
Real-Time Algorithms for Nonlinear
Model Predictive Control

Moritz Diehl
Systems Control and Optimization Laboratory

Department of Microsystems Engineering (IMTEK) &
Department of Mathematics

University of Freiburg

MPC and RL Summer School
October 9, 2023

M. Diehl

Complex Sensor Actuator Systems

2

ACTUATORS

•flight surfaces
•steering wheel
•motor speeds
•joint torques
•...

SENSORS

•GPS
•acceleration
•radar
•vision
•...

How to connect ?

M. Diehl

Complex Sensor Actuator Systems

3

ACTUATORS

•flight surfaces
•steering wheel
•motor speeds
•joint torques
•...

SENSORS

•GPS
•acceleration
•radar
•vision
•...

How to connect ?
linear controllers ?

M. Diehl

Classical Linear Controllers / Linear Filters

4

Map from one time series into another

3

M. Diehl

Classical Linear Controllers / Linear Filters

5

Map from one time series into another

Special case: linear time invariant (LTI) filters

action output = weighted sum of past measurement
inputs

3

M. Diehl

Linear Filters are Everywhere…

6

AUDIO SYSTEMS:
- Dolby,
- Echo and other effects
- active noise control
...

FEEDBACK CONTROL:
- PID controller,
- Kalman filter,
- LQR,
...

M. Diehl

Linear Filters are Everywhere…

7

…but they need lots of tuning to cope with constraints and
nonlinearities.

AUDIO SYSTEMS:
- Dolby,
- Echo and other effects
- active noise control
...

FEEDBACK CONTROL:
- PID controller,
- Kalman filter,
- LQR,
...

M. Diehl

Complex Sensor Actuator Systems

8

ACTUATORS

•flight surfaces
•steering wheel
•motor speeds
•joint torques
•...

SENSORS

•GPS
•acceleration
•radar
•vision
•...

How to connect ?
linear controllers,

M. Diehl

Complex Sensor Actuator Systems

9

ACTUATORS

•flight surfaces
•steering wheel
•motor speeds
•joint torques
•...

SENSORS

•GPS
•acceleration
•radar
•vision
•...

How to connect ?
linear controllers,

fuzzy logic,
neural networks, or:

M. Diehl

Complex Sensor Actuator Systems

10

ACTUATORS

•flight surfaces
•steering wheel
•motor speeds
•joint torques
•...

SENSORS

•GPS
•acceleration
•radar
•vision
•...

How to connect ?
linear controllers,

fuzzy logic,
neural networks, or:

embedded optimisation

M. Diehl

Embedded Optimization: a CPU-Intensive Map

11

EMBEDDED
OPTIMIZATION

Solve, in real-time and repeatedly, an optimization problem
that depends on the incoming stream of input data, to
generate a stream of output data.

THEOREM [Baes, D., Necoara, 2008]
Every continuous map

µ : Rnx ! Rnu

x 7! u = µ(x)

can be represented as parametric convex program (PCP):

µ(x) = argmin
u

g(u, x) s.t. (u, x) 2 �

PCP: objective and feasible set jointly convex in parameters and
variables (x , u).

The ubiquity of parametric convex optimization

M. Diehl

(Sketch of Proof)

13

(Sketch of Proof)

Given: graph of µ(x)

Construct epigraph E of g(u, x)

1. lift graph of µ(x) using strictly convex g0
(x) and add upward

rays

2. take convex hull. Can show that minima are preserved.

S := {(x , µ(x), t)|x 2 ⌦, g0
(x)  t}

E := conv(S)

(Sketch of Proof)

Given: graph of µ(x)

Construct epigraph E of g(u, x)

1. lift graph of µ(x) using strictly convex g0
(x) and add upward

rays

2. take convex hull. Can show that minima are preserved.

S := {(x , µ(x), t)|x 2 ⌦, g0
(x)  t}

E := conv(S)

(Sketch of Proof)

Given: graph of µ(x)

Construct epigraph E of g(u, x)

1. “Bend” graph of µ(x) using strictly convex g0(x)

2. Add upward rays.

3. Take convex hull.

4. Show that minima are preserved.

S := {(x , µ(x), t)|x 2 ⌦, g0(x)  t}
E := conv(S)

M. Diehl

Prime Example: Model Predictive Control (MPC)

14

Always look a bit into the future

Example: driver predicts and optimizes,
and therefore slows down before a
curve

M. Diehl

Open Loop Optimal Control Problem in MPC

15

For given system state x, which controls u lead to the best objective value
without violation of constraints ?

prediction horizon (length also unknown for time optimal MPC)

controls (unknowns / variables)

simulated state trajectory

M. Diehl

Open Loop Optimal Control Problem in MPC

16

For given system state x, which controls u lead to the best objective value
without violation of constraints ?

prediction horizon (length also unknown for time optimal MPC)

controls (unknowns / variables)

simulated state trajectory

MPC creates a map from the initial value x to the first control u
(which in fact approximates the optimal feedback control from the HJB equation)

M. Diehl

MPC Example: Point-To-Point Motions [PhD Vandenbrouck 2012]

17

Fast oscillating systems (cranes, plotters, wafer steppers, …)
Control aims:

• reach end point as fast as possible
• do not violate constraints
• no residual vibrations

Idea: formulate as embedded optimization problem
 in form of Model Predictive Control (MPC)

M. Diehl

Time Optimal MPC of a Crane

18
Hardware: xPC Target. Software: qpOASES [Ferreau, D., Bock, 2008]

SENSORS

•line angle
•cart position

ACTUATOR

•cart motor

MPC

qpOASES

qpOASES User’s Manual

Version 3.0 (December 2014)

Hans Joachim Ferreau et al.
1,2

ABB Corporate Research, Switzerland

support@qpOASES.org

1past and present qpOASES developers and contributors in alphabetical order: Eckhard Arnold,
Alexander Buchner, Holger Diedam, Hans Joachim Ferreau, Boris Houska, Dennis Janka, Christian
Kirches, Manuel Kudruss, Aude Perrin, Andreas Potschka, Milan Vukov, Thomas Wiese, Sebastian
F. Walter, Leonard Wirsching

2qpOASES has been initially released and developed at KU Leuven within the Optimization in
Engineering Center (OPTEC), while current development is mainly supported by researchers at the
Interdisciplinary Center for Scientific Computing (IWR) at Heidelberg University.

• “Quadratic Programming with the Online Active Set Strategy”
• Implements an parametric active set method with dense or

sparse linear algebra in C/C++
• Open-source (LGPL): https://projects.coin-or.org/qpOASES,

developed by Hans Joachim Ferreau with Christian Kirches,
Andreas Potschka, …

• Interfaced to C++, MATLAB, Simulink, CasADi, …

[Ferreau, Kirches, Potscka, Bock, D., Math. Prog. C, 2014]

http://www.casadi.org

M. Diehl

Time Optimal MPC of a Crane

20

Univ. Leuven [Vandenbrouck, Swevers, D.]

M. Diehl

Optimal solutions varying in time (inequalities matter)

21

Solver qpOASES [PhD H.J. Ferreau, 2011], [Ferreau, Kirches, Potschka, Bock, D. , A parametric
active-set algorithm for quadratic programming, Mathematical Programming Computation, 2014]

M. Diehl

Overview

• Embedded Optimization and Model Predictive Control (MPC)

• Real-Time Optimal Control Methods

• Progress in Numerical Integration Methods

• Progress in Structured Quadratic Programming

• Some real-world NMPC applications

22

M. Diehl

Optimal Control Solution Methods - Family Tree

23

(curse of
dimensionality)

(bad inequality
treatment)

(only for stable
systems)

Direct Multiple Shooting [Bock and Plitt, 1981]

Discretize controls piecewise on a coarse grid

u(t) = ui for t 2 [ti, ti+1]

Solve relaxed DAE on each interval [ti, ti+1] numerically,
starting with artificial initial value xi, zi. Obtain trajectory
pieces and state at end of interval, fi(xi, zi, ui).

24

Direct Multiple Shooting [Bock and Plitt, 1981] [Leineweber et al. 1999]

I Discretize controls e.g. piecewise constant

u(t) = ui for t 2 [ti , ti+1]

I Solve relaxed DAE on each interval [ti , ti+1] numerically,

starting with artificial initial values xi , zi . Obtain trajectory

pieces, and state at end of interval �i (xi , zi , qi , p).

I Also numerically compute integrals

li (xi , zi , ui , p) :=

Z ti+1

ti

L(x , z , u, p) dt

Hans Georg Bock

Sketch of Direct Multiple Shooting

r r r r r
6

x0 x1
xi xi+1

fi(xi, zi, ui) 6= xi+1

@
@R r r r r r

6

uix0 fr
-q

t0

u0 q
t1

q q
ti

q
ti+1

q q
tN�1

r xN�1

q
tN

r xN

Dynamic Optimization Problem in NMPC

Structured parametric Nonlinear Program
Initial Value usually not known beforehand (“online data” in MPC)
Discrete time dynamics often come from ODE/DAE simulation, in direct
multiple shooting method [Bock and Plitt, 1984]

Summarize as

with convex and

Dynamic Optimization Problem in NMPC

Problem Statement

Summarize as

minimize
w2Rn

�(w)

subject to g(w) +Mx̄0 = 0

w 2 ⌦

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

�

Nonlinear MPC = parametric Nonlinear Programming

Solution manifold is piecewise differentiable (kinks at active set changes)

Critical regions are non-polyhedral
NLP sensitivity

How to deal with a
sequence of large
parameter changes?
NLP Pathfollowing

Real-Time Contraction Estimate

zk = (wk,�k) z⇤k z⇤k := z⇤((x̄0)k) �x̄0,k := (x̄0)k+1 � (x̄0)k

kzk+1�z⇤k+1k  (c1+c2kzk�z⇤kk) kzk�z⇤kk + (c3+c4k�x̄0,kk) k�x̄0,kk

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk (x̄0)k+1

Sequential Convex Programming (SCP)
and Real-Time Iteration (RTI)

Repeat each sampling instant two steps:

Step 1: Linearize nonlinear constraints at to obtain convex problem (right).
(numerical integrations, nonlinear function and derivative evaluations)

Step 2: Obtain new value of parameter and solve convex problem
to obtain new iterate . (quadratic program solution)

[D., Bock, Schloeder, Findeisen, Nagy, Allgower, JPC, 2002]
[Zavala, Anitescu, SICON, 2010]

[Tran Dinh, Savorgnan, D., SIOPT, 2013]

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

�

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk (x̄0)k+1

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk (x̄0)k+1

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk wk+1 (x̄0)k+1

Problem Statement

Summarize as

minimize
w2Rn

�(w)

subject to g(w) +Mx̄0 = 0

w 2 ⌦

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk (x̄0)k+1

Sequential Convex Programming (SCP)
and Real-Time Iteration (RTI)

Repeat each sampling instant two steps:

Step 1: Linearize nonlinear constraints at to obtain convex problem (right).
(numerical integrations, nonlinear function and derivative evaluations)

Step 2: Obtain new value of parameter and solve convex problem
to obtain new iterate . (quadratic program solution)

[D., Bock, Schloeder, Findeisen, Nagy, Allgower, JPC, 2002]
[Zavala, Anitescu, SICON, 2010]

[Tran Dinh, Savorgnan, D., SIOPT, 2013]

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

�

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk (x̄0)k+1

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk (x̄0)k+1

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk wk+1 (x̄0)k+1

Problem Statement

Summarize as

minimize
w2Rn

�(w)

subject to g(w) +Mx̄0 = 0

w 2 ⌦

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk (x̄0)k+1

Sequential Convex Programming (SCP)
and Real-Time Iteration (RTI)

Repeat each sampling instant two steps:

Step 1: Linearize nonlinear constraints at to obtain convex problem (right).
(numerical integrations, nonlinear function and derivative evaluations)

Step 2: Obtain new value of parameter and solve convex problem
to obtain new iterate . (quadratic program solution)

[D., Bock, Schloeder, Findeisen, Nagy, Allgower, JPC, 2002]
[Zavala, Anitescu, SICON, 2010]

[Tran Dinh, Savorgnan, D., SIOPT, 2013]

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

�

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk (x̄0)k+1

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk (x̄0)k+1

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk wk+1 (x̄0)k+1

Problem Statement

Summarize as

minimize
w2Rn

�(w)

subject to g(w) +Mx̄0 = 0

w 2 ⌦

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk (x̄0)k+1

Real-Time Iteration

Tangential prediction even across active set changes
Can divide computations in “preparation” and “feedback phase” [D. 2001]

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk w⇤ wk+1 (x̄0)k+1

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk w⇤ wk+1 (x̄0)k+1

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk w⇤ wk+1 (x̄0)k+1

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk w⇤ wk+1 (x̄0)k+1

Sequential Convex Programming

Summarize as

minimize
w2Rn

�(w)

subject to g(wk) + g0(wk)(w � wk) +M · (x̄0)k+1 = 0

w 2 ⌦

� wk w⇤ wk+1 (x̄0)k+1

Problem Statement

Summarize as

minimize
w2Rn

�(w)

subject to g(w) +Mx̄0 = 0

w 2 ⌦

Problem Statement

Summarize as

minimize
w2Rn

�(w)

subject to g(w) +Mx̄0 = 0

w 2 ⌦

exact solution
manifold

approximation by
linearisation (at 1)

“kink” at active set change

M. Diehl

Real-Time Iterations [PhD Diehl 2001, Heidelberg]

32

1) Keep states in problem - use direct multiple shooting [1]
2) Exploit convexity via Generalized Gauss-Newton [2]
3) Use tangential predictors for short feedback delay [3]
4) Iterate while problem changes (Real-Time Iterations) [4]
5) Auto-generate custom solvers in plain-C [5,6,7] (no malloc)

[1] Bock & Plitt, IFAC WC, 1984
[2] Bock 1983
[3] Bock, D. et al, 1999
[4] D. et al., 2002 / 2005
[5] Mattingley & Boyd, 2009
[6] Houska et al.: Automatica, 2011
[7] Verschueren et al.: Math.Prog. C, 2022

Computations in one Real-Time Iteration

1) Linearize constraints:
Integration & sensitivities

2) Condense sparse QP

3) Solve condensed QP

NLP

Sparse QP

Condensed small QP

Computations in one Real-Time Iteration

1) Linearize constraints:
Integration & sensitivities

2) Condense sparse QP

3) Solve condensed QP

NLP

Sparse QP

Condensed small QP

Can prepare without knowing

“Preparation phase”

Computations in one Real-Time Iteration

1) Linearize constraints:
Integration & sensitivities

2) Condense sparse QP

3) Solve condensed QP

NLP

Sparse QP

Condensed small QP “Feedback phase”

Real-Time Iteration Contraction

Regard primal dual iterates
and exact solutions solving the full nonconvex problem for

Iterations are driven by parameter changes

We can establish a contraction estimate for the primal dual errors:

Contraction rate depends on bounds on nonlinearity, Jacobian error, and on
strong regularity constant.

Contraction rate is independent of active set changes.
[Tran Dinh, Savorgnan, Diehl, SIOPT, 2013]

 [Zanelli, Tran Dinh, Diehl, Automatica, 2021]

Real-Time Contraction Estimate

zk = (wk,�k) z⇤k z⇤k := z⇤((x̄0)k) �x̄0,k := (x̄0)k+1 � (x̄0)k

kzk+1�z⇤k+1k  (c1+c2kzk�z⇤kk) kzk�z⇤kk + (c3+c4k�x̄0,kk) k�x̄0,kk

Real-Time Contraction Estimate

zk = (wk,�k) z⇤k z⇤k := z⇤((x̄0)k) �x̄0,k := (x̄0)k+1 � (x̄0)k

kzk+1�z⇤k+1k  (c1+c2kzk�z⇤kk) kzk�z⇤kk + (c3+c4k�x̄0,kk) k�x̄0,kk

Real-Time Contraction Estimate

zk = (wk,�k) z⇤k z⇤k := z⇤((x̄0)k) �x̄0,k := (x̄0)k+1 � (x̄0)k

kzk+1�z⇤k+1k  (c1+c2kzk�z⇤kk) kzk�z⇤kk + (c3+c4k�x̄0,kk) k�x̄0,kk

Real-Time Contraction Estimate

zk = (wk,�k) z⇤k z⇤k := z⇤((x̄0)k) �x̄0,k := (x̄0)k+1 � (x̄0)k

kzk+1�z⇤k+1k  (c1+c2kzk�z⇤kk) kzk�z⇤kk + (c3+c4k�x̄0,kk) k�x̄0,kk

Real-Time Contraction Estimate

zk = (wk,�k) z⇤k z⇤k := z⇤((x̄0)k) �x̄0,k := (x̄0)k+1 � (x̄0)k

kzk+1�z⇤k+1k  (c1+c2kzk�z⇤kk) kzk�z⇤kk + (c3+c4k�x̄0,kk) k�x̄0,kk

Problem Statement

Summarize as

minimize
w2Rn

�(w)

subject to g(w) +Mx̄0 = 0

w 2 ⌦

*** Advanced-Step Real-Time Iteration (AS-RTI)***
[Nurkanovic et al. 2020]

1) Linearize constraints:
Integration & sensitivities

2) Condense sparse QP

3) Solve condensed QP for
current state

4) Solve condensed QP
again for predicted next
state, for NLP initialisation

Sparse QP

Condensed small QP (feedback)

Condensed small QP (predicted state)

M. Diehl

Also see MPC textbook, Ch. 8 on “Numerical Optimal Control”
(2nd edition, fourth printing, 618 pages, Nob Hill 2022)

38

M. Diehl

Overview

• Embedded Optimization and Model Predictive Control (MPC)

• Real-Time Optimal Control Methods

• Progress in Numerical Integration Methods

• Progress in Structured Quadratic Programming

• Some real-world NMPC applications

39

M. Diehl

Numerical Integrators for Embedded Optimization

General features:
• offline precomputation possible (model preprocessing, code generation)
• first and second order derivatives (Jacobian, Hessian) needed
• use implicit integration methods (with root-finding) for stiff and for DAE

systems (e.g. Gauss-Legendre or Radau IIA collocation methods)

Some recent developments:
• Lifted implicit integrators perform only one root-finding iteration,

combine advantages of direct collocation and direct multiple shooting
• Inexact Newton with Iterated Sensitivities (INIS) can work with inexact

inverses of the implicit systems [SIAM J. Opt., 28(1), 74-95, 2018]
• General Nonlinear Static Feedback Structure (GNSF) Structure can be

exploited [Frey et al. , ECC 2019]
• Casados-Integrators make acados numerics available in CasADi [Frey et

al. , ECC 2023]
• Gauss-Newton Runge-Kutta (GNRK) Methods can efficiently compute

Gauss-Newton Hessian for continuous least-squares integrals [in prep.]

40

M. Diehl

Numerical Integrators for Embedded Optimization

General features:
• offline precomputation possible (model preprocessing, code generation)
• first and second order derivatives (Jacobian, Hessian) needed
• use implicit integration methods (with root-finding) for stiff and for DAE

systems (e.g. Gauss-Legendre or Radau IIA collocation methods)

Some recent developments:
• Lifted implicit integrators perform only one root-finding iteration,

combine advantages of direct collocation and direct multiple shooting
• Inexact Newton with Iterated Sensitivities (INIS) can work with inexact

inverses of the implicit systems [SIAM J. Opt., 28(1), 74-95, 2018]
• General Nonlinear Static Feedback Structure (GNSF) Structure can be

exploited [Frey et al. , ECC 2019]
• Casados-Integrators make acados numerics available in CasADi [Frey et

al. , ECC 2023]
• Gauss-Newton Runge-Kutta (GNRK) Methods can efficiently compute

Gauss-Newton Hessian for continuous least-squares integrals [in prep.]

41

M. Diehl

Exploiting Linear Substructures in ODE/DAE Models

Every ODE/DAE can be brought into this format. Gains are largest if output
dimension of nonlinearity function is smallest

42

A General Dynamic System Structure

Generalized Nonlinear Static Feedback structure (GNSF)

E


ẋ[1]

z[1]

�
= Ax[1] +Bu+ C�(Lẋẋ

[1] + Lxx
[1] + Lzz

[1]

| {z }
=:y

, Luu|{z}
û

) + c

(3a)

ELO


ẋ[2]

z[2]

�
= ALOx[2] + fLO(ẋ

[1], x[1], z[1], u). (3b)

Features:
I Generalization of former dynamic system structures
I Handle index-1 DAEs
I Maximized dependencies – Preserving independence of LOS
I Linear Input Matrices
I Split input of nonlinearity function �

Assumptions:
I E � C @�

@y [Lẋ, Lz] , ELO regular, i.e. ẋ[1], z[1] well-defined

I E11, E22 and are regular, for E =


E11 E12

E21 E22

�

Structure Exploiting IRK schemes J. Frey 3

A General Dynamic System Structure

Generalized Nonlinear Static Feedback structure (GNSF)

E


ẋ[1]

z[1]

�
= Ax[1] +Bu+ C�(Lẋẋ

[1] + Lxx
[1] + Lzz

[1]

| {z }
=:y

, Luu|{z}
û

) + c

(3a)

ELO


ẋ[2]

z[2]

�
= ALOx[2] + fLO(ẋ

[1], x[1], z[1], u). (3b)

Features:
I Generalization of former dynamic system structures
I Handle index-1 DAEs
I Maximized dependencies – Preserving independence of LOS
I Linear Input Matrices
I Split input of nonlinearity function �

Assumptions:
I E � C @�

@y [Lẋ, Lz] , ELO regular, i.e. ẋ[1], z[1] well-defined

I E11, E22 and are regular, for E =


E11 E12

E21 E22

�

Structure Exploiting IRK schemes J. Frey 3

M. Diehl

Implementation inside acados (successor of ACADO)

[Master thesis Jonathan Frey]

43

acados implementation

GNSF-IRK integrator implemented in acados using BLASFEO, including:

I Precomputation phase

I Simulation

I E�cient forward & adjoint sensitivity generation

I Output of algebraic variables z at start t0
I and corresponding sensitivities

Structure Exploiting IRK schemes J. Frey 9

M. Diehl

Numerical Experiments with Wind Turbine ODE Model

44

Numerical Results – wind turbine model

For numerical experiments, a wind turbine model was
used:

I highly nonlinear

I polynomials to model aerodynamic coe�cients

I used in the eco4wind project, provided by Senvion

Model dimensions GNSF dimensions

nx nu nz nparam nx1 nz1 nout ny nû

13 2 0 1 11 0 5 8 1

Structure Exploiting IRK schemes J. Frey 11

M. Diehl

Numerical Comparisons with Different Stepsizes
CPU time includes forward derivatives, as needed in optimal control
Gauss-Legendre Collocation Integrators with s=1 to s=3 stages (2-6th order)

45

Numerical Results – E�ciency comparison

Figure: Standard IRK and GNSF-IRK with di↵erent orders for nnewton = 3 and
varying integration step sizes.

Structure Exploiting IRK schemes J. Frey 13

M. Diehl

Numerical Comparisons with Different Stepsizes
CPU time includes forward derivatives, as needed in optimal control
Gauss-Legendre Collocation Integrators with s=3 to s=6 stages (6th-12th order)

46

Numerical Results – E�ciency comparison

I Optimal choice of integration method (order, stepsize,...) depends
on IRK implementation

I GNSF makes higher-order methods more attractive

Structure Exploiting IRK schemes J. Frey 14

Speedup of GNSF integrators: factor 2-3 (depending on desired accuracy)

M. Diehl

Overview

• Embedded Optimization and Model Predictive Control (MPC)

• Real-Time Optimal Control Methods

• Progress in Numerical Integration Methods

• Progress in Structured Quadratic Programming

• Some real-world NMPC applications

47

Computations in one Real-Time Iteration (RTI)

1) Linearize constraints:
Integration & sensitivities

2) Solve sparse QP either
- via condensing, or
- via a Riccati type algorithm, or
- via a combination of both

NLP

Sparse Quadratic Program (QP)

Computations in one Real-Time Iteration (RTI)

1) Linearize constraints:
Integration & sensitivities

2) Solve sparse QP either
- via condensing, or
- via a Riccati type algorithm, or
- via a combination of both

NLP

Sparse Quadratic Program (QP)

Computations in one Real-Time Iteration (RTI)

1) Linearize constraints:
Integration & sensitivities

2a) Condense sparse QP

2b) Solve condensed QP
with small dense QP solver e.g.
qpOASES

NLP

Sparse Quadratic Program (QP)

Condensed small QP

Case Study: Quadratic Programming improvements 2012-2016
(all algorithms re-activated on same computer on 14.6.2017)

51

Andrea Zanelli

Dimitris Kouzoupis

Comparison of different algorithmic QP solution approaches,
using ACADO Code Generation on Linux Laptop, CPU i5 6200U
with 2.7 GHz

Hanging Chain Optimal Control Benchmark
• 15 states, 3 controls, state and control constraints,
• vary MPC control horizon length from N=10 to N=100 intervals
• direct multiple shooting leads to sparse NLP with N*(15+3)

variables, N*3 state constraints, N*6 input bounds
(1800 variables, 300 state constraints, 600 input bounds for
N=100)

52

Andrea Zanelli

Case Study: Quadratic Programming improvements 2012-2016
(all algorithms re-activated on same computer on 14.6.2017)

Dimitris Kouzoupis

Comparison of different algorithmic QP solution approaches,
using ACADO Code Generation on Linux Laptop, CPU i5 6200U
with 2.7 GHz

Hanging Chain Optimal Control Benchmark
• 15 states, 3 controls, state and control constraints,
• vary MPC control horizon length from N=10 to N=100 intervals
• direct multiple shooting leads to sparse NLP with N*(15+3)

variables, N*3 state constraints, N*6 input bounds
(1800 variables, 300 state constraints, 600 input bounds for
N=100)

• always use: Numerical integration with code generated Implicit
Runge Kutta (IRK-GL2) method [Quirynen 2012], two integration
steps per interval of 100 ms.

53

Rien Quirynen

Case Study: Quadratic Programming improvements 2012-2016
(all algorithms re-activated on same computer on 14.6.2017)

Andrea Zanelli

Dimitris Kouzoupis

Hanging Chain Benchmark

54

Andrea Zanelli

Dimitris Kouzoupis

2012: ACADO Code Generation with Condensing
• efficient block sparse condensing with O(N3) complexity
• qpOASES to solve “condensed” QPs (with 3*N variables)

55

Milan Vukov 20 40 60 80 100
0

20

40

60

80

100

120

140

Hans Joachim Ferreau

2013: Code generated sparse QP solver FORCES

56

Alexander Domahidi
[PhD ETH 2013]

• use interior point method with sparse linear algebra (cf. Steinbach 1995)
• code generate Riccati solvers with O(N) complexity
• include FORCES as QP solver in ACADO [Vukov, Domahidi et al., CDC, 2013]

2013: Code generated sparse QP solver FORCES

57

Alexander Domahidi
[PhD ETH 2013]

• use interior point method with sparse linear algebra (cf. Steinbach 1995)
• code generate Riccati solvers with O(N) complexity
• include FORCES as QP solver in ACADO [Vukov, Domahidi et al., CDC, 2013]

20 40 60 80 100
0

20

40

60

80

100

120

140

2013: A Surprising Improvement in Condensing
• reorder block matrix multiplications, reduce O(N3) to O(N2) complexity!
• independently discovered by G. Frison and J. Andersson.

Implemented efficiently by M. Vukov in ACADO.

58Gianluca Frison

Milan Vukov

Joel Andersson

2013: A Surprising Improvement in Condensing
• reorder block matrix multiplications, reduce O(N3) to O(N2) complexity!
• independently discovered by G. Frison and J. Andersson.

Implemented efficiently by M. Vukov in ACADO.

59Gianluca Frison

Milan Vukov

20 40 60 80 100
0

20

40

60

80

100

120

140

Joel Andersson

2014: The dual Newton strategy qpDUNES
• qpDUNES (Frasch et al. 2015) uses Lagrangian decomposition,

solves many small QPs independently, and performs sparse
Cholesky factorisations

60

Janick Frasch

2014: The dual Newton strategy qpDUNES
• qpDUNES (Frasch et al. 2015) uses Lagrangian decomposition,

solves many small QPs independently, and performs sparse
Cholesky factorisations

61

Janick Frasch

20 40 60 80 100
0

20

40

60

80

100

120

140

2015: Efficient Register Management in HPMPC
• use interior point method with Riccati solver of O(N) complexity
• use linear algebra routines tailored to embedded optimization (now in

BLASFEO) obtaining near peak CPU performance (Gianluca Frison)
• include in ACADO (M. Vukov, A. Zanelli, G. Frison)

62

Gianluca Frison

2015: Efficient Register Management in HPMPC
• use interior point method with Riccati solver of O(N) complexity
• use linear algebra routines tailored to embedded optimization (now in

BLASFEO) obtaining near peak CPU performance (Gianluca Frison)
• include in ACADO (M. Vukov, A. Zanelli, G. Frison)

63

Gianluca Frison

20 40 60 80 100
0

20

40

60

80

100

120

140

2016: Partial Condensing in HPMPC
• partial condensing (proposed by Daniel Axehill, Linköping) combines

advantages of condensing and Riccati recursion and further boost
performance of HPMPC (by G. Frison, DTU/Freiburg)

64

Gianluca Frison

Daniel Axehill

2016: Partial Condensing in HPMPC
• partial condensing (proposed by Daniel Axehill, Linköping) combines

advantages of condensing and Riccati recursion and further boost
performance of HPMPC (by G. Frison, DTU/Freiburg)

65

Gianluca Frison

Daniel Axehill

20 40 60 80 100
0

20

40

60

80

100

120

140

2016: Partial Condensing in HPMPC
• partial condensing (proposed by Daniel Axehill, Linköping) combines

advantages of condensing and Riccati recursion and further boost
performance of HPMPC (by G. Frison, DTU/Freiburg)

66

Gianluca Frison

Daniel Axehill

20 40 60 80 100
0

20

40

60

80

100

120

140

96% reduction
for N=100

2016: Partial Condensing in HPMPC
• partial condensing (proposed by Daniel Axehill, Linköping) combines

advantages of condensing and Riccati recursion and further boost
performance of HPMPC (by G. Frison, DTU/Freiburg)

67

Gianluca Frison

Daniel Axehill

101 102
10-1

100

101

102

103

2016: Partial Condensing in HPMPC
• partial condensing (proposed by Daniel Axehill, Linköping) combines

advantages of condensing and Riccati recursion and further boost
performance of HPMPC (by G. Frison, DTU/Freiburg)

68

Gianluca Frison

Daniel Axehill

101 102
10-1

100

101

102

103

“Basic Linear Algebra
Subroutines for Embedded
Optimization (BLASFEO)”

Current development: acados - plain C-code library

69

M. Diehl

Overview

• Embedded Optimization and Model Predictive Control (MPC)

• Real-Time Optimal Control Methods

• Progress in Numerical Integration Methods

• Progress in Structured Quadratic Programming

• Some real-world NMPC applications

70

M. Diehl

1) Flight Carousel for Tethered Airplanes
Experiments within the ERC Project HIGHWIND Leuven/Freiburg

71

Moving Horizon Estimation and Nonlinear
Model Predictive Control on the Flight Carousel
(sampling time 50 Hz, using ACADO Code Generation)

72

Milan Vukov

2) Nonlinear MPC Example: time-optimal “racing” of model cars

73

Freiburg/Leuven/ETH/Siemens-PLM. 100 Hz sampling time
using ACADO [Verschueren, De Bruyne, Zanon, Frasch, D. CDC 2014]
(Nonlinear MPC video from 22.6.2016 in Freiburg)

Robin Verschueren

M. Diehl

3) Nonlinear MPC of Two-Stage Turbocharger with ACADO

Cooperation with Dr. Thiva Albin (RWTH Aachen) and Rien Quirynen

•

74

M. Diehl

3) Nonlinear MPC of Two-Stage Turbocharger with ACADO

Cooperation with Dr. Thiva Albin (RWTH Aachen) and Rien Quirynen

•

75

Actuated Variables

n  Wastegate-
High Pressure

n  Wastegate-
Low Pressure

Controlled Variable /
Sensors

n  Charging pressure

n  No sensors in the
exhaust gas path

Low-Pressure
Stage High-Pressure

Stage

Engine

Charging
Pressure

Throttle

test car of RWTH Aachen

M. Diehl

3) Nonlinear MPC of Two-Stage Turbocharger with ACADO

Cooperation with Dr. Thiva Albin (RWTH Aachen) and Rien Quirynen

• use nonlinear DAE model with 4 states, 2 controls
• use ACADO Code Generation from MATLAB
• export C-code into Simulink
• deploy on dSPACE Autobox

76

M. Diehl

3) Nonlinear MPC of Two-Stage Turbocharger with ACADO

Nonlinear MPC superior to
Linear MPC in simulations:

77

 [driving a happy M.D. to Aachen Hbf on 2.11.2015]

Implemented in test car of RWTH Aachen
and tested on a test drive and the road.

M. Diehl

4) Electrical Compressor Control at ABB (Norway)
- work of Dr. Joachim Ferreau and Dr.
Thomas Besselmann, ABB
- nonlinear MPC with qpOASES and
ACADO, 1ms sampling time
- first tests at 48 MW Drive
- currently, 15% of Norwegian Gas
Exports are controlled by Nonlinear MPC

78

Using qpOASES
to Control a 48 Megawatt Drive!

July 29, 2015 | Slide 68
© ABB Group

� Load commutated inverters (LCIs) play an important role
in powering electrically-driven compressor stations

� MPC can help LCIs to ride through
partial loss of grid voltage

� qpOASES solves a small-scale
QP problem every millisecond
on embedded hardware

� Successfully tested on a 48 MW
pilot plant installation
Besselmann et al. (to appear)

M. Diehl

4) Electrical Compressor Control at ABB (Norway)
- work of Dr. Joachim Ferreau and Dr.
Thomas Besselmann, ABB
- nonlinear MPC with qpOASES and
ACADO, 1ms sampling time
- first tests at 48 MW Drive
- currently, 15% of Norwegian Gas
Exports are controlled by Nonlinear MPC

79

Joachim Ferreau (email from 7.3.2016):

The NMPC installations in Norway
(actually 5 compressors at two
different sites) are doing fine since
last autumn – roughly 80 billion NMPC
instances solved by now. In addition,
they have proven to work as expected
when handling external voltage dips.

M. Diehl

5) Human sized quadcopter control
- work by Greg Horn (Kittyhawk, California) and Andrea Zanelli
(Freiburg) in April 2017
- aim is to track roll angle commands better than a custom PID
- nonlinear MPC with 11 states, 4 controls, 10 intervals
- use HPMPC, custom linear algebra BLASFEO, and “partial
tightening” NMPC scheme within acados environment
- achieve 2 ms per optimisation on ARM cortex A9 @900 MHz

80

The System: a Large-Scale Quadcopter

2 / 11

⌅ large-scale quadcopter (> 2m prop-to-prop)

⌅ constrained and highly nonlinear system

⌅ model a↵ected by uncertainty (unknown params, aerodynamics, ...)

⌅ relevant to AWE (VTOL designs)

Experimental Results

⌅ worst-case overshoot reduced by 3X

⌅ increasingly better performance for larger steps (not shown)

9 / 11

M. Diehl

5) Human sized quadcopter control (NMPC) at Kittyhawk

81

M. Diehl

Conclusions and outlook

82

Model Predictive Control (MPC) uses more CPU resources than standard
techniques, but allows the development of more powerful controllers with
wider range of validity

good numerical methods can solve nonlinear optimal control problems at
milli- and microsecond sampling times on embedded systems

open source software (CasADi, qpOASES, ACADO, HPIPM, BLASFEO,
acados) well-tested in dozens of embedded MPC applications: cranes,
wafer steppers, model race cars, combustion engines, electrical drives,
tethered airplanes, power converters,…

Latest open source developments in the Freiburg team regard
• mixed-integer nonlinear optimal control algorithms
• nonsmooth optimal control algorithms (see previous summer school)
• continuous least-squares integration and penalty-barrier methods

M. Diehl

Appendix

83

2017: Full condensing with BLASFEO and HPMPC
• block size in HPMPC with partial condensing equal to prediction horizon.

84

20 40 60 80 100
0

10

20

30

40

50

60

Gianluca Frison

M. Diehl

Time Optimal MPC at ETEL (CH): 25cm step, 100nm accuracy

TOMPC at 250 Hz (+PID with 12 kHz)

Lieboud‘s results after 1 week at ETEL:
 - 25 cm step in 300 ms
 - 100 nm accuracy

 equivalent to: „fly 2,5 km with MACH15,
 stop with 1 mm position accuracy“

85

