Lecture 9: Summary - formulating nonsmooth optimal control problems

Moritz Diehl and Armin Nurkanović

Systems Control and Optimization Laboratory (syscop) Summer School on Direct Methods for Optimal Control of Nonsmooth Systems September 11-15, 2023

universität freiburg

Direct optimal control for nonsmooth system - overview

Toolchain implemented in our open-source package NOSNOC

NOSNOC: NOnSmooth Numerical Optimal Control

Open-source package based on CasADi

Key features

- 1. automatic reformulation NSD3 (state jumps) to NSD2 (switched systems) via the time-freezing reformulation
- 2. automatic discretization of the OCP via FESD high accuracy⁴
- 3. solution methods for the discrete-time OCP via continuous optimization

NOSNOC: https://github.com/nurkanovic/nosnoc nosnoc_py: https://github.com/FreyJo/nosnoc_py

Your contributions and feedback are welcome!

- Zeno = infinitely many switches in finite time
- Reduction of dimensions, sliding mode
- Stability and instability due to switching
- Numerical chattering
- Nonsmooth sensitivities
- Switches between ODEs and DAEs of different index

Nonsmooth systems switch between ODEs and DAEs of different index

DAEs in Hessenberg form

 $\dot{x}(t) = f(t, x(t), z(t),$

0 = q(t, x(t), z(t), t)

with $\frac{\partial g}{\partial z}$ nonsingular for all t

DAE of index 1

DAE of index 2

$$\begin{aligned} u(t)) & \dot{x}(t) = f(t, x(t), z(t), u(t)) \\ u(t)) & 0 = g(t, x(t), u(t)) \end{aligned}$$

with $\frac{\partial g}{\partial x} \frac{\partial f}{\partial z}$ nonsingular for all t

DAE of index 3

$$\begin{split} \dot{x}(t) &= f_x(t, x(t), y(t)) \\ \dot{y}(t) &= f_y(t, x(t), y(t), z(t), u(t)) \\ 0 &= g(t, x(t), u(t)) \end{split}$$

with $\frac{\partial g}{\partial x}\frac{\partial f_x}{\partial y}\frac{\partial f_y}{\partial z}$ nonsingular for all t

- RK methods most often stated for DAEs in a canonical form
- \blacktriangleright We can get an idea of the differential index by looking at the arguments of $g(\cdot)$
- Nonsmooth system switch between ODEs and DAEs of different index:
 - Entering sliding mode: from ODE to index 2 DAE
 - CLS with impacts: from ODE to index 3 DAE
 - leaving sliding modes: from DAE to ODE
- Numerical methods should be suitable for all occurring scenarios, Radau IIA is often a good choice.

Order reduction of Runge-Kutta methods in higher index DAEs

- RK methods experience order reduction for higher index DAEs
- Different components of the solution may have different accuracy
- Index reduction requires consistent initialization and drift handling
- Condition number of Newton matrix $O(h^{-k})$ where k is the index

Method	$n_{\rm s}$	ODE	DAE index 1		DAE index 2	
		x	x	z	x	z
Gauss-Legendre	odd	$2n_{\rm s}$	$2n_{\rm s}$	$n_{\rm s}$	$n_{\rm s} + 1$	$n_{\rm s}\!-\!1$
	even	$2n_{\rm s}$	$2n_{\rm s}$	$n_{\rm s} + 1$	$n_{ m s}$	$n_{\rm s}\!-\!2$
Radau IA	odd/even	$2n_{\rm s}-1$	$2n_{\rm s}-1$	$n_{\rm s}$	$n_{ m s}$	$n_{\rm s}\!-\!1$
Radau IIA	odd/even	$2n_{\rm s}-1$	$2n_{\rm s}-1$	$2n_{\rm s}-1$	$2n_{\rm s}-1$	$n_{\rm s}$
Lobatto IIIA	odd	$2n_{\rm s}-2$	$2n_{\rm s}-2$	$2n_{\rm s}-2$	$2n_{\rm s}-2$	$n_{\rm s}\!-\!1$
	even	$2n_{\rm s}-2$	$2n_{\rm s}-2$	$2n_{\rm s}-2$	$2n_{\rm s}-2$	$n_{\rm s}$
Lobatto IIIC	odd/even	$2n_{\rm s}-2$	$2n_{\rm s}-2$	$2n_{\rm s}-2$	$2n_{\rm s}-2$	$n_{\rm s}\!-\!1$

Switches and jumps can be:

- 1. external, integer controls, triggered anywhere in the state space
- 2. internal, state depended, modeled with nonsmooth ODEs this course

Switches and jumps can be:

- 1. external, integer controls, triggered anywhere in the state space
- $2. \ \mbox{internal}, state depended, modeled with nonsmooth ODEs this course$

Many mathematical formalisms to model them:

- 1. differential inclusions, measure differential inclusions (Filippov systems)
- 2. differential variational inequalities
- 3. **dynamic complementarity systems** (CLS, Stewart's and the Heaviside step reformulation)
- 4. piecewise smooths systems, Filippov systems
- 5. project dynamical systems
- 6. hybrid automaton
- 7. Moreau's sweeping processes
- 8. ...

Dynamics not yet well-defined on region boundaries ∂R_i . Idea by A.F. Filippov (1923-2006): replace ODE by differential inclusion, using convex combination of neighboring vector fields.

Filippov Differential Inclusion

$$\dot{x} \in F_{\mathcal{F}}(x, u) := \left\{ \sum_{i=1}^{n_f} f_i(x, u) \theta_i \mid \sum_{i=1}^{n_f} \theta_i = 1, \\ \theta_i \ge 0, \quad i = 1, \dots n_f, \\ \theta_i = 0, \quad \text{if } x \notin \overline{R_i} \right\}$$

Aleksei F. Filippov (1923-2006) image source: wikipedia

- for interior points $x \in R_i$ nothing changes: $F_F(x, u) = \{f_i(x, u)\}$
- Provides meaningful generalization on region boundaries. E.g. on $\overline{R_1} \cap \overline{R_2}$ both θ_1 and θ_2 can be nonzero

How to compute convex multipliers θ ?

Assume sets R_i given by [cf. Stewart, 1990] $R_i = \left\{ x \in \mathbb{R}^n | g_i(x) < \min_{j \neq i} g_j(x) \right\}$

Linear program (LP) Representation

$$egin{aligned} & x = \sum_{i=1}^{n_f} f_i(x,u) \, heta_i & ext{with} \ & heta \in rg\min_{ ilde{ heta} \in \mathbb{R}^{n_f}} & \sum_{i=1}^{n_f} g_i(x) \, ilde{ heta}_i & \ & ext{s.t.} & \sum_{i=1}^{n_f} ilde{ heta}_i = 1 & \ & ilde{ heta} > 0 \end{aligned}$$

Note that the boundary between R_i and R_j is defined by $\{x \in \mathbb{R}^n \mid 0 = g_i(x) - g_j(x)\}$.

Motivating example

Consider two switching functions $\psi_1(x)$ and $\psi_2(x)$ and four regions

Nonsmooth system

$$\dot{x} = \alpha_1 \alpha_2 f_1(x) + \alpha_1 (1 - \alpha_2) f_2(x) + (1 - \alpha_1) \alpha_2 f_3(x) + (1 - \alpha_1) (1 - \alpha_2) f_4(x)$$

Step representation

 $\theta_i = 1$ if $x \in R_i$:

$$\begin{aligned} \theta_1 &= \alpha_1 \alpha_2 \\ \theta_2 &= \alpha_1 (1 - \alpha_2) \\ \theta_3 &= (1 - \alpha_1) \alpha_2 \\ \theta_4 &= (1 - \alpha_1) (1 - \alpha_2) \end{aligned}$$

Stewart vs. Heaviside step

Dynamic complementarity system

$$\begin{split} \dot{x} &= F(x, u) \ \theta \\ 0 &= g_i(x) - \lambda_i - \mu, \ i = 1, \dots, 2^{n_{\psi}}, \\ 0 &\leq \theta \perp \lambda \geq 0 \\ 1 &= e^{\top} \theta \end{split}$$

Heaviside step DCS

$$\begin{split} \dot{x} &= F(x, u) \ \theta \\ \theta_i &= \prod_{j=1}^{n_{\psi}} \left(\frac{1 - S_{i,j}}{2} + S_{i,j} \alpha_j \right), i = 1, \dots, 2^{n_{\psi}} \\ \psi(x) &= \lambda^{p} - \lambda^{n} \\ 0 &\leq \lambda^{n} \perp \alpha \geq 0 \\ 0 &\leq \lambda^{p} \perp e - \alpha \geq 0 \end{split}$$

Table: Comparisons of the problem sizes in Stewart's and the step reformulation for a fixed n_{ψ} .

Method	Number of systems	$n_{\rm alg}$	$n_{\rm comp}$	$n_{ m eq}$
Stewart	$2^{n_{\psi}}$	$2\cdot 2^{n_\psi}\!+\!1$	$2^{n_{\psi}}$	$2^{n_\psi}\!+\!1$
Heaviside step	$2^{n_{\psi}}$	$2^{n_{\psi}} + 3n_{\psi}$	$2n_{\psi}$	$n_\psi \! + \! n_f$

Approaches to discretize and simulate a nonsmooth ODE

- 1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)
- 2) smoothing and penalty methods (low accuracy, easy to implement)
- event-driven, switch-detecting, active-set methods (cannot handle Zeno, high accuracy)

Direct optimal control with a time stepping IRK discretization Tutorial example inspired by [Stewart & Anitescu, 2010]

Continuous-time OCP

$$\min_{\substack{x(\cdot),\lambda(\cdot),s(\cdot)}} \int_{0}^{2} x(t)^{2} dt + (x(2) - 5/3)^{2}$$

s.t. $\dot{x}(t) = 2 - s(t)$
 $0 \le \lambda(t) - x(t) \perp 1 + s(t) \ge 0$
 $0 \le \lambda(t) \perp 1 - s(t) \ge 0, \ t \in [0, 2]$

- Discretize the DCS with fixed step size IRK methods
- ▶ E.g., midpoint rule, Gauss-Legendre IRK with $n_{\rm s} = 1$, accuracy $O(h^2)$
- decreasing the step size might worsen the situation

Many artificial local minima and wrong derivatives

Direct optimal control with a time stepping IRK discretization Tutorial example inspired by [Stewart & Anitescu, 2010]

Discrete-time OCP

$$\min_{\mathbf{x},\mathbf{z}} \quad \sum_{n=0}^{N-1} \ell_n(x_n) + (x_N - 5/3)^2$$

s.t. $x_{n+1} = \phi_f(x_n, z_n)$
 $0 = \phi_{\text{int}}(x_n, z_n), \ n = 0, \dots N -$

- Discretize the DCS with fixed step size IRK methods
- ▶ E.g., midpoint rule, Gauss-Legendre IRK with $n_s = 1$, accuracy $O(h^2)$
- decreasing the step size might worsen the situation

Many artificial local minima and wrong derivatives

Direct optimal control with a standard IRK discretization - smoothing Tutorial example inspired by [Stewart & Anitescu, 2010]

Continuous-time OCP

$$\min_{\substack{x(\cdot)\in\mathcal{C}^0([0,2])\\\text{s.t.}}} \int_0^2 x(t)^2 dt + (x(2) - 5/3)^2$$

s.t. $\dot{x}(t) = 2 - \operatorname{sign}(x(t)), \quad t \in [0,2]$

• midpoint rule, with h = 0.05; N = 40

If $h \gg \sigma$, then the smooth approximation behaves the same as the nonsmooth problem!

Direct optimal control with a standard IRK discretization - smoothing Tutorial example inspired by [Stewart & Anitescu, 2010]

Smoothed continuous-time OCP

$$\min_{x(\cdot)\in\mathcal{C}^{\infty}([0,2])} \int_{0}^{2} x(t)^{2} dt + (x(2) - 5/3)^{2}$$
s.t. $\dot{x}(t) = 2 - \tanh\left(\frac{x(t)}{\sigma}\right), \quad t \in [0,2]$

Equivalent reduced problem

$$\min_{x_0 \in \mathbb{R}} V_{\sigma}(x_0)$$

• midpoint rule, with h = 0.05; N = 40

If $h \gg \sigma$, then the smooth approximation behaves **the same as the nonsmooth** problem!

M. Diehl and A. Nurkanović

Main ideas of FESD

Based on [Baumrucker & Biegler, 2009], [N. et. al, 2022, 2022a, 2023]

FESD overview

- 1. Transform Filippov DI into equivalent DCS Stewart or Heaviside step (Lecture 5)
- 2. Consider at least two integration intervals = finite elements
- 3. Use general implicit Runge-Kutta methods (Lectures 2 and 3)
- 4. Let step sizes h_n be degrees of freedom
- 5. Cross complementarity conditions adapt h_n for switch detection
- 6. Step equilibration remove degrees of freedom if no switch

Discretize optimal control problem with FESD

Discretized optimal control problem

$$\min_{s,z,u} \sum_{k=0}^{N-1} \Phi_L(s_k, z_k, u_k) + E(s_N)$$

s.t. $s_0 = \bar{x}_0$
 $s_{k+1} = \Phi_f(s_k, z_k, u_k)$
 $0 = \Phi_{int}(s_k, z_k, u_k)$
 $0 \ge h(s_k, u_k), \ k = 0, \dots, N-1$
 $0 \ge r(s_N)$

- States at control grid points s = (s₀,...,s_N)
- Piecewise controls $u = (u_0, \ldots, u_{N-1})$
- FESD with N_{FE} finite elements applied on every control interval

Control horizon [0,T] with N control stages

Discretize optimal control problem with FESD

Discretized optimal control problem

$$\min_{s,z,u} \sum_{k=0}^{N-1} \Phi_L(s_k, z_k, u_k) + E(s_N)$$

s.t. $s_0 = \bar{x}_0$
 $s_{k+1} = \Phi_f(s_k, z_k, u_k)$
 $0 = \Phi_{int}(s_k, z_k, u_k)$
 $0 \ge h(s_k, u_k), \ k = 0, \dots, N-1$
 $0 \ge r(s_N)$

► States at control grid points s = (s₀,...,s_N)

- Piecewise controls $u = (u_0, \ldots, u_{N-1})$
- FESD with N_{FE} finite elements applied on every control interval
- Φ_{int} summarizes internal FESD equations: RK, cross complementarity, step equilibration,...

Control horizon [0,T] with N control stages

Discretize optimal control problem with FESD

Discretized optimal control problem

$$\min_{s,z,u} \sum_{k=0}^{N-1} \Phi_L(s_k, z_k, u_k) + E(s_N)$$

s.t. $s_0 = \bar{x}_0$
 $s_{k+1} = \Phi_f(s_k, z_k, u_k)$
 $0 = \Phi_{int}(s_k, z_k, u_k)$
 $0 \ge h(s_k, u_k), \ k = 0, \dots, N-1$
 $0 \ge r(s_N)$

Control horizon [0,T] with N control stages

- ► States at control grid points s = (s₀,...,s_N)
- Piecewise controls $u = (u_0, \ldots, u_{N-1})$
- FESD with N_{FE} finite elements applied on every control interval
- Φ_{int} summarizes internal FESD equations: RK, cross complementarity, step equilibration,...
- ► z = (z₀,..., z_{N-1}) all interval variables: internal states, stage values of states and algebraice, step sizes...

Discretized optimal control problem

$$\min_{s,z,u} \sum_{k=0}^{N-1} \Phi_L(s_k, z_k, u_k) + E(s_N)$$

s.t. $s_0 = \bar{x}_0$
 $s_{k+1} = \Phi_f(s_k, z_k, u_k)$
 $0 = \Phi_{int}(s_k, z_k, u_k)$
 $0 \ge h(s_k, u_k), \ k = 0, \dots, N-1$
 $0 \ge r(s_N)$

Collect $w = (s, z, u) \in \mathbb{R}^{n_w}$ Mathematical programs with complementarity constraints (MPCCs) are more difficult than standard NLPs

NLP with Complementarity Constraints

 $\min_{w \in \mathbb{R}^{n_w}} F(w)$ s.t. 0 = G(w) $0 \ge H(w)$ $0 \le G_1(w) \perp G_2(w) \ge 0$

Standard and cross complementarity constraints summarized in

 $0 \le G_1(w) \perp G_2(w) \ge 0$

- 1. mimic state jump by auxiliary dynamic system $\dot{x} = f_{\mathrm{aux}}(x)$ on prohibited region
- 2. introduce a **clock state** $t(\tau)$ that stops counting when the auxiliary system is active
- 3. adapt speed of time, $\frac{dt}{d\tau} = s$ with $s \ge 1$, and impose terminal constraint t(T) = T

The time-freezing reformulation

Augmented state $(x,t) \in \mathbb{R}^{n+1}$ evolves in numerical time τ . Augmented system is nonsmooth, of NSD2 type:

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \begin{bmatrix} x \\ t \end{bmatrix} = \begin{cases} s \begin{bmatrix} f(x) \\ 1 \end{bmatrix}, & \text{ if } c(x) \ge 0 \\ \\ \begin{bmatrix} s f_{\mathrm{aux}}(x) \\ 0 \end{bmatrix}, & \text{ if } c(x) < 0 \end{cases}$$

- During normal times, system and clock state evolve with adapted speed s ≥ 1.
- ► Auxiliary system dx/dτ = f_{aux}(x) mimics state jump while time is frozen, dt/dτ = 0.

Time-freezing for bouncing ball example

3

Conclusions and summary

- There exist many mathematical formalisms to model switches in jumps in dynamical systems.
- ▶ Nonsmoothness leads to occurrences and difficulties not seen in nonsmooth systems.
- Filippov systems and dynamic complementarity systems have nice practical and theoretical properties.
- Naive discretization and smoothing can lead to non-obvious and severe failures.

Conclusions and summary

- There exist many mathematical formalisms to model switches in jumps in dynamical systems.
- ▶ Nonsmoothness leads to occurrences and difficulties not seen in nonsmooth systems.
- Filippov systems and dynamic complementarity systems have nice practical and theoretical properties.
- ▶ Naive discretization and smoothing can lead to non-obvious and severe failures.
- Dedicated discretization methods, such as FESD, detect the switches and lead to high accuracy.
- Switch detection not only important for accuracy, but also for correct sensitivities = avoid convergence at spurious solutions.
- ▶ Time-freezing enables enables to transform systems with jumps into systems with switches.

Conclusions and summary

- There exist many mathematical formalisms to model switches in jumps in dynamical systems.
- ▶ Nonsmoothness leads to occurrences and difficulties not seen in nonsmooth systems.
- Filippov systems and dynamic complementarity systems have nice practical and theoretical properties.
- ▶ Naive discretization and smoothing can lead to non-obvious and severe failures.
- Dedicated discretization methods, such as FESD, detect the switches and lead to high accuracy.
- Switch detection not only important for accuracy, but also for correct sensitivities = avoid convergence at spurious solutions.
- ▶ Time-freezing enables enables to transform systems with jumps into systems with switches.
- In nonsmooth optimal control one needs to solve mathematical programs with complementarity constraints (MPCC).
- Solving MPCCs can be significantly more difficult than solving smooth nonlinear programs.

- High-performance and open-source nonlinear complementarity problem solvers, e.g., for FESD problems.
- Reuse FESD ideas for similar problem classes not treated in this course, e.g. project dynamical systems.
- Generalizing time-freezing to further systems classes with state jumps.
- Good implementations of MPCC methods.
- Model predictive control algorithms based on *inaccurate* solves of the nonsmooth OCPs nonsmooth real-time iterations?
- What else?