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Forewords

On this topic

First publication in 2020

∼40 papers

Many talks & courses

Growing portfolio of applications &
experiments

A bit on the “theoretical” side in the
field

On these lectures

Give high-level concepts

Focus on known insights

What are the current gaps

New insights (3rd lecture)

Software for implementation are not mature
yet. You will be the first “large” audience

playing with them.
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What are we going to discuss?

1 Learning for MPC - A focus on closed-loop performance

2 Safety & stability in Learning for MPC

3 When do “classic” approaches work / When is learning beneficial?

Q+(x, u)← L(x, u) + γE [V (x+) | x, u]
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Outline

1 The Basics

2 More background

3 Let’s take a deeper dive

4 Parametrization & Role of the model

5 RL over MPC
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Model Predictive Control (MPC)

Optimize a plan over finite horizon, apply first move, repeat

MPC: at current state s

min
x,u

T (xN) +

N−1∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk )

h (xk , uk) ≤ 0

x0 = s

apply action a = u⋆
0 to the system

Pl
an
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tio
n Current time

Current action

Future time

St
at
e 
pr
ed

ict
io
n

Current state

Next state
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MPC

is based on planning the future

Policy from repeated planning

π
MPC (s) = u

⋆
0

MPC is a powerful tool to control
constrained systems, increasingly used as

a practical way of building optimal
policies
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Theoretical Framework to connect RL and MPC

Model Predictive Control

Model driven

Policies from planning

Constraints oriented

Reinforcement Learning (RL)

Data driven

Optimal policies from learning

Performance oriented
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Powerful abstraction of real-world problems

Model Predictive Control

Model driven

Policies from planning

Constraints oriented

Reinforcement Learning (RL)

Data driven

Optimal policies from learning

Performance oriented

Solves MDP from dataConnection?

Connection?

Connecting MPC and RL is about connecting MPC to MDPs!!
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Markov Decision Processes (MDP)

Stochastic state transitions

s, a→ s+

(state-action → next state)

Cost function (instant performance)
L(s, a) ∈ R

A (fairly) general way of describing optimal control
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]
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min
π

J (π)

Cost function (instant performance)
L(s, a) ∈ R

MDP is a go-to framework when
considering general optimal control
problems, useful for applications with

stochastic dynamics.

Solution of an MDP is described by
“simple” equations, but solving them is

very challenging

By doing “re-planning” all the time, MPC
generates a policy πMPC that hopefully

resembles π⋆

MPC is a heuristic to solve MDPs

why do we use it?

A (fairly) general way of describing optimal control
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Purpose of MPC? According to the MPC community

Historically MPC focuses on constraints
satisfaction & stability, track a reference

Tracking MPC

More recent focus is on closed-loop
performance, e.g. energy, time, money.

Economic MPC
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“MPC is for constraints satisfaction...” (heard in scientific discussions)

... it is, but it does not need to be limited to that.
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Optimal policies from MPC?

Optimality often cast as minimizing†

J (π) = E

[
∞∑

k=0

γkL (sk , ak)

∣
∣
∣
∣
∣
ak = π (sk)

]

MPC policy πMPC (s) = u⋆
0 from

min
x,u

T (xN) +

N−1∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk)

h (xk , uk ) ≤ 0, x0 = s
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S. Gros (NTNU) Intro to RL-MPC Fall 2023 9 / 30



Optimal policies from MPC?

Optimality often cast as minimizing†

J (π) = E

[
∞∑

k=0

γkL (sk , ak)

∣
∣
∣
∣
∣
ak = π (sk)

]

MPC policy πMPC (s) = u⋆
0 from

min
x,u

T (xN) +

N−1∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk)

h (xk , uk ) ≤ 0, x0 = s

Optimal policy π⋆:

π
⋆ = amin

π

J (π)
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1 Infinite vs. finite horizon

2 Discounted (γ < 1) vs. undiscounted

3 Model f inaccurate

... in general no
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Optimal policies from MPC?

Optimality often cast as minimizing†

J (π) = E

[
∞∑

k=0
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∣
∣
∣
∣
∣
ak = π (sk)

]

MPC policy πMPC (s) = u⋆
0 from

min
x,u

T (xN) +

N−1∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk)

h (xk , uk ) ≤ 0, x0 = s

Can learning help with that?

...different “bets”

Optimal policy π⋆:

π
⋆ = amin

π

J (π)

Does MPC give πMPC = π⋆?

1 Infinite vs. finite horizon

2 Discounted (γ < 1) vs. undiscounted

3 Model f inaccurate

... in general no
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Learning for MPC - Machine Learning in-the-loop

MPC policy

π
MPC

θ (s)

from model⋆, e.g.

xk+1 = fθ(xk , uk)

a

s
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Learning for MPC - Machine Learning in-the-loop

MPC policy

π
MPC

θ (s)

from model⋆, e.g.

xk+1 = fθ(xk , uk)

Machine-Learning

adjust θ to fit model

xk+1 = fθ(xk , uk)

to data sk+1, sk , ak

a

s

s+, s, a

θ
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Learning for MPC - Machine Learning in-the-loop

MPC policy

π
MPC

θ (s)

from model⋆, e.g.

xk+1 = fθ(xk , uk)

Machine-Learning

adjust θ to fit model

xk+1 = fθ(xk , uk)

to data sk+1, sk , ak

a

s

s+, s, a

θ

“Machine-Learning” in-the-loop fθ from

Physics-based: first principles + SYSID

Neural Network: DNN, LSTM, TFT, . . .

Statistical: GP, RKHS, GPC, ARX . . .
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MPC policy
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θ

“Machine-Learning” in-the-loop fθ from

Physics-based: first principles + SYSID

Neural Network: DNN, LSTM, TFT, . . .

Statistical: GP, RKHS, GPC, ARX . . .

⋆can replace “model” by any prediction strategies:

input-output predictors, multi-step predictors, etc...
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MPC policy

π
MPC
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“Machine-Learning” in-the-loop fθ from

Physics-based: first principles + SYSID

Neural Network: DNN, LSTM, TFT, . . .

Statistical: GP, RKHS, GPC, ARX . . .

⋆can replace “model” by any prediction strategies:

input-output predictors, multi-step predictors, etc...

Paradigm

Performance tied to prediction
accuracy

Target accuracy via ML

Ignore that MPC is a policy
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Learning for MPC - Machine Learning in-the-loop

MPC policy

π
MPC

θ (s)

from model⋆, e.g.

xk+1 = fθ(xk , uk)

Machine-Learning

adjust θ to fit model

xk+1 = fθ(xk , uk)

to data sk+1, sk , ak

a

s

s+, s, a

θ

“Machine-Learning” in-the-loop fθ from

Physics-based: first principles + SYSID

Neural Network: DNN, LSTM, TFT, . . .

Statistical: GP, RKHS, GPC, ARX . . .

⋆can replace “model” by any prediction strategies:

input-output predictors, multi-step predictors, etc...

Paradigm

Performance tied to prediction
accuracy

Target accuracy via ML

Ignore that MPC is a policy

We focus on “breaking” this
paradigm

Learning / RL plays a key role
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Paradigm shifts...
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Paradigm shifts...

Shift 1: focus on performance instead of fitting

from: fθ is a model for the system dynamics

to: MPC is a model of optimality (will specify that in a bit...)
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Paradigm shifts...

Shift 1: focus on performance instead of fitting

from: fθ is a model for the system dynamics

to: MPC is a model of optimality (will specify that in a bit...)

Classic view...

MPC: at current state s solve

min
x,u

T (xN) +
N−1∑

k=0

L (xk , uk)

s.t. xk+1 = fθ (xk , uk)

h (xk , uk) ≤ 0

x0 = s

gives policy πMPC

θ (s) = u⋆
0

Find θ such that prediction
“fits” the data
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h (xk , uk) ≤ 0

x0 = s

gives policy πMPC

θ (s) = u⋆
0

Find θ such that prediction
“fits” the data

Shift to...

Find θ that “fits MPC to optimality”
according to the data, e.g. minimizes J(πMPC

θ
)
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Paradigm shifts...

Shift 1: focus on performance instead of fitting

from: fθ is a model for the system dynamics
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gives policy πMPC

θ (s) = u⋆
0

Find θ such that prediction
“fits” the data

Shift to...

Find θ that “fits MPC to optimality”
according to the data, e.g. minimizes J(πMPC

θ
)

→ Best model for closed-loop performance

6= Best model to fit the data!

More on this in 3rd lecture

RL is a toolbox to do that...
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from: fθ is a model for the system dynamics

to: MPC is a model of optimality (will specify that in a bit...)

Classic view...

MPC: at current state s solve

min
x,u

T (xN) +
N−1∑

k=0

L (xk , uk)

s.t. xk+1 = fθ (xk , uk)

h (xk , uk) ≤ 0
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gives policy πMPC

θ (s) = u⋆
0

Find θ such that prediction
“fits” the data

Shift to...

Find θ that “fits MPC to optimality”
according to the data, e.g. minimizes J(πMPC

θ
)

→ Best model for closed-loop performance

6= Best model to fit the data!

More on this in 3rd lecture

RL is a toolbox to do that...

But getting π⋆ places “high demands” on fθ

Can we do more? Yes...
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Paradigm shifts...

Shift 1: focus on performance instead of fitting

from: fθ is a model for the system dynamics

to: MPC is a model of optimality (will specify that in a bit...)

Classic view...

MPC: at current state s solve

min
x,u

T (xN) +
N−1∑

k=0

L (xk , uk)

s.t. xk+1 = fθ (xk , uk)

h (xk , uk) ≤ 0

x0 = s

gives policy πMPC

θ (s) = u⋆
0

Find θ such that prediction
“fits” the data

Shift to...

Find θ that “fits MPC to optimality”
according to the data, e.g. minimizes J(πMPC

θ
)

Shift 2: “holistic” parametrization

min
x,u

Tθ (xN) +

N−1∑

k=0

Lθ (xk , uk )

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk) ≤ 0

x0 = s

gives policy πMPC

θ (s) = u⋆
0
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How to use this? Reinforcement Learning

Policy πMPC

θ (s) = u⋆
0 from

min
x,u

Tθ (xN) +

N−1∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk) ≤ 0, x0 = s

minθ J
(
πMPC

θ

)
using data

θ → J
(
πMPC

θ

)
very implicit

J(.) is the real-system!
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J(.) is the real-system!

Reinforcement Learning

Tools to approximate π⋆ from data
This is not (necessarily) about DNNs
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How to use this? Reinforcement Learning

Policy πMPC

θ (s) = u⋆
0 from

min
x,u

Tθ (xN) +

N−1∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk) ≤ 0, x0 = s

minθ J
(
πMPC

θ

)
using data

θ → J
(
πMPC

θ

)
very implicit

J(.) is the real-system!

Reinforcement Learning

Tools to approximate π⋆ from data
This is not (necessarily) about DNNs

For MPC: tools to find best θ, e.g.

Policy Gradient: estimations of

∇θJ
(

π
MPC

θ

)

, possibly ∇2
θJ

(

π
MPC

θ

)

Q-learning: direct “shaping” of MPC

Combination is useful...
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Outline

1 The Basics

2 More background

3 Let’s take a deeper dive

4 Parametrization & Role of the model

5 RL over MPC
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Optimal Value Functions

Value function:

V⋆ (s) = Eπ⋆

[
∞∑

k=0

γkL (sk , ak)

∣
∣
∣
∣
∣
s0 = s, ak = π⋆ (sk)

]

gives the expected cost for policy π⋆, starting from given initial conditions s
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Optimal Value Functions

Value function:

V⋆ (s) = Eπ⋆

[
∞∑

k=0

γkL (sk , ak)

∣
∣
∣
∣
∣
s0 = s, ak = π⋆ (sk)

]

gives the expected cost for policy π⋆, starting from given initial conditions s

Action-Value function:

Q⋆ (s, a) = Eπ⋆

[
∞∑

k=0

γkL (sk , ak)

∣
∣
∣
∣
∣
s0 = s, a0 = a, ak>0 = π⋆ (sk )

]

gives the expected cost for policy π⋆, starting from given initial conditions s, and
using action a as first input (policy π⋆ after that)
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Optimal Value Functions

Value function:

V⋆ (s) = Eπ⋆

[
∞∑

k=0

γkL (sk , ak)

∣
∣
∣
∣
∣
s0 = s, ak = π⋆ (sk)

]

gives the expected cost for policy π⋆, starting from given initial conditions s

Action-Value function:

Q⋆ (s, a) = Eπ⋆

[
∞∑

k=0

γkL (sk , ak)

∣
∣
∣
∣
∣
s0 = s, a0 = a, ak>0 = π⋆ (sk )

]

gives the expected cost for policy π⋆, starting from given initial conditions s, and
using action a as first input (policy π⋆ after that)

Relationship:

V⋆ (s) = min
a

Q⋆ (s, a)
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a

Q⋆ (s, a)

Can be computed via the Bellman equations, intractable for “large” state-action
spaces
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Value Functions

Value function:

Vπ (s) = Eπ

[
∞∑

k=0

γkL (sk , ak )

∣
∣
∣
∣
∣
s0 = s, ak = π (sk)

]

gives the expected cost for policy π, starting from given initial conditions s

Action-Value function:

Qπ (s, a) = Eπ

[
∞∑

k=0

γkL (sk , ak)

∣
∣
∣
∣
∣
s0 = s, a0 = a, ak>0 = π (sk)

]

gives the expected cost for policy π, starting from given initial conditions s, and
using action a as first input (policy π⋆ after that)

Relationship:

Vπ (s) = Qπ (s,π (sk))

Advantage function:

Aπ (s, a) = Qπ (s, a)− Vπ (s)

compares a to policy π. Instrumental in policy gradient methods.

Note:

Vπ 6= V⋆

Qπ 6= Q⋆

Aπ 6= A⋆

Can be computed via the Bellman equations, intractable for “large” state-action
spacesS. Gros (NTNU) Intro to RL-MPC Fall 2023 15 / 30



MDPs and “forbidden” states

What if the system is not allowed to leave a certain subset of the state space?
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What if the system is not allowed to leave a certain subset of the state space?

Say there is a “feasible” set:

F = { s | h (s) ≤ 0 }

where the state of the system should always be.

In the “MDP theory”, assign an infinite penalty to leaving F, i.e. add:

IF (s, a) =

{
0 if s ∈ F

+∞ if s /∈ F

to stage cost L.
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In RL, ∞ penalties are not meaningful: “There is no backup from death”
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MDPs and “forbidden” states

What if the system is not allowed to leave a certain subset of the state space?

Say there is a “feasible” set:

F = { s | h (s) ≤ 0 }

where the state of the system should always be.

In the “MDP theory”, assign an infinite penalty to leaving F, i.e. add:

IF (s, a) =

{
0 if s ∈ F

+∞ if s /∈ F

to stage cost L.

In RL, ∞ penalties are not meaningful: “There is no backup from death”

Common approach: assign a “very large” penalty to s /∈ F instead of +∞.

Use of “barrier functions” in RL
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Why discounting?

MDP:

min
π

Eπ

[
∞∑

k=0

γkL (sk , ak)

]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]

Discounting is (in general) needed to
make the MDP well defined, is that all?

Can we give an interpretation of
discounting?
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]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]

Discounting is (in general) needed to
make the MDP well defined, is that all?

Can we give an interpretation of
discounting?

System lifetime: assuming that the system can (irremediably) fail at any time k with
probability 1− γ, then discounting accounts for resulting probabilistic lifetime.
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Why discounting?

MDP:

min
π

Eπ

[
∞∑

k=0

γkL (sk , ak)

]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]

Discounting is (in general) needed to
make the MDP well defined, is that all?

Can we give an interpretation of
discounting?

System lifetime: assuming that the system can (irremediably) fail at any time k with
probability 1− γ, then discounting accounts for resulting probabilistic lifetime.

E.g. a system with a sampling time of 1 second, and a 90% chance of having a lifetime
of 20 years, should have γ = 0.999999996349275
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Why discounting?

MDP:

min
π

Eπ

[
∞∑

k=0

γkL (sk , ak)

]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]

Discounting is (in general) needed to
make the MDP well defined, is that all?

Can we give an interpretation of
discounting?

Investment model: expected economic growth r (per time unit) implies that earning at
time k is worth (1 + r)−k the same earning at time 0. Hence γ = (1 + r)−1.
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Why discounting?

MDP:

min
π

Eπ

[
∞∑

k=0

γkL (sk , ak)

]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]

Discounting is (in general) needed to
make the MDP well defined, is that all?

Can we give an interpretation of
discounting?

Investment model: expected economic growth r (per time unit) implies that earning at
time k is worth (1 + r)−k the same earning at time 0. Hence γ = (1 + r)−1.

E.g. a system with a sampling time of 1 second and an expected return of 10% per year
should have γ = 0.999999999848887
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Why discounting?

MDP:

min
π

Eπ

[
∞∑

k=0

γkL (sk , ak)

]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]

Discounting is (in general) needed to
make the MDP well defined, is that all?

Can we give an interpretation of
discounting?

Investment model: expected economic growth r (per time unit) implies that earning at
time k is worth (1 + r)−k the same earning at time 0. Hence γ = (1 + r)−1.

E.g. a system with a sampling time of 1 second and an expected return of 10% per year
should have γ = 0.999999999848887

Bottom line: on “engineering applications”, the discount tends to (should) be
extremely close to 1
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Why discounting?

Gain optimal MDP:

min
π

lim
N→∞

Eπ

[
N∑

k=0

1

N
L (sk , ak)

]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]

What about considering average cost?

Policy π

is said to achieve “gain optimality”

transients are irrelelvant as they have no contribution in the average return

tends to yield “bang-bang” actions until optimal steady state is reached

is not unique!
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Why discounting?

Gain optimal MDP:

min
π

lim
N→∞

Eπ

[
N∑

k=0

1

N
L (sk , ak)

]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]

What about considering average cost?

Policy π

is said to achieve “gain optimality”

transients are irrelelvant as they have no contribution in the average return

tends to yield “bang-bang” actions until optimal steady state is reached

is not unique!

... gain optimal policies are of questionable use for control
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Why discounting?

Bias optimal MDP:

min
π

Eπ

[
N∑

k=0

L (sk , ak)− V ⋆
G (s0)

]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]

What about “removing” the average
cost?

where V ⋆
G is the value function associated to gain optimal problem.

Policy π

is said to achieve “bias optimality”

“best transient to gain-optimal state”

there are RL algorithms for bias optimality
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Why discounting?

Bias optimal MDP:

min
π

Eπ

[
N∑

k=0

L (sk , ak)− V ⋆
G (s0)

]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]

What about “removing” the average
cost?

where V ⋆
G is the value function associated to gain optimal problem.

Policy π

is said to achieve “bias optimality”

“best transient to gain-optimal state”

there are RL algorithms for bias optimality

The ideas we discuss here work for all cases. Discounted problems tend to yield
“more meaningful” behavior. Discounting create some challenges for stability

theory though. More on this in a bit.
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Outline

1 The Basics

2 More background

3 Let’s take a deeper dive

4 Parametrization & Role of the model

5 RL over MPC
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How does MPC model an MDP?

Markov Decision Process:

min
π

E

[
∞∑

k=0

γkL (sk , ak )

∣
∣
∣
∣
∣
ak = π (sk)

]

Value functions:

V⋆ (s) = Eπ⋆

[
∞∑

k=0

γkL (sk , ak)

]

Q⋆ (s, a) = Eπ⋆

[
∞∑

k=0

γkL (sk , ak)

∣
∣
∣
∣
∣
a0 = a

]

π⋆ (s) = amin
a

Q⋆ (s, a)

MPC
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How does MPC model an MDP?

Markov Decision Process:

min
π

E

[
∞∑

k=0

γkL (sk , ak )

∣
∣
∣
∣
∣
ak = π (sk)

]

Value functions:

V⋆ (s) = Eπ⋆

[
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k=0

γkL (sk , ak)

]

Q⋆ (s, a) = Eπ⋆

[
∞∑

k=0

γkL (sk , ak)

∣
∣
∣
∣
∣
a0 = a

]

π⋆ (s) = amin
a

Q⋆ (s, a)

MPC

VMPC (s) = min
x,u

T (xN) +

N−1∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk)

h (xk , uk) ≤ 0

x0 = s

yields πMPC (s) = u⋆
0 as by-product
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QMPC (s, a) = min
x,u

T (xN) +

N−1∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk)

h (xk , uk) ≤ 0

x0 = s, u0 = a

MPC is consistent, i.e.

VMPC (s) = min
a

QMPC (s, a)

π
MPC (s) = arg min

a

QMPC (s, a)

→ “sound representation” of MDP
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How does MPC model an MDP?

Markov Decision Process:

min
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[
∞∑
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]
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for all s
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L (xk , uk)
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a

π⋆ (s)

S. Gros (NTNU) Intro to RL-MPC Fall 2023 19 / 30



How does MPC model an MDP?

Markov Decision Process:

min
π

E

[
∞∑

k=0

γkL (sk , ak )

∣
∣
∣
∣
∣
ak = π (sk)

]

MPC is optimal if:

π
MPC (s) = π⋆ (s)

for all s

MPC

QMPC (s, a) = min
x,u

T (xN) +

N−1∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk)

h (xk , uk) ≤ 0

x0 = s, u0 = a

S. Gros (NTNU) Intro to RL-MPC Fall 2023 19 / 30



How does MPC model an MDP?

Markov Decision Process:

min
π

E

[
∞∑

k=0

γkL (sk , ak )

∣
∣
∣
∣
∣
ak = π (sk)

]

MPC is optimal if:

π
MPC (s) = π⋆ (s)

for all s

MPC

QMPC (s, a) = min
x,u

T (xN) +

N−1∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk)

h (xk , uk) ≤ 0

x0 = s, u0 = a

S. Gros (NTNU) Intro to RL-MPC Fall 2023 19 / 30



How does MPC model an MDP?

Markov Decision Process:

min
π

E

[
∞∑

k=0

γkL (sk , ak )

∣
∣
∣
∣
∣
ak = π (sk)

]

MPC is optimal if:

π
MPC (s) = π⋆ (s)

for all s

MPC

QMPC (s, a) = min
x,u

T (xN) +

N−1∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk)

h (xk , uk) ≤ 0

x0 = s, u0 = a

S. Gros (NTNU) Intro to RL-MPC Fall 2023 19 / 30



How does MPC model an MDP?

Markov Decision Process:

min
π

E

[
∞∑

k=0

γkL (sk , ak )

∣
∣
∣
∣
∣
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]

MPC is optimal if:

π
MPC (s) = π⋆ (s)

for all s

But optimality implies only

argmax
a

QMPC (s, a) = argmax
a

Q⋆ (s, a)

Optimal MPC can still be an
“incomplete” model of the MDP, i.e.
not a model of the value of states and

actions.

MPC
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How does MPC model an MDP?

Markov Decision Process:

min
π

E

[
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k=0

γkL (sk , ak )
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∣
ak = π (sk)

]

MPC is a complete MDP model if:

QMPC (s, a) = Q⋆ (s, a)

for all s, a

Completeness implies optimality i.e.

π
MPC (s) = π⋆ (s)

Matching the MPC action-value
function to the optimal one is desirable

MPC

QMPC (s, a) = min
x,u

T (xN) +

N−1∑
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How does MPC model an MDP?

Markov Decision Process:

min
π

E

[
∞∑

k=0

γkL (sk , ak )

∣
∣
∣
∣
∣
ak = π (sk)

]

Find θ such that

QMPC

θ (s, a) = Q⋆ (s, a)

for all s, a?

High demand in the MPC model !

But more on that in Lecture 3...

MPC

QMPC

θ (s, a) = min
x,u

T (xN) +

N−1∑

k=0

L (xk , uk)

s.t. xk+1 = fθ (xk , uk )

h (xk , uk) ≤ 0

x0 = s, u0 = a
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More on the full MPC parametrization

Markov Decision Process:

min
π

E

[
∞∑

k=0

γkL (sk , ak)

∣
∣
∣
∣
∣
ak = π (sk)

]

Value functions:

V⋆ (s) = Eπ⋆

[
∞∑

k=0

γkL (sk , ak)

]

Q⋆ (s, a) = Eπ⋆

[
∞∑

k=0

γkL (sk , ak)

∣
∣
∣
∣
∣
a0 = a

]

π⋆ (s) = amin
a

Q⋆ (s, a)

MPC
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More on the full MPC parametrization

Markov Decision Process:

min
π

E
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∣
∣
∣
∣
∣
a0 = a

]

π⋆ (s) = amin
a

Q⋆ (s, a)

MPC

VMPC (s) = min
x,u

T (xN) +

N−1∑

k=0

L (xk , uk)

s.t. xk+1 = f (xk , uk)

h (xk , uk) ≤ 0

x0 = s

yields πMPC (s) = u⋆
0 as by-product
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π
MPC 6= π⋆, V

MPC 6= V⋆, Q
MPC 6= Q⋆

but...
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Q⋆ (s, a)
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Qθ (s, a) = min
x,u

Tθ (xN) +

N−1∑

k=0

Lθ (xk , uk)

s.t. xk+1 = f (xk , uk)

hθ (xk , uk) ≤ 0

x0 = s, u0 = a

Theorem: under some assumptions

πθ = π⋆, Vθ = V⋆, Qθ = Q⋆

hold for some Tθ, Lθ, hθ
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k=0

Lθ (xk , uk)

s.t. xk+1 = f (xk , uk)

hθ (xk , uk) ≤ 0

x0 = s, u0 = a

Theorem: under some assumptions

πθ = π⋆, Vθ = V⋆, Qθ = Q⋆

hold for some Tθ, Lθ, hθ

MPC can “capture” π⋆, Q⋆, V⋆, even if MPC model is inaccurate

Requires modifications of the stage cost & constraints

Valid for all MPC schemes (classic, robust, stochastic, economic, etc)
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Learning+MPC where cost & constraints are adjusted is formally justified

“Holistic” view of MPC: model for Q⋆, cost & constraints are part of that
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1 The Basics

2 More background

3 Let’s take a deeper dive

4 Parametrization & Role of the model

5 RL over MPC
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What MPC parametrization?

min
x,u

Tθ (xN) +

N−1∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk) ≤ 0

x0 = s
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What MPC parametrization?

min
x,u

Tθ (xN) +

N−1∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk) ≤ 0

x0 = s

Theory says:

Lθ (x, u) = L (x, u) + ∆ (x, u)

∆ (x, u) = E [V⋆ (x+) | x, u]
︸ ︷︷ ︸

Real system

−V⋆ (fθ (x, u))
︸ ︷︷ ︸

Model

hθ > 0 ↔ ∞ values in modification
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Real system

−V⋆ (fθ (x, u))
︸ ︷︷ ︸

Model

hθ > 0 ↔ ∞ values in modification

Remarks:

In practice, ∆ (or Lθ) parametrized in a
chosen class of functions, and “learned”

Lθ , hθ convex is very beneficial, maybe
restrictive

When is the model optimal as is? We will
come back to that later...
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min
x,u

Tθ (xN) +

N−1∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk) ≤ 0

x0 = s

Theory is not very restrictive on
admissible models fθ. Should we
be worried? Not necessarily... this
theory is not the end of the story

Theory says:
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Role of the MPC model?

min
x,u

Tθ (xN) +
N−1∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk) ≤ 0

x0 = s
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Role of the MPC model?

min
x,u

Tθ (xN) +
N−1∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk) ≤ 0

x0 = s

Remarks:

Theory not very restrictive on admissible models fθ

Examples where fθ is “very wrong” but MPC gives
Q⋆,V ⋆,π⋆

θ such that MPC gives Q⋆,V ⋆,π⋆ may be
non-unique

Best “SYSID model” is not necessarily the best
MPC model

What is the role of the model?
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Role of the MPC model?

min
x,u

Tθ (xN) +
N−1∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk) ≤ 0

x0 = s

Remarks:

Theory not very restrictive on admissible models fθ

Examples where fθ is “very wrong” but MPC gives
Q⋆,V ⋆,π⋆

θ such that MPC gives Q⋆,V ⋆,π⋆ may be
non-unique

Best “SYSID model” is not necessarily the best
MPC model

What is the role of the model?

Reflections: depending on how we view this, it can become “philosophical”

MPC plan provides explainability. Wrong model ⇒ wrong plan ⇒ no
explainability.

MPC model associated to safety (more on that soon)
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Role of the model - Explainable RL

Benefit of MPC over “black-box” RL
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Role of the model - Explainable RL

Benefit of MPC over “black-box” RL

MPC provides explainability...

... if model “makes sense”

Not required by theory

Not necessarily done by RL
for MPC

How to keep the model sensible?
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−V⋆ (fθ (x, u))
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Model

Adjust θ such that

P [ fθ (s, a) | s, a ] (likelihood) is “high”

Lθ, hθ gives optimal MPC
for all s, a in data
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∆ (x, u) = E [V⋆ (x+) | x, u]
︸ ︷︷ ︸
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−V⋆ (fθ (x, u))
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Model

Adjust θ such that

P [ fθ (s, a) | s, a ] (likelihood) is “high”

Lθ, hθ gives optimal MPC
for all s, a in data

RL & SYSID ought to combine without
contradiction. If performance is key, RL should

superseded SYSID.
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Role of the model - Explainable RL

Benefit of MPC over “black-box” RL
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∆ (x, u) = E [V⋆ (x+) | x, u]
︸ ︷︷ ︸

Real system

−V⋆ (fθ (x, u))
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Model

Adjust θ such that

P [ fθ (s, a) | s, a ] (likelihood) is “high”

Lθ, hθ gives optimal MPC
for all s, a in data

SYSID & RL can do

Need to “harmonize” the two methods

Take “SYSID steps” in the null space of
∇2

θJ
(
πMPC

θ

)
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Role of the model - Explainable RL

Benefit of MPC over “black-box” RL

min
x,u

Tθ (xN) +
N−1∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk) ≤ 0

x0 = s

Theory says:

Lθ (x, u) = L (x, u) + ∆ (x, u)

∆ (x, u) = E [V⋆ (x+) | x, u]
︸ ︷︷ ︸

Real system

−V⋆ (fθ (x, u))
︸ ︷︷ ︸

Model

Adjust θ such that

P [ fθ (s, a) | s, a ] (likelihood) is “high”

Lθ, hθ gives optimal MPC
for all s, a in data

Reflection:
Do we need a concept of “explainability” for MPC?
What fundamental properties should the MPC
model have to be deemed “explaining”?
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Outline

1 The Basics

2 More background

3 Let’s take a deeper dive

4 Parametrization & Role of the model

5 RL over MPC
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Classic RL vs. RL-MPC

MDP:
min
π

Eπ

[
∞∑

k=0

γkL (sk , ak)

]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]

MPC:

min
x,u

Tθ (xN) +
N−1∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk ) ≤ 0

x0 = s

yields πMPC, VMPC, and QMPC
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Classic RL vs. RL-MPC

MDP:
min
π

Eπ

[
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k=0

γkL (sk , ak)

]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]

RL with DNN

correct structure is unknown

good initialization is difficult

respecting constraints is difficult &
implicit

MPC:

min
x,u

Tθ (xN) +
N−1∑

k=0

Lθ (xk , uk)

s.t. xk+1 = fθ (xk , uk)

hθ (xk , uk ) ≤ 0

x0 = s

yields πMPC, VMPC, and QMPC

MPC

Structure and initialization given

Constraints enforced explicitly

Theory says that we can get V⋆,
Q⋆, π⋆ from MPC
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RL methods & MPC

Form function approximators:

Qθ (s, a) , Vθ (s) , πθ (s)

via ad-hoc parametrization
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RL methods & MPC

Form function approximators:

Qθ (s, a) , Vθ (s) , πθ (s)

via ad-hoc parametrization

Q-learning methods adjust θ to get

Qθ (s, a) ≈ Q⋆ (s, a)
Yields policy:

πθ (s) = amin
a

Qθ (s, a) ≈ amin
a

Q⋆ (s, a) = π⋆ (s)

E.g. basic Q-learning uses:

θ ← θ + αδ∇θQθ (sk , ak)

δ = L (sk , ak) + γVθ (sk+1)− Qθ (sk , ak )
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E.g. basic Q-learning uses:

θ ← θ + αδ∇θQθ (sk , ak)

δ = L (sk , ak) + γVθ (sk+1)− Qθ (sk , ak )

Policy gradient methods adjust θ to get

∇θ J(πθ) = 0

yields policy πθ (x) ≈ π⋆ (x) directly.
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RL methods & MPC

Form function approximators:

Qθ (s, a) , Vθ (s) , πθ (s)

via ad-hoc parametrization

Q-learning methods adjust θ to get

Qθ (s, a) ≈ Q⋆ (s, a)
Yields policy:

πθ (s) = amin
a

Qθ (s, a) ≈ amin
a

Q⋆ (s, a) = π⋆ (s)

E.g. basic Q-learning uses:

θ ← θ + αδ∇θQθ (sk , ak)

δ = L (sk , ak) + γVθ (sk+1)− Qθ (sk , ak )

Policy gradient methods adjust θ to get

∇θ J(πθ) = 0

yields policy πθ (x) ≈ π⋆ (x) directly. E.g.

∇θ J(πθ) = E [∇θπθ ∇aQπθ
]

Derivative-free methods

◮ Build a surrogate of J(πθ)
◮ Optimize over that model
◮ Difficult over large parameter spaces
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RL methods & MPC

Form function approximators:
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MPC Sensitivities?

MPC is a Nonlinear Program

Optimal value

Vθ (s) = min
w

Φ (w, s,θ)

s.t. g (w, s,θ) = 0

h (w, s,θ) ≤ 0

Optimal solution

w
⋆
θ (s) = amin

w
Φ(w, s,θ)

s.t. . . .

S. Gros (NTNU) Intro to RL-MPC Fall 2023 28 / 30



MPC Sensitivities?

MPC is a Nonlinear Program

Optimal value

Vθ (s) = min
w

Φ (w, s,θ)

s.t. g (w, s,θ) = 0

h (w, s,θ) ≤ 0

Optimal solution

w
⋆
θ (s) = amin

w
Φ(w, s,θ)

s.t. . . .

How to obtain:

∇θVθ, ∇θQθ, ∇θw
⋆
θ

S. Gros (NTNU) Intro to RL-MPC Fall 2023 28 / 30



MPC Sensitivities?

MPC is a Nonlinear Program

Optimal value

Vθ (s) = min
w

Φ (w, s,θ)

s.t. g (w, s,θ) = 0

h (w, s,θ) ≤ 0

Optimal solution

w
⋆
θ (s) = amin

w
Φ(w, s,θ)

s.t. . . .

How to obtain:

∇θVθ, ∇θQθ, ∇θw
⋆
θ

NLP solution satisfies (KKT conditions)

r =
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⊤
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⋆
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NLP solution satisfies (KKT conditions)

r =





∇wL
g

hiµi



 = 0

h ≤ 0, µ ≥ 0

where Lagrange function is

L = Φ+ λ
⊤
g + µ

⊤
h

and λ, µ are the dual variables

Solve NLP for s,θ, provides w,λ,µ, then:

∇θVθ (s) = ∇θL (w, s,θ,λ,µ)

is a simple function evaluation
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hiµi
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h ≤ 0, µ ≥ 0

where Lagrange function is

L = Φ+ λ
⊤
g + µ

⊤
h

and λ, µ are the dual variables

Solve NLP for s,θ, provides w,λ,µ, then:

∂w⋆
θ

∂θ
= −

∂r

∂w

−1 ∂r

∂θ

where ∂r
∂w

−1
is already built in the solver, works

if LICQ / SOSC
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and λ, µ are the dual variables

Sensitivities do not exist for all s, a.
Does that matter?
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Optimal value

Vθ (s) = min
w

Φ (w, s,θ)
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Optimal solution
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⋆
θ (s) = amin
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How to obtain:

∇θVθ, ∇θQθ, ∇θw
⋆
θ

NLP solution satisfies (KKT conditions)

r =





∇wL
g

hiµi



 = 0

h ≤ 0, µ ≥ 0

where Lagrange function is

L = Φ+ λ
⊤
g + µ

⊤
h

and λ, µ are the dual variables

Sensitivities do not exist for all s, a.
Does that matter?

In general no: they exist almost everywhere, and
always appear inside E [·]. If the MDP has
underlying densities, then we are good.
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Model-based RL methods vs. RL-MPC: Data flow

SYSID
High Fidelity

Model

RL
Policy

(e.g. DNN)

Data

Simulated
Samples

Real
Samples

Common setup for “classic RL:

Build statistical model of the
real system

Generate simulated samples

Feed RL with real and
simulated samples

Remarks:

Simulated data much cheaper
than real ones, most data will
be simulated ones

With mostly simulated data:

◮ ≈equivalent to
approximate DP

◮ policy optimality relies
on model quality

S. Gros (NTNU) Intro to RL-MPC Fall 2023 29 / 30



Model-based RL methods vs. RL-MPC: Data flow

MPC
Model

MPC RL

Data

Model

Real
Samples

Basic setup for “RL-MPC”:

Build MPC model of the real
system

Pass it to MPC scheme

Feed RL with real samples

Remarks:

RL tunes MPC for real
system

MPC model may be
“detuned” from SYSID
version

Real data are expensive...
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Model-based RL methods vs. RL-MPC: Data flow

High Fidelity
Model

Digital Twin

MPC
Model

MPC RL

DataData

Model Simulated
Samples

Real
Samples

“Mixed” setup for “RL-MPC”:

Build MPC model of the real
system

MPC model is typically
“simple”

Build statistical model of the
real system

Generate simulated samples

Feed RL with real and
simulated samples

Remarks:

Simple MPC model

Complex simulation model

MPC model may be
“detuned” from SYSID
version
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Next lecture

MPC as a path for safety and stability in RL

More results & ideas

Thanks for your attention!
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