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What are we going to discuss?

1 Learning for MPC - A focus on closed-loop performance

2 Safety & stability in Learning for MPC

3 MPC and Markov Decision Processes - When is learning beneficial?

Q+(x, u)← L(x, u) + γE [V (x+) | x, u]
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Robust MPC - Uncertainty model

True system: s+ ∼ P [ · |s, a ]

Deterministic model: ŝ+ = fθ (s, a)
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identification problem, well studied

Obviously Wθ is not unique

Ensuring probability 1 from data is impossible
→ probabilistic guarantees

Model parameters θ must be such that (1)
holds on every known data point

s

ŝ+

Wθ

Condition

s+ − fθ (s, a) ∈Wθ

for all observed triplets (s, a, s+)

→ constraints on θ

Containing the model-system
mismatch becomes constraints in
the parameters θ. Constraints can
be readily formulated in terms of

data.
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Safe policies via Robust (N)MPC

Robust (N)MPC delivers policy πθ(x0) = u⋆

0 from

u
⋆ = argmin

u
max

w∈Wθ
N

Tθ (xN) +
N−1
∑

k=0

Lθ (xk , uk)

s.t. u0,...,N ∈ U

x0,...,N is the propagation of the state dispersion

max cost treats worst-case scenario, required for “classic” stability

w = {w0, . . . ,wN} is the disturbance with wk ∈Wθ
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Policy gradient
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enforces safety through θ

S. Gros (NTNU) MPC & RL Fall 2023 7 / 25



Safe Learning via Robust MPC

Robust NMPC parameters θ

Policy gradient

∇θJ = E [∇θπθ∇uAπθ
]

adjusts θ for performance

No clear connection to SYSID

Sometimes does opposite of SYSID

Condition

s+ − f (s, a,θ) ∈Wθ

enforces safety through θ

S. Gros (NTNU) MPC & RL Fall 2023 7 / 25



Safe Learning via Robust MPC

Robust NMPC parameters θ

Policy gradient

∇θJ = E [∇θπθ∇uAπθ
]

adjusts θ for performance

No clear connection to SYSID

Sometimes does opposite of SYSID

Condition

s+ − f (s, a,θ) ∈Wθ

enforces safety through θ

Can be interpreted as a form of
SYSID (see set-membership)

S. Gros (NTNU) MPC & RL Fall 2023 7 / 25



Safe Learning via Robust MPC

Robust NMPC parameters θ

Policy gradient

∇θJ = E [∇θπθ∇uAπθ
]

adjusts θ for performance

No clear connection to SYSID

Sometimes does opposite of SYSID

Condition

s+ − f (s, a,θ) ∈Wθ

enforces safety through θ

Can be interpreted as a form of
SYSID (see set-membership)

How to do Safe RL?

Classic RL steps: θ ← θ − α∇θJ

S. Gros (NTNU) MPC & RL Fall 2023 7 / 25



Safe Learning via Robust MPC

Robust NMPC parameters θ

Policy gradient

∇θJ = E [∇θπθ∇uAπθ
]

adjusts θ for performance

No clear connection to SYSID

Sometimes does opposite of SYSID

Condition

s+ − f (s, a,θ) ∈Wθ

enforces safety through θ

Can be interpreted as a form of
SYSID (see set-membership)

How to do Safe RL?

Classic RL steps: θ ← θ − α∇θJ

Also reads as:

θ ← θ +∆θ

∆θ = argmin
∆θ

1

2α
‖∆θ‖2 +∇θJ

⊤∆θ

S. Gros (NTNU) MPC & RL Fall 2023 7 / 25



Safe Learning via Robust MPC

Robust NMPC parameters θ

Policy gradient

∇θJ = E [∇θπθ∇uAπθ
]

adjusts θ for performance

No clear connection to SYSID

Sometimes does opposite of SYSID

Condition

s+ − f (s, a,θ) ∈Wθ

enforces safety through θ

Can be interpreted as a form of
SYSID (see set-membership)

How to do Safe RL?

Classic RL steps: θ ← θ − α∇θJ

Also reads as:

θ ← θ +∆θ

∆θ = argmin
∆θ

1

2α
‖∆θ‖2 +∇θJ

⊤∆θ

Safe RL steps θ ← θ +∆θ:

∆θ = argmin
∆θ

1

2α
‖∆θ‖2 +∇θJ

⊤∆θ

s.t. s+ − f (s, a,θ +∆θ) ∈Wθ+∆θ

∀ (s, a, s+) in data set

S. Gros (NTNU) MPC & RL Fall 2023 7 / 25



Safe Learning via Robust MPC

Robust NMPC parameters θ

Policy gradient

∇θJ = E [∇θπθ∇uAπθ
]

adjusts θ for performance

No clear connection to SYSID

Sometimes does opposite of SYSID

Condition

s+ − f (s, a,θ) ∈Wθ

enforces safety through θ

Can be interpreted as a form of
SYSID (see set-membership)

How to do Safe RL?

Classic RL steps: θ ← θ − α∇θJ

Also reads as:

θ ← θ +∆θ

∆θ = argmin
∆θ

1

2α
‖∆θ‖2 +∇θJ

⊤∆θ

Safe RL steps θ ← θ +∆θ:
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1
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⊤∆θ

s.t. s+ − f (s, a,θ +∆θ) ∈Wθ+∆θ

∀ (s, a, s+) in data set

Safe RL steps seek performance under safety constraints
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Safety filters - Safe RL via projections

RL can discover policy parameters θ such that policy πθ(s) has good closed-loop
performances, ignoring safety (e.g. πθ stems from a DNN). “Learning” safety
implicitly is difficult.
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π
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a
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Built from “Robust MPC” methods?

Interaction with learning?

Is that a good idea? It depends...
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Safety filters - How to obtain optimality?

Q learning: Qθ ≈ Q⋆ learned via classic RL, ignoring safety.
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]
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Safe (feasible) exploration with MPC

Learning requires exploration. E.g. apply
a = πθ (s) + d to the real system where d is a

“disturbance”
πθ(s)
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NLP-based policy: “disturb” the cost function instead! (different options)

Feasible exploration: π
e

θ(s) = a⋆0 :

min
x,u

T (xN)− d
⊤
u0 +

N−1
∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk)

h (xk , uk) ≤ 0, x0 = s

satisfies the constraints by construction

πθ
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Clearly an arbitrary “policy disturbance” πθ (s) + d is a poor idea...

NLP-based policy: “disturb” the cost function instead! (different options)

Feasible exploration: π
e

θ(s) = a⋆0 :

min
x,u

T (xN)− d
⊤
u0 +

N−1
∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk)

h (xk , uk) ≤ 0, x0 = s

satisfies the constraints by construction

Remarks:

Exploration e = π
e

θ − πθ is not
centred-isotopric

Can create some technical issues with
actor-critic methods (linear
compatible Aπθ

), yields biased policy
gradient estimation

Bias seems small in practice
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Stability of MPC

Policy π
MPC from

min
x,u

T (xN) +
N−1
∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk) , x0 = s

h (xk , uk) ≤ 0
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s.t. xk+1 = f (xk , uk) , x0 = s

h (xk , uk) ≤ 0

MPC scheme is (nominally) stabilizing if there is λ such that

ℓ (s, a) := L (s, a) + λ (s)− λ (f (s, a)) ≥ κ (‖s− ss‖), ∀ s, a

where κ is K∞ (+conditions on T )
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min
s,a

− λ (s) + T̃ (xN) +
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∑

k=0

ℓ (xk , uk)

s.t. xk+1 = f (xk , uk ) , x0 = s

h (xk , uk) ≤ 0

brings us back to classic stability theory

MPC scheme is (nominally) stabilizing if there is λ such that

ℓ (s, a) := L (s, a) + λ (s)− λ (f (s, a)) ≥ κ (‖s− ss‖), ∀ s, a

where κ is K∞ (+conditions on T )

Remarks

Modifying the MPC cost is a concept already present in dissipativity theory!

Aligned with modifying the cost for MPC performance

→ Merge the RL & stability modifications for “Stability by design”
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Stability-constrained Learning-based MPC - Deterministic case

Given arbitrary stage cost L (s, a), build a
stable policy π

MPC

θ minimizing:

J
(

π
MPC

θ

)

=

∞
∑

k=0

L (sk , ak)
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θ minimizing:
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=
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Given arbitrary stage cost L (s, a), build a
stable policy π

MPC

θ minimizing:

J
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π
MPC

θ

)

=

∞
∑

k=0

L (sk , ak)

Extension to stable policy for MDPs?

Need stability with discount

Need “stochastic dissipativity”

MDP dissipativity: (2x Automatica ’22)

Use Strong Discounted Strict
Dissipativity conditions

Form the dissipativity equations in
the measure space of the MDP

Parametrized policy π
MPC

θ from:

min
x,u

− λθ (s) + Tθ (xN) +

N−1
∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk) , x0 = s

hθ (xk , uk) ≤ 0

Theorem: under some conditions

π
MPC

θ → π⋆ if π⋆ is stabilizing

π
MPC

θ → best stabilizing policy
otherwise

Change of philosophy from “classic”
dissipativity framework:

stability analysis → stable design

We have the maths to treat this, not yet the algorithms...
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Stability of MPC - Stochastic dynamics

Policy πMPC from

min
x,u

T (xN) +

N−1
∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk)

h (xk , uk ) ≤ 0, x0 = s

MDP:
min
π

Eπ

[

∞
∑

k=0

L (sk , ak)

]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]
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Classic stability via Lyapunov:

VMPC (s) decrease along the system trajectories, i.e.

VMPC

(

f
(

s,πMPC (s)
))

< VMPC (s)

is ensured by construction
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∑
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]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]

Classic stability via Lyapunov:

VMPC (s) decrease along the system trajectories, i.e.

VMPC

(

f
(

s,πMPC (s)
))

< VMPC (s)

is ensured by construction

What if s+ ∼ P[ . | s,π⋆ (s) ] is stochastic (with know density)?

VMPC (s+) < VMPC (s) , ∀ s

in some sense? Not really... (unless strong assumptions)
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where ak = π (sk) and system dynamics
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E.g. thought experiment: VMPC convex, s at the minimum...
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Stability of MPC - Stochastic dynamics

Policy πMPC from

min
x,u

T (xN) +

N−1
∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk)

h (xk , uk ) ≤ 0, x0 = s

MDP:
min
π

Eπ

[

∞
∑

k=0

L (sk , ak)

]
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sk+1 ∼ P [ · | sk , ak ]

E.g. thought experiment: VMPC convex, s at the minimum...

A Lyapunov stability theory for MDP in
terms of state (beyond “stability to a

set”) is in general not possible.

Yet MDPs can be stable

Key idea: Lyapunov stability in the state
measure rather than state space
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Stability of MPC - Stochastic dynamics

Policy πMPC from

min
x,u

T (xN) +
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∑
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MDP:
min
π

Eπ

[

∞
∑

k=0

L (sk , ak)

]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]

Key idea: Lyapunov stability in the state measure rather than state space

Functional dissipativity: if there is a functional λ such that:

L [ρ,π]− λ [ρ+] + λ [ρ] ≥ κ (D (ρ || ρs)) , s ∼ ρ, s+ ∼ ρ+

then the state distribution ρ converges to ρs

where

L is the problem cost functional, e.g. L = E [L (s, a)]

D ( · || · ) is a dissimilarity measure, e.g. Kullback-Liebler Divergence

Choice of dissimilarity measure defines the form of stability
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Stability of MPC - Stochastic dynamics

Policy πMPC from

min
x,u

T (xN) +

N−1
∑

k=0
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s.t. xk+1 = f (xk , uk)

h (xk , uk ) ≤ 0, x0 = s

MDP:
min
π

Eπ

[

∞
∑

k=0

L (sk , ak)

]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]

Key idea: Lyapunov stability in the state measure rather than state space

Functional dissipativity: if there is a functional λ such that:

L [ρ,π]− λ [ρ+] + λ [ρ] ≥ κ (D (ρ || ρs)) , s ∼ ρ, s+ ∼ ρ+

then the state distribution ρ converges to ρs

where

L is the problem cost functional, e.g. L = E [L (s, a)]

D ( · || · ) is a dissimilarity measure, e.g. Kullback-Liebler Divergence

Choice of dissimilarity measure defines the form of stability

Not obvious how to use it in RL yet...
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RL & Mixed integer problem in MPC

Mixed-integer problems are common. Can we do
RL over Mixed-integer MPC schemes?
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Assume mixed-integer actions
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Assume mixed-integer actions

With Q-learning, fairly trivial... incorrect if no exploration, though

For policy gradient, devil is in the details

X Integer inputs are best treated via stochastic policy gradient
X Continuous inputs are “best treated” via deterministic policy gradient (in the

presence of constraints)

X Propose a hybrid policy gradient method combining deterministic and
stochastic policies, with corresponding compatible linear Aπθ

approximations
X Works well on mixed-integer MPC examples
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Assume mixed-integer actions

With Q-learning, fairly trivial... incorrect if no exploration, though

For policy gradient, devil is in the details

X Integer inputs are best treated via stochastic policy gradient
X Continuous inputs are “best treated” via deterministic policy gradient (in the

presence of constraints)

X Propose a hybrid policy gradient method combining deterministic and
stochastic policies, with corresponding compatible linear Aπθ

approximations
X Works well on mixed-integer MPC examples

More to be done on efficiency & control of the integer exploration

S. Gros (NTNU) MPC & RL Fall 2023 16 / 25



RL & MHE-MPC

The full state of the system is often not
available, or not even modelled, use

observer (e.g. MHE). Can we still do RL
and how?
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RL & MHE-MPC

The full state of the system is often not
available, or not even modelled, use

observer (e.g. MHE). Can we still do RL
and how?

Problem becomes POMDP when MPC model does not include all states

MHE becomes a component of the policy, must be treated in RL as well

X RL can tune MHE and MPC jointly for closed loop performance in the
context of Q learning

X Algorithmic is simple, performances on example are good
X The MHE tuning has a strong impact on performance (on our examples)
X Extension to policy gradient is simple, yet to publish
X Works also if MPC model omits some of the real states
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Tuning of the MPC “meta”-parameters

MPC “meta”-parameters:

Horizon length N

When to recompute control sequence
(event-based MPC)

MPC:
min
x,u

T (xN) +

N−1
∑

k=0

L (xk , uk )

s.t. xk+1 = f (xk , uk)

h (xk , uk) ≤ 0

yields πMPC (s0) = u⋆

0

Event-triggered:

apply input profile u⋆

0,...,n until re-computation is triggered

often used to reduce computational demand, energy, communication, etc.

Triggering is state-based, to be tuned
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s.t. xk+1 = f (xk , uk)

h (xk , uk) ≤ 0

yields πMPC (s0) = u⋆

0

Event-triggered:

apply input profile u⋆

0,...,n until re-computation is triggered

often used to reduce computational demand, energy, communication, etc.

Triggering is state-based, to be tuned

Fairly simple idea, requires some care to be treated correctly:

X Define augmented state to preserve Markov property (essential for RL methods)

X Stochastic policy gradient methods required, must define the densities very
carefully
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RL to evaluate the storage function

Policy πMPC from

min
x,u

T (xN) +
N−1
∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk)

h (xk , uk) ≤ 0, x0 = s

If for some λ function:

L (s, a) + λ (s)− λ (f (s, a)) ≥ κ (‖s− ss‖) , ∀ s, a

holds, then MPC scheme is stabilizing

How to evaluate λ?

Approximate f as a polynomial, then Sum-of-Squares technique can be used

We propose: parametrize λ and evaluate it via Q-learning

On some examples, provides a more accurate λ than SOS

Combination would arguably be good, to be done

S. Gros (NTNU) MPC & RL Fall 2023 19 / 25



MPC Beyond State Space

Systems with

∼Linear dynamics

Input-output data

Significant stochasticity

Modelling is difficult
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Where Φ can be built from past data D, e.g.
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Can we do RL? Yes!

RL-MPC theory applies with some twists

State becomes u, y (window of input-output)

Modifications in principle not localized in time
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Ψθ (u, ŷ, u, y)

s.t. ŷ = Φθ





u

y

u





Hθ (u, ŷ, u, y) ≤ 0

yields policy πθ (u, y) = u⋆

0

Can we do RL? Yes!

RL-MPC theory applies with some twists

State becomes u, y (window of input-output)

Modifications in principle not localized in time

High-dimensional parameter space for RL

Better behaved for learning than one-step
simulation models (?)

Nonlinear extension possible. Best way to do it is to be investigated.
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RL & MPC for “strongly economic” problems

Some policies are dominated by “switches”, difficult to treat in RL because
∇θπθ = 0 on most of the state space. Hence

∇θJ (πθ) = E [∇θπθ∇aAπθ
]

is based on contributions from a very small number of samples. Parameter updates
become “infrequent and jumpy”.
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Reflections for today

Focus on Economic problems

RLMPC is for performance

Optimality “driven by external
disturbances” seems the most
interesting
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Reflections for today

Focus on Economic problems

RLMPC is for performance

Optimality “driven by external
disturbances” seems the most
interesting

Not a competitor to other ideas

Keep classic approaches!

Combinations are possible and
beneficial

RL-MPC “milks” the performance of
other approaches

RLMPC for constraint satisfaction

Can “learn” to respect constraints

Indirect approach, though

ML-based “model-learning” better?

Software integration is a bottleneck

A lot of software for AI / RL

Integration of MPC is not trivial

Prospects:

Software

Stochastic constraints

Dual mode / Optimized exploration

Data efficiency

Multi-agent problems, FATE

More applications

Can we make it a “technology”?
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Energy, Processes & Mobile robots

Smart building

Mobile robotics (UAV, USV)

Wind energy

Chemical process

Smart house

House with PV + Battery

Energy Communities

Mix of experiments and simulations
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Next lecture

When does the best model fit produce the optimal policy?
I.e. when can we expect “classic MPC” to give us the highest performance?

Will do some repeats to put us in the right position to get there

Introduce some “corollary” to the theory to explain our current understanding

Show some basic examples

This is brand new lecture :-)

Thanks for your attention!
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