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Classical Linear Controllers / Linear Filters

Map from one time series into another

o Vi1 Yis Yivy e =P Uy Uy UGy - -
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Classical Linear Controllers / Linear Filters

Map from one time series into another

Ui—1 U:I-UJ—HH-- — U U Uy

Special case: linear time invariant (LTI) filters

N
U = Z i Yk—i
=0
action output = weighted sum of past measurement

Inputs
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Linear Filters are Everywhere...

AUDIO SYSTEMS:
- Dolby,

- Echo and other effects

- active noise control

FEEDBACK CONTROL:

- PID controller,
- Kalman filter,
- LQR,

r

___?‘\/Cutoff fr:equency I
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ope: - dB/de{:adg-
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Linear Filters are Everywhere...

AUDIO SYSTEMS:

- Dolby,

- Echo and other effects
- active noise control

ope: - dB/depad¢-

FEEDBACK CONTROL: Dt

|
- PID controller, r oo e u
] - Controller System
- Kalman filter,
- LQR, g
L Measurements [~————

...but they need lots of tuning to cope with constraints and
nonlinearities.

M. Diehl 7



Complex Sensor Actuator Systems

SENSORS

*GPS
eacceleration
eradar
eviSion

—

How to connect ?
linear controllers,

ACTUATORS

oflight surfaces
esteering wheel
*motor speeds

ejoint torques

M. Diehl 8



Complex Sensor Actuator Systems

SENSORS

*GPS
eacceleration
eradar
eviSion

—

How to connect ?
linear controllers,
fuzzy logic,
neural networks, or:

ACTUATORS

oflight surfaces
esteering wheel
emotor speeds

ejoint torques

M. Diehl 9



Complex Sensor Actuator Systems

SENSORS

*GPS
eacceleration
eradar
eviSion

—

How to connect ?
linear controllers,
fuzzy logic,
neural networks, or:
embedded optimisation

ACTUATORS

oflight surfaces
esteering wheel
emotor speeds

ejoint torques
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Embedded Optimization: a CPU-Intensive Map

EMBEDDED
OPTIMIZATION

17 Q S| 2" q
u = arg min [u] [ST R} [“] + [u] LJ s.t. Au + Bx < b

Solve, in real-time and repeatedly, an optimization problem
that depends on the incoming stream of input data, to
generate a stream of output data.
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The ubiquity of parametric convex optimization

PCP: objective and feasible set jointly convex in parameters and
variables (x, u).



(Sketch of Proof)
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Given: graph of u(x)

S = {(xux),t)x € Qg°(x) <t}
E := conv(S)

Construct epigraph E of g(u, x)

2. Add upward rays.
3. Take convex hull.

4. Show that minima are preserved.

70 -

60 —

50

|

40

|

30

20

1. “Bend” graph of u(x) using strictly convex g%(x)
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Prime Example: Model Predictive Control (MPC)

Always look a bit into the future

Example: driver predicts and optimizes,
and therefore slows down before a
curve

M. Diehl 14



Open Loop Optimal Control Problem in MPC

For given system state x, which controls u lead to the best objective value
without violation of constraints ¢

simulated state trajectory \. =000 ...

S N s

*
A T

1l | controls (unknowns / variables)

>

prediction horizon (length also unknown for time optimal MPC)
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Open Loop Optimal Control Problem in MPC

For given system state x, which controls u lead to the best objective value

without violation of constraints ?

simulated state trajectory \. =000 ...

—

1l |controls (unknowns / variables)

>

prediction horizon (length also unknown for time optimal MPC)

MPC creates a map from the inrtial value x to the first control u
(which In fact approximates the optimal feedback control from the H|B equation)

M. Diehl 16



MPC Example: Point-To-Point Motions [php vandenbrouck 2012]

Control aims:
e reach end point as fast as possible
» do not violate constraints
* no residual vibrations

ldea: formulate as embedded optimization problem
in form of Model Predictive Control (MPC)

M. Diehl 17



Time Optimal MPC of a Crane

W—

SENSORS MPC ACTUATOR

*|ine angle ® cart motor

® cart position

Hardware: xPC Target.  Software: gpOASES [Ferreau, D., Bock, 2008]
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gpOASES

“Quadratic Programming with the Online Active Set Strategy”

Implements an parametric active set method with dense or
sparse linear algebra in C/C++

Open-source (LGPL): https://projects.coin-or.org/gpOASES,
developed by Hans Joachim Ferreau with Chrlstlan Kirches,
Andreas Potschka, . / '

J d‘

Interfaced to C++, MATLAB, Simulink, CasADi, ...

[Ferreau, Kirches, Potscka, Bock, D., Math. Prog. C, 2014]


http://www.casadi.org

Time Optimal MPC of a Crane

Univ. Leuven [Vandenbrouck, Swevers, D.]
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Optimal solutions varying in time (inequalities matter)

Input
1 1
> 05 -
S 0f A
= o0s) ]
-1 ] ] ] ] ] ] ]
5 10 15 20 25 30 35 40
control horizon
Input rate
Z, | i - e
1 i
S O0F | 3 - ": ;-' & 7 e e e
1
g‘ i s i it
= -
'Q-E]Srﬂ-l- -l---l-----T--l---l-—
5 10 15 20 25 30 35 40

control horizon

Solver gpOASES [PhD H.J. Ferreau, 2011], [Ferreau, Kirches, Potschka, Bock, D. , A parametric
active-set algorithm for quadratic programming, Mathematical Programming Computation, 2014]
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Overview

- Embedded Optimization and Model Predictive Control (MPC)
- Real-Time Optimal Control Methods

* Progress in Numerical Integration Methods

- Progress in Structured Quadratic Programming

- Some real-world NMPC applications

M. Diehl 22



(curse of
dimensionality)

Hamilton-Jacobi-
Bellman Equation:
Tabulation in
State Space

Optimal Control Solution Methods - Family Tree

(bad inequality %

treatment
/ )

(only for stable
systems)

Single Shooting:
Only discretized
controls in NLP

(sequential)

Indirect Methods,
Pontryagin:

Solve Boundary

Value Problem

Direct Methods:
Transform into
Nonlinear Program
(NLP)

Collocation:
Discretized confr0/<
and states in NLP
(simultaneoits)

/

Multiple Shooting:
Controls and node
start values in NLP

/

\
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Direct Multi ple Shooting [Bock and Plitt, 1981] [Leineweber et al. 1999]

€; Li+1
Uj
PR

m Discretize controls piecewise on a coarse grid

m Solve relaxed DAE on each interval [t;,%;+1] numerically,
starting with artificial initial value x;, z;. Obtain trajectory

u(t) =

for

Hans Georg Bock

t e [ti, tz'_|_1]

pieces and state at end of interval, f;(x;, z;, u;).

N-—1
minimize E L; (Tza Zis Uz)
T, 2, "0

subject to

xro — o

i1 — fz('Tz Ziy uz)

gl(:rz 2y W)
(Tz Zis z)
)

(iZ‘ N

_I_

IA A

E(zN)

0,

0, 2=0,....N—1
0, 2=0,....N—1
0, 2=0,....N—1
0.
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Dynamic Optimization Problem in NMPC

N-1
1115111/%112112@ ; (@i, ziswi))  +  E(xn)
subject to 20 @ = 0,
riy1 — filzi,zi,uy)) = 0, i=0,...,N—1
gl(fz? ziouy) = 0, 1=0,...,N—1
hi(xi, zisu;) < 0, ¢=0,...,N—1
r(xy) < 0.

Structured parametric Nonlinear Program
Initial Value z¢ usually not known beforehand (“online data” in MPC)

Discrete time dynamics often come from ODE/DAE simulation, in direct
multiple shooting method [Bock and Piitt, 1984]



Dynamic Optimization Problem in NMPC

N—-1

minimize E

r,zZ,Uu i—0
subject to

i+l —

LI(CI’,, Zi, ul) + E (ZZTN)

ooooo
/ /

.....
/ /

ooooo
/ /

N —1
N —1
N -1

Summarize as

with convex ¢ and

OB
ui) = 0, 1=0
gl(Tz zioui) = 0, 1=0
hi(xi, zisu;) < 0, =0
r(xy) < 0.
minimize o(w)
subject to g(w) + @ 0
w € )
()




Nonlinear MPC = parametric Nonlinear Programming

Solution manifold is piecewise differentiable (kinks at active set changes)

NLP sensitivity
Critical regions are non-polyhedral

How to deal with a 2
sequence of large
parameter changes?

NLP Pathfollowing




Sequential Convex Programming (SCP)

and Real-Time Iteration (RTI)

minimize
wER™

¢(w)

subject to g(w) 4+ MZy =0

w € ()

—>

minimize
wWERM

subject to  g(wy) + ¢’ (wk)(w — wy) + M - (To)g+1 =0

d(w)

w € ()

Repeat each sampling instant k£ two steps:

Step 1: Linearize nonlinear constraints at wg to obtain convex problem (right).

(numerical integrations, nonlinear function and derivative evaluations)

Step 2: Obtain new value of parameter (Zo)k+1 and solve convex problem
to obtain new iterate w41 . (quadratic program solution)

[D., Bock, Schloeder, Findeisen, Nagy, Allgower, JPC, 2002]

[Zavala, Anitescu, SICON, 2010]
[Tran Dinh, Savorgnan, D., SIOPT, 2013]
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Sequential Convex Programming (SCP)

and Real-Time Iteration (RTI)

minimize
wER™

¢(w)

subject to g(w) 4+ MZy =0

w € ()
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minimize
wWERM
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Step 1: Linearize nonlinear constraints at wg to obtain convex problem (right).

(numerical integrations, nonlinear function and derivative evaluations)

Step 2: Obtain new value of parameter (Zo)k+1 and solve convex problem
to obtain new iterate wy+1 . (quadratic program solution)

[D., Bock, Schloeder, Findeisen, Nagy, Allgower, JPC, 2002]

[Zavala, Anitescu, SICON, 2010]
[Tran Dinh, Savorgnan, D., SIOPT, 2013]



mini%lnize o(w)
Real-Time Iteration s
w €
A approximatonby .-
* linearisation (at 1) / 3 ,,,,,,,
w

exact solution
manifold

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-~
-

P~
Seo
S
d
Il

“kink” at active set change —

Tangential prediction even across active set changes
Can divide computations in “preparation” and “feedback phase” [D. 2001]



Real-Time Iterations [PhD Diehl 2001, Heidelberg]

1) Keep states in problem - use direct multiple shooting [1]
2) Exploit convexity via Generalized Gauss-Newton [2]

3) Use tangential predictors for short feedback delay 3]

4) Iterate while problem changes (Real-Time lIterations) [4]
5) Auto-generate custom solvers in plain-C (5,6,7] (no malloc)

[1] Bock & Plitt, IFAC WC, 1984

[2] Bock 1983

[3] Bock, D. et al, 1999

[4] D. et al., 2002 / 2005

[5] Mattingley & Boyd, 2009

[6] Houska et al.: Automatica, 2011

[7] Verschueren et al.: Math.Prog. C, 2022
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Computations in one Real-Time lteration

NLP
N-1
m"lrmzmbze ; Li(wi,zi,ui)  +  E(xn)
subject to 20 @ = 0,
rip1 — filzi, ziyu;)) = 0, i=0,...,N—1
gi(xi,zi,u;)) = 0, 1=0,...,N—1
hi(zi, ziu;) < 0, 1=0,....N—1
r(zn) < 0.
Sparse QP

N_1
minimize Y Lreaqpi(ziiu)  +  Eqp (vn)
’ =0

subject to

:U(): 0,
rip1— ¢ — Ay, —Biu; = 0, 1=0,...,N—1
hi+H'xi +H'v; < 0, i=0,...,N—1

r + Rey < 0.

Condensed small QP

minimize  feondqp.i(Zo, 1)

u

subject to

P+ RGO Ry < 0.

—

1) Linearize constraints:
Integration & sensitivities

2) Condense sparse QP

3) Solve condensed QP



Computations in one Real-Time lterz

NLP
N-1
mplfmzm%tze ; Li(zi,zi,u;))  +  E(xn)
subject to 20 @ = 0,
rip1 — filzi, ziyu;)) = 0, i=0,...,N—1
gi(xi, ziyu;)) = 0, i=0,....N—1
hi(zi, ziu;) < 0, 1=0,....N—1
r(zy) < 0.
Sparse QP
N—1
mir;}iﬁn&ize ; Licaqe.i(wisu;))  +  Eqp (2n)
subject to 0 = 0,
Tiv1—¢ — Az — Biuyg = 0, 1=0,....,N—1
hi+H'xi +H'v; < 0, i=0,...,N—1
r + Rey < 0.

Condensed small QP

minimize  feondqp.i(Zo, 1)

u

subject to < 0.

F+ RGEoW R™u

Can prepare without knowing I
“Preparation phase”

1) Linearize constraints:
Integration & sensitivities

2) Condense sparse QP

3) Solve condensed QP



Computations in one Real-Time lteration
NLP

N-1
minimize Z Li(xi, zi, u;) +  FE(xn)
T, Z,U P

subject to | 20 @ = 0,
:1:,~+1—fi(:1:,~,zi,ui) — O, Z_O,...,N—l,
gi(xiaziaui) - 07 Z:Ow"aN_la
hi(ee, zu) < 0, i=0,...,N—1, 1) Linearize constraints:
rien) = 0. Integration & sensitivities

Sparse QP
N-1
minimize Z Lieaqp.i(zi;wi) +  Eqp (2n)
79 =0
subject to 0 = 0,
$¢+1—Ci—quﬂfi—Biui = O, Z—O,..../N—l./
hi+ Hew + Hiui < 0, i=0,...,N—1, 2) Condense sparse QP
r + Rey < 0.
Condensed small QP “Feedback phase”

minimize f condQP,i (T 0, U)
U

3) Solve condensed QP

IA
o

subject to F+ R" '@ R"u




Real-Time lteration Contraction

Regard primal dual iterates 2r = (wg, Ak)

minimize o(w)

subject to g(w) + Mzg =10
w € ()

and exact solutions zj, solving the full nonconvex problem for (Zg)x

lterations are driven by parameter changes AZg j := (Zo)k+1 — (Zo)k

We can establish a contraction estimate for the primal dual errors:

|zkr1 =21l < (crteallze—2zill) Iz =25 || 4 (cateal| ATo

) [[AZo,x

Contraction rate depends on bounds on nonlinearity, Jacobian error, and on

strong regularity constant.

Contraction rate is independent of active set changes.

[Tran Dinh, Savorgnan, Diehl, SIOPT, 2013]
[Zanelli, Tran Dinh, Diehl, Automatica, 2021]



*** Advanced-Step Real-Time lteration (AS-RTI)***

[Nurkanovic et al. 2020]

+

e
=
Z

N—1
minimize E Li(xi, zi,u;)
T, 2, U i—o

subject to 0 @

_— 1) Linearize constraints:
B S Integration & sensitivities
hi(zi,zi,u;)) < 0, 1=0,...,N—1
r(zy) < 0.
Sparse QP
wigiize 2, bagr@u) -+ Fop (av) 2) Condense sparse QP
subject to 1?0: 0
{Z?i+1*(?i*AiZIl,j*Biui = 0 iZO....,]\«Tfl
Bi+H;l'at,i+Hiuui < 0 1=0,...,N—1
r +Rey < 0.
Condensed small QP (feedback)
minimize  feonaqp.i(To, 1) 3) Solve condensed QP for

. I - current state
subject to 'r‘+R“' Rvw < 0. |—>

Condensed small QP (predicted state)

- 4) Solve condensed QP
mlnbmlze feondqp,i(To, u) again for predicted next
subject to F+ RE)r R < 0. state, for NLP initialisation




Also see MPC textbook, Ch. 8 on “Numerical Optimal Control”
(2nd edition, fourth printing, 618 pages, Nob Hill 2022)
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Overview

- Embedded Optimization and Model Predictive Control (MPC)
- Real-Time Optimal Control Methods

- Progress in Numerical Integration Methods

- Progress in Structured Quadratic Programming

- Some real-world NMPC applications

M. Diehl 39



Numerical Integrators for Embedded Optimization

General features:
offline precomputation possible (model preprocessing, code generation)
- first and second order derivatives (Jacobian, Hessian) needed

- use implicit integration methods (with root-finding) for stiff and for DAE
systems (e.g. Gauss-Legendre or Radau IIA collocation methods)

Some recent developments:

- Lifted implicit integrators perform only one root-finding iteration,
combine advantages of direct collocation and direct multiple shooting

- Inexact Newton with Iterated Sensitivities (INIS) can work with inexact
inverses of the implicit systems [SIAM J. Opt., 28(1), 74-95, 2018]

- General Nonlinear Static Feedback Structure (GNSF) Structure can be
exploited [Frey et al. , ECC 2019]

- Casados-Integrators make acados numerics available in CasADi [Frey et
al. , ECC 2023]

- Gauss-Newton Runge-Kutta (GNRK) Methods can efficiently compute
Gauss-Newton Hessian for continuous least-squares integrals [in prep.]

M. Diehl 40
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Exploiting Linear Substructures in ODE/DAE Models

Generalized Nonlinear Static Feedback structure (GNSF)
- [1]
E [ v ] — Az + By + C’¢(L5<:i3[1] 4+ Lot o Lzz[l], Lyu) + ¢
N -~ - \/

=y U

(3a)
(3b)

Every ODE/DAE can be brought into this format. Gains are largest if output
dimension of nonlinearity function ¢ is smallest

M. Diehl 42



Implementation inside acados (successor of ACADO)

GNSF-IRK integrator implemented in acados using BLASFEO, including:

» Precomputation phase

Simulation

>
» Efficient forward & adjoint sensitivity generation
» Output of algebraic variables z at start ¢

>

and corresponding sensitivities

[Master thesis Jonathan Frey]
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Numerical Experiments with Wind Turbine ODE Model

For numerical experiments, a wind turbine model was

used:

» highly nonlinear

» polynomials to model aerodynamic coefficients

» used in the eco4wind project, provided by Senvion

Model dimensions

GNSF dimensions

nX nu nZ nparam

13 2 0 1

Tlxq

11

Nz, Nout Ty Ny

0 5 3 1
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Numerical Comparisons with Different Stepsizes

CPU time includes forward derivatives, as needed in optimal control
Gauss-Legendre Collocation Integrators with s=1 to s=3 stages (2-6th order)

10°

p—t
=
[\

—a—irk s =1 \ .
- @---irk s = 2 . V. e
— -1tk s =3 N V\\\ ‘
——gnsf s =1 A L .
" v, e
--y---gnst s = 2 S e
— - gnsf s =3 \ Ny V. e

107! 10
CPU time in [ms]

p—t
=
N

relative error

p—t
N
(@)
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Numerical Comparisons with Different Stepsizes

CPU time includes forward derivatives, as needed in optimal control
Gauss-Legendre Collocation Integrators with s=3 to s=6 stages (6th-12th order)

10° ¢

—s—irk s =3
L @ irk s =

: —a-irks=5
—@o— irk s =6
—A—gnsf s =3
-v---gnsf s =4
—A—-gnsf s =5
—v— gnsf s =6

—t
3
(V]

relative error
p—t
(-]
L

‘*\~.,~
N .
10°
CPU time in |ms]

Speedup of GNSF integrators: factor 2-3 (depending on desired accuracy)
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Overview

- Embedded Optimization and Model Predictive Control (MPC)
- Real-Time Optimal Control Methods

 Progress in Numerical Integration Methods

 Progress in Structured Quadratic Programming

- Some real-world NMPC applications
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Computations in one Real-Time lIteration (RTI)
NLP

N-1
mqipi}nlilze Z Li(zi, zi,uwi)  +  E(zn)
T, zZ,u i—0
subject to 20 @ = 0,
ZI?@+1—f,j(ZI?i,Zi,”LLi) = 0, 2=0,...,.N—1
gi(xi,zi,u;)) = 0, 1=0,...,N—1
hi(zi, ziu;) < 0, 1=0,....N—1
rizy) < 0. . . . .
(n) 1) Linearize constraints:

Sparse Quadratic Program (QP) Integration & sensitivities

N1
minimize E Licaqp,i(i, u;) +  Eqp(zn)
T, U ;
) 1=0

subject to 0 @ = 0,
27,11+1—C71—A.1',J?11—quui = 0, 2=0,...,N—1, ]
hi+ Hiwi+ Hug < 0, i=0,... N—1, :> 2) Solve sparse QP either
'+ Rey < 0. - via condensing, or

- via a Riccati type algorithm, or
- via a combination of both
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Computations in one Real-Time lIteration (RTI)

NLP
N-1
m"lrmzmbze ; Li(wi,zi,ui)  +  E(xn)
subject to 20 @ = 0,
rip1 — filzi, ziyu;)) = 0, i=0,...,N—1
gi(xi,zi,u;)) = 0, 1=0,...,N—1
hi(zi, ziu;) < 0, 1=0,....N—1
r(zn) < 0.

Sparse Quadratic Program (QP)

N_1
minimize Y Lreaqpi(ziiu)  +  Eqp (vn)
T,
’ 1=0

subject to 0 = 0,
Tig1— ¢ — Az, — Biuy, = 0, i=0,...,N—1
hi+H'xi +H'v; < 0, i=0,...,N—1

r + Rey < 0.

Condensed small QP

mini&nize feondqp.i(Zo, 1)

subject to "F+R‘” R'w < 0.

1) Linearize constraints:
Integration & sensitivities

2a) Condense sparse QP

2b) Solve condensed QP
with small dense QP solver e.g.
gpOASES



Case Study: Quadratic Programming improvements 2012-2016
(all algorithms re-activated on same computer on 14.6.2017)

Dimitris Kouzoupis
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Case Study: Quadratic Programming improvements 2012-2016
(all algorithms re-activated on same computer on 14.6.2017)

Comparison of different algorithmic QP solution approaches,
using ACADO Code Generation on Linux Laptop, CPU i5 6200U

with 2.7 GHz

Hanging Chain Optimal Control Benchmark
- 15 states, 3 controls, state and control constraints,
- vary MPC control horizon length from N=10 to N=100 intervals

- direct multiple shooting leads to sparse NLP with N*(15+3)

variables, N*3 state constraints, N*6 input bounds
‘ (1800 variables, 300 state constraints, 600 input bounds for
Dimitris Kouzoupis  p/—1 00)
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- always use: Numerical integration with code generated Implicit
Runge Kutta (IRK-GL2) method [Quirynen 2012], two integration
steps per interval of 100 ms.

Rien Quirynen
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Hanging Chain Benchmark
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2012: ACADO Code Generation with Condensing

- efficient block sparse condensing with O(N3) complexity
- gpOASES to solve “condensed” QPs (with 3*N variables)

Worst case CPU time in closed-loop
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2013: Code generated sparse QP solver FORCES

» use interior point method with sparse linear algebra (cf. Steinbach 1995)
- code generate Riccati solvers with O(N) complexity
- include FORCES as QP solver in ACADO [Vukov, Domahidi et al., CDC, 2013]

Alexander Domahidi
[PhD ETH 2013]
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2013: Code generated sparse QP solver FORCES

» use interior point method with sparse linear algebra (cf. Steinbach 1995)
- code generate Riccati solvers with O(N) complexity
- include FORCES as QP solver in ACADO [Vukov, Domahidi et al., CDC, 2013]

Alexander Domahidi
[PhD ETH 2013]
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2013: A Surprising Improvement in Condensing

- reorder block matrix multiplications, reduce O(N3) to O(N2) complexity!

- independently discovered by G. Frison and J. Andersson.
Implemented efficiently by M. Vukov in ACADO.

p

Milan Vukov

Gianluca Frison Joel Andersson
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2013: A Surprising Improvement in Condensing

- reorder block matrix multiplications, reduce O(N3) to O(N2) complexity!

- independently discovered by G. Frison and J. Andersson.
Implemented efficiently by M. Vukov in ACADO.
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2014: The dual Newton strategy qpDUNES

- gpDUNES (Frasch et al. 2015) uses Lagrangian decomposition,
TR solves many small QPs independently, and performs sparse
> . Cholesky factorisations

Janick Frasch
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2014: The dual Newton strategy qpDUNES

7N
B2 :

Janick Frasch

gpDUNES (Frasch et al. 2015) uses Lagrangian decomposition,
solves many small QPs independently, and performs sparse
Cholesky factorisations

Worst case CPU time in closed-loop
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2015: Efficient Register Management in HPMPC

- use interior point method with Riccati solver of O(N) complexity

- use linear algebra routines tailored to embedded optimization (now in
BLASFEO) obtaining near peak CPU performance (Gianluca Frison)

* include in ACADO (M. Vukov, A. Zanelli, G. Frison)

Gianluca Frison
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2015: Efficient Register Management in HPMPC

use interior point method with Riccati solver of O(N) complexity

use linear algebra routines tailored to embedded optimization (now in
BLASFEO) obtaining near peak CPU performance (Gianluca Frison)

include in ACADO (M. Vukov, A. Zanelli, G. Frison)
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2016: Partial Condensing in HPMPC

- partial condensing (proposed by Daniel Axehill, Linkbping) combines
advantages of condensing and Riccati recursion and further boost
performance of HPMPC (by G. Frison, DTU/Freiburg)

Gianluca Frison
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2016: Partial Condensing in HPMPC

partial condensing (proposed by Daniel Axehill, Link6ping) combines
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2016: Partial Condensing in HPMPC

partial condensing (proposed by Daniel Axehill, Link6ping) combines
advantages of condensing and Riccati recursion and further boost
performance of HPMPC (by G. Frison, DTU/Freiburg)
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2016: Partial Condensing in HPMPC

partial condensing (proposed by Daniel Axehill, Link6ping) combines
advantages of condensing and Riccati recursion and further boost
performance of HPMPC (by G. Frison, DTU/Freiburg)

Worst case CPU time in closed-loop
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2016: Partial Condensing in HPMPC

- partial condensing (proposed by Daniel Axehill, Linkbping) combines
advantages of condensing and Riccati recursion and further boost
performance of HPMPC (by G. Frison, DTU/Freiburg)
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Current development: acados - plain C-code library

benchmark - chain of masses?: 33 states, 3 controls, horizon length 40
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Overview

- Embedded Optimization and Model Predictive Control (MPC)
- Real-Time Optimal Control Methods

 Progress in Numerical Integration Methods

- Progress in Structured Quadratic Programming

- Some real-world NMPC applications

M. Diehl 70



1) Flight Carousel for Tethered Airplanes

Experiments within the ERC Project HHGHWIND Leuven/Freiburg

M. Diehl 71



Moving Horizon Estimation and Nonlinear

& Model Predictive Control on the Flight Carousel
Milan Vukov  (8@mpling time 50 Hz, using ACADO Code Generation)

Closed loop experiments
with NMPC & NMHE

HIGHWIND

UNI

FREIBURG
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2) Nonlinear MPC Example: time-optimal “racing” of model cars

Freiburg/Leuven/ETH/Siemens-PLM. 100 Hz sampling time

using ACADO [Verschueren, De Bruyne, Zanon, Frasch, D. CDC 2014]
(Nonlinear MPC video from 22.6.2016 in Freiburg)




3) Nonlinear MPC of Two-Stage Turbocharger with ACADO

Cooperation with Dr. Thiva Albin (RWTH Aachen) and Rien Quirynen
% Xz 'ﬂr!\
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3) Nonlinear MPC of Two-Stage Turbocharger with ACADO

Cooperation with Dr. Thiva Albin (RWTH Aachen) and Rien Quirynen
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3) Nonlinear MPC of Two-Stage Turbocharger with ACADO

Cooperation with Dr. Thiva Albin (RWTH Aachen) and Rien Quirynen

- use nonlinear DAE model with 4 states, 2 controls
- use ACADO Code Generation from MATLAB

- export C-code into Simulink

- deploy on dSPACE Autobox

- //

@

ALLLL
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3) Nonlinear MPC of Two-Stage Turbocharger with ACADO

Nonlinear MPC superior to
Linear MPC in simulations:

— LTIMPC |

— LTVMPC
— NMPC

- - Setpoint -

Implemented in test car of RWTH Aachen
and tested on a test drive and the road.

[driving a happy M.D. to Aachen Hbf on 2.11.2015]
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4) Electrical Compressor Control at ABB (Norway)

- work of Dr. Joachim Ferreau and Dr.
| Thomas Besselmann, ABB

- nonlinear MPC with gpOASES and
ACADO, 1ms sampling time

- first tests at 48 MW Drive

- currently, 15% of Norwegian Gas
Exports are controlled by Nonlinear MPC

M. Diehl 78



4) Electrical Compressor Control at ABB (Norway)

- work of Dr. Joachim Ferreau and Dr.
Thomas Besselmann, ABB

- nonlinear MPC with gpOASES and
ACADO, 1ms sampling time

- first tests at 48 MW Drive

- currently, 15% of Norwegian Gas
Exports are controlled by Nonlinear MPC

Joachim Ferreau (email from 7.3.2016):

The NMPC installations in Norway
(actually 5 compressors at two
different sites) are doing fine since
last autumn — roughly 80 billion NMPC
instances solved by now. In addition,
they have proven to work as expected
when handling external voltage dips.
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5) Human sized quadcopter control

{ \ - work by Greg Horn (Kittyhawk, California) and Andrea Zanelli
® (Freiburg) in April 2017
- aim is to track roll angle commands better than a custom PID
- nonlinear MPC with 11 states, 4 controls, 10 intervals
& - use HPMPC, custom linear algebra BLASFEO, and “partial
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tightening” NMPC scheme within acados environment
- achieve 2 ms per optimisation on ARM cortex A9 @900 MHz
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Conclusions and outlook

Model Predictive Control (MPC) uses more CPU resources than standard
techniques, but allows the development of more powerful controllers with
wider range of validity

good numerical methods can solve nonlinear optimal control problems at
milli- and microsecond sampling times on embedded systems

open source software (CasADi, qpOASES, ACADO, HPIPM, BLASFEO,
acados) well-tested in dozens of embedded MPC applications: cranes,
wafer steppers, model race cars, combustion engines, electrical drives,
tethered airplanes, power converters,...

Latest open source developments in the Freiburg team regard
- mixed-integer nonlinear optimal control algorithms
+ nonsmooth optimal control algorithms (see previous summer school)
- continuous least-squares integration and penalty-barrier methods
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Appendix
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2017: Full condensing with BLASFEO and HPMPC

- block size in HPMPC with partial condensing equal to prediction horizon.

Worst case CPU time in closed-loop
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Time Optimal MPC at ETEL (CH): 25cm step, 100nm accuracy

= 20} i
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TOMPC at 250 Hz (+PID with 12 kHz) 10 _ Timze & |
: 300 ms :

=
Lieboud's results after 1 week at ETEL: £
- 25 cm step in 300 ms E
- 100 nm accuracy go

equivalent to: ,fly 2,5 km with MACH15,
stop with 1 mm position accuracy”
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