: if there is a functional λ such that:

$$\mathcal{L}\left[
ho, oldsymbol{\pi}
ight] - \lambda\left[
ho
ight] + \lambda\left[
ho
ight] \geq \kappa\left(D\left(
ho\left|\left|
ight.
ho^{\mathrm{s}}
ight)
ight), \qquad \mathrm{s}\sim
ho, \; \mathrm{s}_{+}\sim
ho_{+}$$

then the state distribution ρ converges to $\rho^{\rm s}$

where

- \mathcal{L} is the problem cost functional, e.g. $\mathcal{L} = \mathbb{E} \left[L(\mathbf{s}, \mathbf{a}) \right]$
- $D(\cdot || \cdot)$ is a dissimilarity measure, e.g. Kullback-Liebler Divergence
- Choice of dissimilarity measure defines the form of stability

Not obvious how to use it in RL yet...

S. Gros (NTNU)

MPC & F

Outline

1 Safe RL via MPC

2 Stability-constrained Learning with MPC

3 Some more results (in brief)

4 Applications & Reflections

Assume mixed-integer actions

S. Gros (NTNU)

Fall 2023 16 / 25

Assume mixed-integer actions

• With Q-learning, fairly trivial... incorrect if no exploration, though

Assume mixed-integer actions

- With Q-learning, fairly trivial... incorrect if no exploration, though
- For policy gradient, devil is in the details
 - ✓ Integer inputs are best treated via stochastic policy gradient
 - ✓ Continuous inputs are "best treated" via deterministic policy gradient (in the presence of constraints)
 - ✓ Propose a hybrid policy gradient method combining deterministic and stochastic policies, with corresponding compatible linear $A_{\pi_{\theta}}$ approximations
 - Works well on mixed-integer MPC examples

Assume mixed-integer actions

- With Q-learning, fairly trivial... incorrect if no exploration, though
- For policy gradient, devil is in the details
 - ✓ Integer inputs are best treated via stochastic policy gradient
 - ✓ Continuous inputs are "best treated" via deterministic policy gradient (in the presence of constraints)
 - ✓ Propose a hybrid policy gradient method combining deterministic and stochastic policies, with corresponding compatible linear $A_{\pi_{\theta}}$ approximations
 - ✓ Works well on mixed-integer MPC examples

More to be done on efficiency & control of the integer exploration
RL & MHE-MPC

The full state of the system is often not available, or not even modelled, use observer (e.g. MHE). Can we still do RL and how?

RL & MHE-MPC

• Problem becomes POMDP when MPC model does not include all states

< □ > < 🗇 >

RL & MHE-MPC

- Problem becomes POMDP when MPC model does not include all states
- MHE becomes a component of the policy, must be treated in RL as well
 - $\checkmark\,$ RL can tune MHE and MPC jointly for closed loop performance in the context of Q learning
 - Algorithmic is simple, performances on example are good
 - ✓ The MHE tuning has a strong impact on performance (on our examples)
 - \checkmark Extension to policy gradient is simple, yet to publish
 - Works also if MPC model omits some of the real states

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Tuning of the MPC "meta"-parameters

MPC "meta"-parameters:

- Horizon length N
- When to recompute control sequence (event-based MPC)

$$\begin{split} \text{MPC:} & \underset{\mathbf{x},\mathbf{u}}{\min} \quad \mathcal{T}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{L}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ & \text{s.t.} \quad \mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ & \quad \mathbf{h}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq \mathbf{0} \\ & \text{yields } \pi_{\text{MPC}}\left(\mathbf{s}_{0}\right) = \mathbf{u}_{0}^{\star} \end{split}$$

Event-triggered:

- apply input profile u^{*}_{0,...,n} until re-computation is triggered
- often used to reduce computational demand, energy, communication, etc.
- Triggering is state-based, to be tuned

E ▶ .

Tuning of the MPC "meta"-parameters

MPC "meta"-parameters:

- Horizon length N
- When to recompute control sequence (event-based MPC)

$$\begin{split} \textbf{MPC:} & \min_{\mathbf{x},\mathbf{u}} \quad \mathcal{T}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} L\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ & \text{s.t.} \quad \mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ & \mathbf{h}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq \mathbf{0} \end{split}$$

$$\end{split}$$

$$\texttt{yields } \pi_{\text{MPC}}\left(\mathbf{s}_{0}\right) = \mathbf{u}_{0}^{\star}$$

Event-triggered:

- apply input profile u^{*}_{0,...,n} until re-computation is triggered
- often used to reduce computational demand, energy, communication, etc.
- Triggering is state-based, to be tuned

Fairly simple idea, requires some care to be treated correctly:

- ✓ Define augmented state to preserve Markov property (essential for RL methods)
- $\checkmark\,$ Stochastic policy gradient methods required, must define the densities very carefully

・ 同 ト ・ ヨ ト ・ ヨ ト

RL to evaluate the storage function

$$\begin{array}{ll} \textbf{Policy } \boldsymbol{\pi}_{\mathrm{MPC}} \ \textbf{from} \\ \min_{\mathbf{x},\mathbf{u}} & \mathcal{T}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} L\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ \mathrm{s.t.} & \mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \\ & \mathbf{h}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right) \leq \mathbf{0}, \quad \mathbf{x}_{0} = \mathbf{s} \end{array}$$

If for some λ function: $L(\mathbf{s}, \mathbf{a}) + \lambda(\mathbf{s}) - \lambda(\mathbf{f}(\mathbf{s}, \mathbf{a})) \ge \kappa(\|\mathbf{s} - \mathbf{s}_{\mathbf{s}}\|), \quad \forall \mathbf{s}, \mathbf{a}$ holds, then MPC scheme is stabilizing

How to evaluate λ ?

- Approximate f as a polynomial, then Sum-of-Squares technique can be used
- We propose: parametrize λ and evaluate it via Q-learning
- On some examples, provides a more accurate λ than SOS
- Combination would arguably be good, to be done

Systems with

- $\bullet ~\sim \text{Linear dynamics}$
- Input-output data
- Significant stochasticity
- Modelling is difficult

Systems with

- Linear dynamics
- Input-output data
- Significant stochasticity
- Modelling is difficult

Multi-step linear predictors

$$\hat{\mathbf{y}} = \Phi \begin{bmatrix} \mathbf{u} \\ \mathbf{y} \\ \mathbf{u} \end{bmatrix}$$

- $\bullet \ \ \mathsf{Recent \ input-output \ sequence \ } \mathbf{u}, \mathbf{y}$
- Planned input sequence \mathbf{u}
- Predicted output sequence $\hat{\mathbf{y}}$

Multi-step linear predictors

SPC for **u**, **y** given

$$\begin{array}{l} \min_{\mathbf{u}, \hat{\mathbf{y}}} \quad \sum_{k=0}^{N} L(\hat{\mathbf{y}}_{k}, \mathbf{u}_{k}) \\
\text{s.t.} \quad \hat{\mathbf{y}} = \Phi \begin{bmatrix} \mathbf{u} \\ \mathbf{y} \\ \mathbf{u} \end{bmatrix} \\
\mathbf{h}(\hat{\mathbf{y}}_{k}, \mathbf{u}_{k}) \leq 0 \\
\text{yields policy } \boldsymbol{\pi}(\mathbf{u}, \mathbf{y}) = \mathbf{u}_{0}^{\star}
\end{array}$$

$$\hat{\mathbf{y}} = \Phi \begin{bmatrix} \mathbf{u} \\ \mathbf{y} \\ \mathbf{u} \end{bmatrix}$$

- Recent input-output sequence \mathbf{u}, \mathbf{y}
- Planned input sequence **u**
- Predicted output sequence $\hat{\mathbf{y}}$

Multi-step linear predictors

SPC for **u**, **y** given

$$\begin{array}{l} \min_{\mathbf{u}, \, \hat{\mathbf{y}}} \quad \sum_{k=0}^{N} L(\hat{\mathbf{y}}_{k}, \mathbf{u}_{k}) \\
\text{s.t.} \quad \hat{\mathbf{y}} = \Phi \begin{bmatrix} \mathbf{u} \\ \mathbf{y} \\ \mathbf{u} \end{bmatrix} \\
\mathbf{h}(\hat{\mathbf{y}}_{k}, \mathbf{u}_{k}) \leq 0 \\
\text{yields policy } \boldsymbol{\pi}(\mathbf{u}, \mathbf{y}) = \mathbf{u}_{0}^{*}
\end{array}$$

$$\mathbf{\hat{y}} = \mathbf{\Phi} \begin{bmatrix} \mathbf{u} \\ \mathbf{y} \\ \mathbf{u} \end{bmatrix}$$

• Recent input-output sequence **u**, **y**

- Planned input sequence u
- Predicted output sequence $\hat{\mathbf{y}}$
- Measured output sequences y

Where Φ can be **built from past data** \mathcal{D} , e.g.

$$\min_{\Phi} \quad \sum_{i \in \mathcal{D}} \frac{1}{2} \left\| \mathbf{y}_i - \Phi \begin{bmatrix} \mathbf{u}_i \\ \mathbf{y}_i \\ \mathbf{u}_i \end{bmatrix} \right\|^2 + R(\Phi)$$
s.t. Φ causal

or other regressions

< 同 > < 三 > < 三

Multi-step linear predictors

SPC for **u**, **y** given

$$\min_{\mathbf{u}, \hat{\mathbf{y}}} \sum_{k=0}^{N} L(\hat{\mathbf{y}}_{k}, \mathbf{u}_{k})$$
s.t. $\hat{\mathbf{y}} = \Phi \begin{bmatrix} \mathbf{u} \\ \mathbf{y} \\ \mathbf{u} \end{bmatrix}$

$$\mathbf{h}(\hat{\mathbf{y}}_{k}, \mathbf{u}_{k}) \leq 0$$
yields policy $\pi(\mathbf{u}, \mathbf{y}) = \mathbf{u}_{0}^{*}$

Suffers from the same limitations as classic MPC

$$\hat{\mathbf{y}} = \Phi \begin{bmatrix} \mathbf{u} \\ \mathbf{y} \\ \mathbf{u} \end{bmatrix}$$

- Recent input-output sequence **u**, **y**
- Planned input sequence u
- Predicted output sequence ŷ
- Measured output sequences y

Where Φ can be **built from past data** \mathcal{D} , e.g.

$$\begin{array}{c|c} \min_{\Phi} & \sum_{i \in \mathcal{D}} \frac{1}{2} \left\| \mathbf{y}_{i} - \Phi \left[\begin{array}{c} \mathbf{u}_{i} \\ \mathbf{y}_{i} \\ \mathbf{u}_{i} \end{array} \right] \right\|^{2} + R(\Phi) \\ \text{s.t.} & \Phi \text{ causal} \end{array}$$

or other regressions

Fall 2023 20 / 25

3 × 1

¢

SPC for **u**, **y** given

$$\begin{array}{l} \min_{\mathbf{u}, \hat{\mathbf{y}}} \quad \sum_{k=0}^{N} L(\hat{\mathbf{y}}_{k}, \mathbf{u}_{k}) \\
\text{s.t.} \quad \hat{\mathbf{y}} = \Phi \begin{bmatrix} \mathbf{u} \\ \mathbf{y} \\ \mathbf{u} \end{bmatrix} \\
\mathbf{h}(\hat{\mathbf{y}}_{k}, \mathbf{u}_{k}) \leq 0 \\
\text{yields policy } \pi(\mathbf{u}, \mathbf{y}) = \mathbf{u}_{0}^{\star}
\end{array}$$

Can we do RL? Yes!

- RL-MPC theory applies with some twists
- State becomes **u**, **y** (window of input-output)
- Modifications in principle not localized in time

Can we do RL? Yes!

- RL-MPC theory applies with some twists
- State becomes **u**, **y** (window of input-output)
- Modifications in principle not localized in time

Can we do RL? Yes!

- RL-MPC theory applies with some twists
- State becomes **u**, **y** (window of input-output)
- Modifications in principle not localized in time
- High-dimensional parameter space for RL
- Better behaved for learning than one-step simulation models (?)

Can we do RL? Yes!

- RL-MPC theory applies with some twists
- State becomes **u**, **y** (window of input-output)
- Modifications in principle not localized in time
- High-dimensional parameter space for RL
- Better behaved for learning than one-step simulation models (?)

Nonlinear extension possible. Best way to do it is to be investigated.

S. Gros (NTNU)

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E} \left[\nabla_{\theta} \pi_{\theta} \nabla_{\mathbf{a}} A_{\pi_{\theta}} \right]$

Some policies are dominated by "switches", difficult to treat in RL because $abla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E}\left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{a}} A_{\boldsymbol{\pi}_{\theta}}\right]$

- ✓ Proposed policy relaxation techniques based on Interior-Point formulations, such that $\nabla_{\theta} \pi_{\theta} \neq 0$ almost everywhere
- \checkmark Converge the policy to the true one over the learning

Some policies are dominated by "switches", difficult to treat in RL because $abla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E}\left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{a}} A_{\boldsymbol{\pi}_{\theta}}\right]$

- ✓ Proposed policy relaxation techniques based on Interior-Point formulations, such that $\nabla_{\theta} \pi_{\theta} \neq 0$ almost everywhere
- \checkmark Converge the policy to the true one over the learning

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E}\left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{a}} A_{\boldsymbol{\pi}_{\theta}}\right]$

- ✓ Proposed policy relaxation techniques based on Interior-Point formulations, such that $\nabla_{\theta} \pi_{\theta} \neq 0$ almost everywhere
- \checkmark Converge the policy to the true one over the learning

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E}\left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{a}} A_{\boldsymbol{\pi}_{\theta}}\right]$

- ✓ Proposed policy relaxation techniques based on Interior-Point formulations, such that $\nabla_{\theta} \pi_{\theta} \neq 0$ almost everywhere
- \checkmark Converge the policy to the true one over the learning

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E}\left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{a}} A_{\boldsymbol{\pi}_{\theta}}\right]$

- ✓ Proposed policy relaxation techniques based on Interior-Point formulations, such that $\nabla_{\theta} \pi_{\theta} \neq 0$ almost everywhere
- \checkmark Converge the policy to the true one over the learning

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E}\left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{a}} A_{\boldsymbol{\pi}_{\theta}}\right]$

- ✓ Proposed policy relaxation techniques based on Interior-Point formulations, such that $\nabla_{\theta} \pi_{\theta} \neq 0$ almost everywhere
- \checkmark Converge the policy to the true one over the learning

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E}\left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{a}} A_{\boldsymbol{\pi}_{\theta}}\right]$

- ✓ Proposed policy relaxation techniques based on Interior-Point formulations, such that $\nabla_{\theta} \pi_{\theta} \neq 0$ almost everywhere
- \checkmark Converge the policy to the true one over the learning

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E}\left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{a}} A_{\boldsymbol{\pi}_{\theta}}\right]$

- ✓ Proposed policy relaxation techniques based on Interior-Point formulations, such that $\nabla_{\theta} \pi_{\theta} \neq 0$ almost everywhere
- \checkmark Converge the policy to the true one over the learning

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E}\left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{a}} A_{\boldsymbol{\pi}_{\theta}}\right]$

- ✓ Proposed policy relaxation techniques based on Interior-Point formulations, such that $\nabla_{\theta} \pi_{\theta} \neq 0$ almost everywhere
- \checkmark Converge the policy to the true one over the learning

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E}\left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{a}} A_{\boldsymbol{\pi}_{\theta}}\right]$

- ✓ Proposed policy relaxation techniques based on Interior-Point formulations, such that $\nabla_{\theta} \pi_{\theta} \neq 0$ almost everywhere
- \checkmark Converge the policy to the true one over the learning

Some policies are dominated by "switches", difficult to treat in RL because $\nabla_{\theta} \pi_{\theta} = 0$ on most of the state space. Hence

 $\nabla_{\theta} J(\boldsymbol{\pi}_{\theta}) = \mathbb{E}\left[\nabla_{\theta} \boldsymbol{\pi}_{\theta} \nabla_{\mathbf{a}} A_{\boldsymbol{\pi}_{\theta}}\right]$

- ✓ Proposed policy relaxation techniques based on Interior-Point formulations, such that $\nabla_{\theta} \pi_{\theta} \neq 0$ almost everywhere
- \checkmark Converge the policy to the true one over the learning

Outline

1 Safe RL via MPC

2 Stability-constrained Learning with MPC

3 Some more results (in brief)

Applications & Reflections

Focus on Economic problems

- RLMPC is for performance
- Optimality "driven by external disturbances" seems the most interesting

4 3 > 4 3

Focus on Economic problems

- RLMPC is for performance
- Optimality "driven by external disturbances" seems the most interesting

Not a competitor to other ideas

- Keep classic approaches!
- Combinations are possible and beneficial
- RL-MPC "milks" the performance of other approaches

3 1 4 3

Focus on Economic problems

- RLMPC is for performance
- Optimality "driven by external disturbances" seems the most interesting

Not a competitor to other ideas

- Keep classic approaches!
- Combinations are possible and beneficial
- RL-MPC "milks" the performance of other approaches

RLMPC for constraint satisfaction

- Can "learn" to respect constraints
- Indirect approach, though
- ML-based "model-learning" better?

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Focus on Economic problems

- RLMPC is for performance
- Optimality "driven by external disturbances" seems the most interesting

Not a competitor to other ideas

- Keep classic approaches!
- Combinations are possible and beneficial
- RL-MPC "milks" the performance of other approaches

RLMPC for constraint satisfaction

- Can "learn" to respect constraints
- Indirect approach, though
- ML-based "model-learning" better?

Software integration is a bottleneck

- A lot of software for AI / RL
- Integration of MPC is not trivial

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Focus on Economic problems

- RLMPC is for performance
- Optimality "driven by external disturbances" seems the most interesting

Not a competitor to other ideas

- Keep classic approaches!
- Combinations are possible and beneficial
- RL-MPC "milks" the performance of other approaches

RLMPC for constraint satisfaction

- Can "learn" to respect constraints
- Indirect approach, though
- ML-based "model-learning" better?

Software integration is a bottleneck

- A lot of software for AI / RL
- Integration of MPC is not trivial

Prospects:

- Software
- Stochastic constraints
- Dual mode / Optimized exploration
- Data efficiency
- Multi-agent problems, FATE
- More applications
- Can we make it a "technology"?

S. Gros (NTNU)

MPC & RL

Fall 2023 23 / 25

Energy, Processes & Mobile robots

- Smart building
- Mobile robotics (UAV, USV)
- Wind energy
- Chemical process

- Smart house
- House with PV + Battery
- Energy Communities

Mix of experiments and simulations

Next lecture

When does the best model fit produce the optimal policy? I.e. when can we expect "classic MPC" to give us the highest performance?

- Will do some repeats to put us in the right position to get there
- Introduce some "corollary" to the theory to explain our current understanding
- Show some basic examples

This is brand new lecture :-)

Thanks for your attention!