
Model Predictive Control and Reinforcement Learning

– Lecture 10: Model Predictive Path Integral (MPPI) Control –

Hannes Homburger and Jasper Hoffmann

HTWG Konstanz and University Freiburg

October 12, 2023



It could be so easy...

Scalar Nonlinear Non-Convex Problem

min
x∈R

f(x)

with initial guess x0
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Scalar Nonlinear Non-Convex Problem

min
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f(x)

with initial guess x0

Idea of Random Search

1. Sample around initial guess

2. Evaluate costs and pick best
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It could be so easy...

Scalar Nonlinear Non-Convex Problem

min
x∈R

f(x)

with initial guess x0

Idea of Random Search

1. Sample around initial guess

2. Evaluate costs and pick best

3. New initial guess ← best sample

4. Repeat

... but there is no lunch for free!
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Overview

1 Introduction to Path Integral Control

2 Model Predictive Path Integral (MPPI) Control

3 Classification, Applications, and Literature
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Path Integral Control - Selected Literature

Part 1 - Path Integral Control:

▶ H. J. Kappen, Linear theory for control of nonlinear stochastic systems, Physical Review
Letters, Vol. 95, No. 20, 2005, Paper 200201. doi:10.1103/PhysRevLett.95.200201

Part 2 - MPPI:

▶ G. Williams, A. Aldrich, and E. A. Theodorou, Model predictive path integral control:
From theory to parallel computation. In Journal of Guidance, Control, and Dynamics, Vol.
40, No. 2, 2017. doi:10.2514/1.G001921

▶ G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, Information
theoretic model predictive control: Theory and applications to autonomous driving. In
IEEE Transactions on Robotics, Vol. 34, No. 6, 2018. doi:10.1109/TRO.2018.2865891

Part 3 - Classification, Applications, and Literature:

▶ Overview slide at the end
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The optimal way to get home

Would you choose the bridge or go around the lake?

▶ The solution of some optimal control
problems depends strongly on the
influence of stochastic properties

How can we address a stochastic optimal control problem using path integral control?
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Path Integral Control - Assumptions

Dynamics

Let st = s(t) ∈ Rns denote the state, at = a(t) ∈ Rna denote the action, and considering a
control-affine, stochastic differential equation (SDE) of the form

dst = [f(st) +G(st)at]dt+B(st)dw,

where dw denotes an nw dimensional Wiener process.
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Definition Wiener Process
Durret (1996), Stochastic Calculus - A Practical Introduction, CRC Press

Definition Wiener process

The Wiener process wt is is characterized by the
following properties:

1. w0 = 0 (almost surely)

2. w has independent increments

3. w has Gaussian increments: wt+∆t−wt ∼ N (0,∆t)

4. w has continuous path in t (almost surely) Norbert Wiener1

(1894-1964)

1 The references for all images can be found on the last slide.
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Another Perspective on the Wiener Process (Donsker’s theorem)

Wiener process as a limit of random walk

Let ξ1, ξ2, ..., ξ⌊nt⌋ be i.i.d.1 random variables with mean 0 and variance 1. The random step
function

wn
t =

1√
n

⌊nt⌋∑
k=1

ξk,

has the property limn→∞ wn
t+∆t − wn

t ∼ N (0,∆t), and thereby approaches a Wiener process.

1i.i.d. means independent and identically distributed
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Path Integral Control - Assumptions

Dynamics

Let st = s(t) ∈ Rns denote the state, at = a(t) ∈ Rna denote the action, and considering a
control-affine, stochastic differential equation (SDE) of the form

dst = [f(st) +G(st)at]dt+B(st)dw, (1)

where dw denotes an nw dimensional Wiener process.

Costs

Considering a quadratic action cost and an arbitrary state-dependent cost in form of

L(st, at) = q(st) +
1

2
a⊤t R(st)at, (2)

where R(st) ≻ 0. The terminal cost function is denoted by E(sT ).
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Value Function

Value Function

The value function corresponding to the dynamics (1) and the costs (2) is defined as

V (st, t) = min
a(·)(s)

Es(·)∼Qa(·)

[
E(sT ) +

∫ T

t

(
q(sτ ) +

1

2
aτ (sτ )

⊤R(sτ )aτ (sτ )

)
dτ

]
,

where Es(·)∼Qa(·) [·] denotes the expectation over trajectories taken with respect to dynamics
(1) applying the policy a(·)(s).

Which policy is
optimal?
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Path Integral Control - Stochastic Hamilton-Jacobi-Bellman Equation

Recursive Formulation of Value Function

Using the principle of optimality, the value function can be expressed as

V (st, t) = min
a

Edst∼Qa
[L(st, a)dt+ V (st + dst, t+ dt)]

with boundary condition V (sT , T ) = E(sT )

Stochastic HJB Equation

For given dynamics and costs the value function is given by the solution of the PDE

−∂V

∂t
(st, t) = min

a

(
q(st) +

1

2
a⊤R(st)a+ [f(st) +G(st)a]

⊤Vs +
1

2
tr(B(st)B(st)

⊤Vss)

)
with boundary condition V (sT , T ) = E(sT ), gradient Vs =

∂V
∂s (st, t)

⊤, and hessian Vss =
∂Vs

∂s

MPC and RL – Lecture 10: Model Predictive Path Integral (MPPI) Control H. Homburger and J. Hoffmann, University Freiburg 10



Path Integral Control - Optimal Controls

▶ Analyzing the Stochastic HJB equation

−∂V

∂t
(st, t) = min

a

(
q(st) +

1

2
a⊤R(st)a+ [f(st) +G(st)a]

⊤Vs +
1

2
tr(B(st)B(st)

⊤Vss)

)
→ Only the red parts depend on a

MPC and RL – Lecture 10: Model Predictive Path Integral (MPPI) Control H. Homburger and J. Hoffmann, University Freiburg 11



Path Integral Control - Optimal Controls

▶ Analyzing the Stochastic HJB equation

−∂V

∂t
(st, t) = min

a

(
q(st) +

1

2
a⊤R(st)a+ [f(st) +G(st)a]

⊤Vs +
1

2
tr(B(st)B(st)

⊤Vss)

)
→ Only the red parts depend on a

▶ An unconstrained quadratic problem with optimal action

a∗(st, t) = −R(st)
−1G(st)

⊤Vs(st, t)
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Path Integral Control - Optimal Controls

▶ Analyzing the Stochastic HJB equation

−∂V

∂t
(st, t) = min

a

(
q(st) +

1

2
a⊤R(st)a+ [f(st) +G(st)a]

⊤Vs +
1

2
tr(B(st)B(st)

⊤Vss)

)
→ Only the red parts depend on a

▶ An unconstrained quadratic problem with optimal action

a∗(st, t) = −R(st)
−1G(st)

⊤Vs(st, t)

▶ Reinstate the solution yields nonlinear PDE

−∂V

∂t
(st, t) = q(st) + f(st)

⊤Vs −
1

2
V ⊤
s G(st)R(st)

−1G(st)
⊤Vs +

1

2
tr(B(st)B(st)

⊤Vss)

with boundary condition V (sT , T ) = E(sT ).
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Path Integral Control - Recap so far

▶ Value function can be calculated by solving a special nonlinear backward-in-time PDE

▶ Classical methods to solve this PDE suffer from curse of dimensionality
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Path Integral Control - Recap so far

▶ Value function can be calculated by solving a special nonlinear backward-in-time PDE

▶ Classical methods to solve this PDE suffer from curse of dimensionality

Question

Is there a better possibility to solve this PDE by exploiting its structure?
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Path Integral Control - Desirability Function

▶ In controls, transformations are often used to simplify problems - let’s do this!
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Path Integral Control - Desirability Function

▶ In controls, transformations are often used to simplify problems - let’s do this!

▶ Using the exponential transform of the value function → Ψ a.k.a. desirability function.

V (st, t) = −λ log(Ψ(st, t)),

where λ > 0 is a parameter
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Path Integral Control - Desirability Function

▶ In controls, transformations are often used to simplify problems - let’s do this!

▶ Using the exponential transform of the value function → Ψ a.k.a. desirability function.

V (st, t) = −λ log(Ψ(st, t)),

where λ > 0 is a parameter, the partial derivatives are given by

∂tV = − λ

Ψ
∂tΨ and Vs = −

λ

Ψ
Ψs

and the hessian

Vss = −
λ

Ψ
Ψss +

λ

Ψ2
ΨsΨ

⊤
s
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Path Integral Control - Transformation in Linear PDE

Substituting ∂tV = − λ
Ψ∂tΨ , Vs = − λ

ΨΨs , and Vss = − λ
ΨΨss +

λ
Ψ2ΨsΨ

⊤
s in

−∂tV = q(st) + f(st)
⊤Vs −

1

2
Vs

⊤G(st)R(st)
−1G(st)

⊤Vs +
1

2
tr(B(st)B(st)

⊤Vss)
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Path Integral Control - Transformation in Linear PDE

Substituting ∂tV = − λ
Ψ∂tΨ , Vs = − λ

ΨΨs , and Vss = − λ
ΨΨss +

λ
Ψ2ΨsΨ

⊤
s in

−∂tV = q(st) + f(st)
⊤Vs −

1

2
Vs

⊤G(st)R(st)
−1G(st)

⊤Vs +
1

2
tr(B(st)B(st)

⊤Vss)

and omitting now all arguments yields

−
(
− λ

Ψ
∂tΨ

)
= q + f⊤

(
− λ

Ψ
Ψs

)
− 1

2

(
− λ

Ψ
Ψs

)
⊤GR−1G⊤

(
− λ

Ψ
Ψs

)
+

1

2
tr

(
BB⊤

(
− λ

Ψ
Ψss +

λ

Ψ2
ΨsΨ

⊤
s

))
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Path Integral Control - Transformation in Linear PDE

Substituting ∂tV = − λ
Ψ∂tΨ , Vs = − λ

ΨΨs , and Vss = − λ
ΨΨss +

λ
Ψ2ΨsΨ

⊤
s in

−∂tV = q(st) + f(st)
⊤Vs −

1

2
Vs

⊤G(st)R(st)
−1G(st)

⊤Vs +
1

2
tr(B(st)B(st)

⊤Vss)

and omitting now all arguments yields

−
(
− λ

Ψ
∂tΨ

)
= q + f⊤

(
− λ

Ψ
Ψs

)
− 1

2

(
− λ

Ψ
Ψs

)
⊤GR−1G⊤

(
− λ

Ψ
Ψs

)
+

1

2
tr

(
BB⊤

(
− λ

Ψ
Ψss +

λ

Ψ2
ΨsΨ

⊤
s

))
multiplying with Ψ

λ yields - a still nonlinear PDE :(

∂tΨ =
Ψ

λ
q − f⊤Ψs −

λ

2Ψ
Ψ⊤

s GR−1G⊤Ψs −
1

2
tr
(
BB⊤ (Ψss)

)
+

1

2Ψ
tr
(
BB⊤ΨsΨ

⊤
s

)
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Path Integral Control - Transformation in Linear PDE

▶ Using a basic property of the trace:

tr
(
BB⊤ΨsΨ

⊤
s

)
= tr

(
(BB⊤Ψs)

⊤Ψs

)
= tr

(
Ψ⊤

s BB⊤Ψs

)
= Ψ⊤

s BB⊤Ψs

MPC and RL – Lecture 10: Model Predictive Path Integral (MPPI) Control H. Homburger and J. Hoffmann, University Freiburg 15



Path Integral Control - Transformation in Linear PDE

▶ Using a basic property of the trace:

tr
(
BB⊤ΨsΨ

⊤
s

)
= tr

(
(BB⊤Ψs)

⊤Ψs

)
= tr

(
Ψ⊤

s BB⊤Ψs

)
= Ψ⊤

s BB⊤Ψs

▶ Replace the trace yields:

∂tΨ =
Ψ

λ
q − f⊤Ψs −

λ

2Ψ
Ψ⊤

s GR−1G⊤Ψs −
1

2
tr
(
BB⊤Ψss

)
+

1

2Ψ
Ψ⊤

s BB⊤Ψs

If the assumption λGR−1G⊤ = BB⊤ holds, the nonlinear terms cancel out and the
linear PDE

∂tΨ =
Ψ

λ
q − f⊤Ψs −

1

2
tr
(
BB⊤Ψss

)
remains.
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Path Integral Control - Feynman-Kac Lemma

Application of Feynman-Kac Lemma1

The solution of the parabolic PDE

∂tΨ =
Ψ

λ
q − f⊤Ψs −

1

2
tr
(
BB⊤Ψss

)
with boundary condition Ψ(sT , T ) = exp

(
− 1

λE(sT )
)
is given by the

expectation

Ψ(st, t) = Es(·)∼P

[
exp

(
− 1

λ

∫ T

t

q(sτ )dτ

)
Ψ(sT , T )

]
,

where Es(·)∼P[·] denotes the expectation over trajectories taken with respect
to the uncontrolled system dynamics dst = f(st)dt+B(st)dw.

Richard Feynman
(1918-1988)

Mark Kac
(1914-1984)

1 Øksendal (2000), Stochastic Differential Equation, Springer.
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Path Integral Control - Value Function as Expectation

▶ Defining the state-dependent portion of the costs of a trajectory s(·) as

S(s(·)) :=
∫ T

t

q(sτ )dτ + E(sT )

▶ Then we can express the desirability function as a Path Integral

Ψ(st, t) = Es(·)∼P

[
exp

(
− 1

λ
S(s(·))

)]
▶ Transform it back yields the value function as expectation

V (st, t) = −λ logEs(·)∼P

[
exp

(
− 1

λ
S(s(·))

)]
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Path Integral Control - Controls as Expectation

Remember: The optimal action a∗(st, t) = −R(st)
−1G(st)

⊤Vs(st, t) is dependent on Vs

Analytically computation of Vs is lengthy but straightforward1 and results in

a∗dt = R−1G⊤(GR−1G⊤)−1Es(·)∼P
[
exp

(
− 1

λS(s(·))
)
Bdw

]
Es(·)∼P

[
exp

(
− 1

λS(s(·))
)]

1 Theodorou, Buchli, Schaal (2010), A Generalized Path Integral Approach to Reinforcement Learning.
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Path Integral Control - Time Discrete Approximation

The time discrete approximation with ∆t = T/N yields

a∗ = R−1G⊤(GR−1G⊤)−1︸ ︷︷ ︸
projection operator

Eŝ∼P̂

[
exp

(
− 1

λ Ŝ(ŝ)
)
B ϵk√

∆t

]
Eŝ∼P̂

[
exp

(
− 1

λ Ŝ(ŝ)
)] ,

where

▶ dw ≈ ϵk
√
∆t with random variable ϵk ∼ N (0, Ina×na),

▶ state sequence ŝ = (ŝ0, ŝ1, ..., ŝN ),

▶ path costs Ŝ(ŝ) = E(sN ) +
∑N−1

k=0 q(ŝk)∆t,

and Eŝ∼P̂[·] denotes the expectation over trajectories taken with respect to the dynamics

ŝk+1 = ŝk + f(ŝk)∆t+B(ŝk)ϵk
√
∆t with ŝ0 = st

▶ set ∆t = 1 because the choice of unit of time is arbitrary (without loss of generality)
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Path Integral Control - Monte Carlo Estimation

In special case B = G
√
Σ

a∗k =
Eŝ∼P̂

[
exp

(
− 1

λ Ŝ(ŝ)
)
vk

]
Eŝ∼P̂

[
exp

(
− 1

λ Ŝ(ŝ)
)]

the projection operator vanishes, where Σ is the covariance of vk ∼ N (0,Σ).

Note, in this special case, assumption λGR−1G⊤ = BB⊤ reduces to R = λΣ−1.
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Path Integral Control - Monte Carlo Estimation

The optimal action

a∗k =
Eŝ∼P̂

[
exp

(
− 1

λ Ŝ(ŝ)
)
vk

]
Eŝ∼P̂

[
exp

(
− 1

λ Ŝ(ŝ)
)]

can be approximated using Monte Carlo estimation:

a∗k ≈
1

I

I−1∑
i=0

exp
(
− 1

λ Ŝ(ŝ
i)
)
vk,i

1
I

∑I−1
n=0 exp

(
− 1

λ Ŝ(ŝ
n)
) =

I−1∑
i=0

wivk,i, with wi =
exp

(
− 1

λ Ŝ(ŝ
i)
)

∑I−1
n=0 exp

(
− 1

λ Ŝ(ŝ
n)
)
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Recap so far...

▶ Closed-form solution of the HJB and the corresponding optimal control by a
transformation in an expectation over all possible trajectories - a so called Path Integral

▶ This expectation can then be approximated via a Monte Carlo approximation using
forward sampling of the uncontrolled stochastic system dynamics

Question

Which control methods can be derived using the path integral framework?
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Path Integral Control - Methods

Open-Loop Planning with
Path Integrals1

Sampling takes place from
the initial state of the
optimal control problem.
Most straightforward
approach. However, no
reaction to noise.

a∗k(s) ≈ A∗(k)

Policy Improvement with
Path Integrals2

Sampling in policy
parameter space. More
effective approach by
employing the path integral
control framework to find
the optimal parameters of a
feedback control policy.

a∗(t, s) ≈ πθ∗(t, s)

Model Predictive Path
Integral Control3

MPC setting: Open-loop
control sequence is
constantly optimized while
processing in real time.
High calculation effort.

a∗k(s) ≈ A∗
s0=s(0)

1 e.g. Theodorou, Todorov (2012), Relative Entropy and Free Energy Dualities
2 e.g. Theodorou, Buchli, Schaal (2010), Learning Policy Improvements with Path Integrals
3 e.g. Gómez, ..., Kappen (2016), Real-Time Stochastic Optimal Control for Multi-Agent Quadrotor Systems
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Major Issue

▶ Major issue: Expectation is taken with respect to the uncontrolled dynamics of the system.
This is problematic because the probability of sampling low-cost trajectories is very low.

How can we circumvent this issue?

▶ Importance sampling!
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Importance Sampling

The expected value is defined as

Ev∼Q[v] =

∫
vq(v)dv,

where q(v) denotes the probability density function (pdf) of probability distribution Q. We can
extend this expression to ∫

vq(v)dv =

∫
vq(v)

p(v)

p(v)
dv,

where p(v) is the pdf of probability distribution P. If for Q and P hold
(p(v) = 0)↔ (q(v) = 0) (absolute continuity), then

Ev∼Q[v] = Ev∼P[w(v)v] with w(v) =
q(v)

p(v)

holds and we can sample from another distribution.
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MPPI - Algorithm

Algorithm

1. Sample input trajectories around initial guess

2. Simulate and compute path costs for each sampled trajectory

3. Compute weights corresponding to sampled trajectories

4. Approximate optimal control sequence via weighted mean

5. Apply first element of optimal control sequence, shift, and go to 1
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MPPI - Algorithm in Detail
Wiliams et al. (2017), Information Theoretic MPC for Model-Based Reinforcement Learning
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Classification

Strengths of MPPI:

▶ Can handle nonsmooth costs and dynamics

▶ Easy to implement

▶ Computation in parallel tasks (GPU)

▶ Considering stochastic dynamics

Weaknesses of MPPI:

▶ No sufficient condition

▶ Performance highly depends on initial guess

▶ Relation R = λΣ−1 is necessary

▶ A lot of samples are necessary to explore high dimensional space
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Full Scale Applications

Check out our website
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Further readings

Basics

▶ Kappen (2005), Path integrals and symmetry breaking for optimal control theory

▶ Gómez et al. (2014), Policy Search for Path Integral Control

▶ Wiliams et al. (2018), Information Theoretic Model Predictive Control: Theory and
Applications to Autonomous Driving

Recent research

▶ Lefebvre et al. (2019), Path Integral Policy Improvement with DDP

▶ Kusumoto et al. (2019), Informed Information Theoretic Model Predictive Control

▶ Balci et al. (2022), Constrained Covariance Steering Based Tube-MPPI

▶ Wang et al. (2022), Sampling-Based Optimization for Multi-Agent MPC

▶ Kim et al. (2022), Smooth Model Predictive Path Integral Control Without Smoothing

▶ Streichenberg et al. (2023), Multi-Agent Path Integral Control for Interaction-Aware
Motion Planning in Urban Canals

MPC and RL – Lecture 10: Model Predictive Path Integral (MPPI) Control H. Homburger and J. Hoffmann, University Freiburg 29



Attachment: Stochastic HJB Equation

Sketch for one dimensional case

V (s, t) = min
a

Edst∼Q(a) [L(s, a)dt+ V (s+ dst, t+ dt)]

Assuming V is differentiable in x and t - we can use a Taylor series

V (s+ dst, t+ dt) = V (s, t) + Vtdt+ Vsdst +
1

2
Vss(dst)

2 + Vstdstdt + ”Higher Order Terms”

With general dynamics
dst = f(t, st, at)dt+B(t, st, at)dw

we can formally write

(dst)
2 = f

2
(dt)2 +B2(dw)2 + 2fBdwdt

dstdt = f(dt)2 +Bdwdt
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Attachement: Stochastic HJB Equation

Applying rules of stochastic calculus with (dw)2 = dt, dwdt = 0, dt2 = 0, and E[dw] = 0 yield

V = min
a

[
Ldt+ V + Vtdt+ Vsfdt+

1

2
VssB

2dt+ ”Higher Order Terms”

]
Subtracting V and Vtdt on both sides and dividing by dt results in stochastic HJB:

−Vt = min
a

[
L+ fVs +

1

2
B2Vss

]
In multidimensional case1:

−Vt = min
u

[
L+ f

⊤
Vs +

1

2
tr(BB⊤Vss)

]
1Fleming and Rishel (1975), Deterministic and stochastic optimal control. Springer.
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