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Toolchain implemented in our open-source package NOSNOC
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NOSNOC: NOnSmooth Numerical Optimal Control
Open-source package based on CasADi

Key features

1. automatic reformulation NSD3 (state jumps) to NSD2 (switched systems) via the
time-freezing reformulation

2. automatic discretization of the OCP via FESD - high accuracy4

3. solution methods for the discrete-time OCP via continuous optimization

NOSNOC: https://github.com/nurkanovic/nosnoc

nosnoc py: https://github.com/FreyJo/nosnoc_py

Your contributions and feedback are welcome!
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Nonsmooth system exhibit phenomenon not seen in smooth systems

▶ Zeno = infinitely many switches in finite
time

▶ Reduction of dimensions, sliding mode

▶ Stability and instability due to switching

▶ Numerical chattering

▶ Nonsmooth sensitivities

▶ Switches between ODEs and DAEs of
different index
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Nonsmooth systems switch between ODEs and DAEs of different index
DAEs in Hessenberg form

DAE of index 1

ẋ(t) = f(t, x(t), z(t), u(t))

0 = g(t, x(t), z(t), u(t))

with ∂g
∂z nonsingular for all t

DAE of index 2

ẋ(t) = f(t, x(t), z(t), u(t))

0 = g(t, x(t), u(t))

with ∂g
∂x

∂f
∂z nonsingular for all t

DAE of index 3

ẋ(t) = fx(t, x(t), y(t))

ẏ(t) = fy(t, x(t), y(t), z(t), u(t))

0 = g(t, x(t), u(t))

with ∂g
∂x

∂fx
∂y

∂fy
∂z nonsingular for

all t
▶ RK methods most often stated for DAEs in a canonical form
▶ We can get an idea of the differential index by looking at the arguments of g(·)
▶ Nonsmooth system switch between ODEs and DAEs of different index:

▶ Entering sliding mode: from ODE to index 2 DAE
▶ CLS with impacts: from ODE to index 3 DAE
▶ leaving sliding modes: from DAE to ODE

▶ Numerical methods should be suitable for all occurring scenarios, Radau IIA is often a
good choice.
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Order reduction of Runge-Kutta methods in higher index DAEs

▶ RK methods experience order reduction for higher index DAEs
▶ Different components of the solution may have different accuracy
▶ Index reduction requires consistent initialization and drift handling
▶ Condition number of Newton matrix O(h−k) where k is the index

Method ns
ODE DAE index 1 DAE index 2

x x z x z

Gauss-Legendre
odd 2ns 2ns ns ns + 1 ns−1

even 2ns 2ns ns + 1 ns ns−2

Radau IA odd/even 2ns − 1 2ns − 1 ns ns ns−1

Radau IIA odd/even 2ns − 1 2ns − 1 2ns − 1 2ns − 1 ns

Lobatto IIIA
odd 2ns − 2 2ns − 2 2ns − 2 2ns − 2 ns−1

even 2ns − 2 2ns − 2 2ns − 2 2ns − 2 ns

Lobatto IIIC odd/even 2ns − 2 2ns − 2 2ns − 2 2ns − 2 ns−1
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The vast field of nonsmooth dynamical systems

Switches and jumps can be:

1. external, integer controls, triggered anywhere in the state space

2. internal, state depended, modeled with nonsmooth ODEs - this course

Many mathematical formalisms to model them:

1. differential inclusions, measure differential inclusions (Filippov systems)

2. differential variational inequalities

3. dynamic complementarity systems (CLS, Stewart’s and the Heaviside step
reformulation)

4. piecewise smooths systems, Filippov systems

5. project dynamical systems

6. hybrid automaton

7. Moreau’s sweeping processes

8. ...
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Recap on Filippov Convexification

Dynamics not yet well-defined on region boundaries ∂Ri. Idea by A.F. Filippov (1923-2006):
replace ODE by differential inclusion, using convex combination of neighboring vector fields.

Filippov Differential Inclusion

ẋ ∈ FF(x, u) :=
{ nf∑
i=1

fi(x, u) θi

∣∣∣ nf∑
i=1

θi = 1,

θi ≥ 0, i = 1, . . . nf ,

θi = 0, if x /∈ Ri

}
Aleksei F. Filippov
(1923-2006)

image source: wikipedia▶ for interior points x ∈ Ri nothing changes: FF(x, u) = {fi(x, u)}
▶ Provides meaningful generalization on region boundaries.

E.g. on R1 ∩R2 both θ1 and θ2 can be nonzero
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How to compute convex multipliers θ?

Assume sets Ri given by [cf. Stewart, 1990]

Ri =
{
x ∈ Rn

∣∣gi(x) < minj ̸=i gj(x)
}

Linear program (LP) Representation

ẋ =

nf∑
i=1

fi(x, u) θi with

θ ∈ arg min
θ̃∈Rnf

nf∑
i=1

gi(x) θ̃i

s.t.

nf∑
i=1

θ̃i = 1

θ̃ ≥ 0

Note that the boundary between Ri and Rj is defined by {x ∈ Rn | 0 = gi(x)− gj(x)}.
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Motivating example

Consider two switching functions ψ1(x) and ψ2(x) and four regions

Nonsmooth system

ẋ = α1α2f1(x) + α1(1− α2)f2(x)

+ (1− α1)α2f3(x) + (1− α1)(1− α2)f4(x)

Step representation

θi = 1 if x ∈ Ri:

θ1 = α1α2

θ2 = α1(1− α2)

θ3 = (1− α1)α2

θ4 = (1− α1)(1− α2)

A1(x)

A
2
(x

)

R1

R2

R3

R4

x

R4 = {x ∈ Rnx | ψ1(x) < 0, ψ2(x) < 0}
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Stewart vs. Heaviside step

Dynamic complementarity system

ẋ = F (x, u) θ

0 = gi(x)− λi − µ, i = 1, . . . , 2nψ ,

0 ≤ θ ⊥ λ ≥ 0

1 = e⊤θ

Heaviside step DCS

ẋ = F (x, u) θ

θi =

nψ∏
j=1

(1− Si,j
2

+ Si,jαj

)
, i = 1, . . . , 2nψ

ψ(x) = λp − λn

0 ≤ λn ⊥ α ≥ 0

0 ≤ λp ⊥ e− α ≥ 0

Table: Comparisons of the problem sizes in Stewart’s and the step reformulation for a fixed nψ.

Method Number of systems nalg ncomp neq

Stewart 2nψ 2 · 2nψ+1 2nψ 2nψ+1

Heaviside step 2nψ 2nψ +3nψ 2nψ nψ+nf
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Time discretization methods for nonsmooth ODEs

Approaches to discretize and simulate a nonsmooth ODE

1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)

2) smoothing and penalty methods (low accuracy, easy to implement)

3) event-driven, switch-detecting, active-set methods (cannot handle Zeno, high
accuracy)
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t

-2

-1

0

1

x
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)

ts
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Direct optimal control with a time stepping IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

Continuous-time OCP

min
x(·),λ(·),s(·)

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− s(t)

0 ≤ λ(t)− x(t) ⊥ 1 + s(t) ≥ 0

0 ≤ λ(t) ⊥ 1− s(t) ≥ 0, t ∈ [0, 2]

▶ Discretize the DCS with fixed step size
IRK methods

▶ E.g., midpoint rule, Gauss-Legendre IRK
with ns = 1, accuracy O(h2)

▶ decreasing the step size might worsen
the situation

-2 -1.8 -1.6 -1.4 -1.2 -1

x0

1.4

1.5

1.6

1.7

1.8

1.9

2

V
(x

0
)

Exact
h = 0:4
h = 0:2
h = 0:1
h = 0:04
h = 0:02

Many artificial local minima and wrong
derivatives
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Direct optimal control with a time stepping IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

Discrete-time OCP

min
x,z

N−1∑
n=0

ℓn(xn) + (xN − 5/3)2

s.t. xn+1 = ϕf (xn, zn)

0 = ϕint(xn, zn), n = 0, . . . N − 1

▶ Discretize the DCS with fixed step size
IRK methods

▶ E.g., midpoint rule, Gauss-Legendre IRK
with ns = 1, accuracy O(h2)

▶ decreasing the step size might worsen
the situation
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Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired by [Stewart & Anitescu, 2010]

Continuous-time OCP

min
x(·)∈C0([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− sign(x(t)), t ∈ [0, 2]

▶ midpoint rule, with h = 0.05; N = 40

-2 -1.8 -1.6 -1.4 -1.2 -1

x0

1.4

1.5

1.6

1.7

1.8

1.9

2

V
(x

0
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Exact
< = 0:1
< = 0:05
< = 0:025
< = 0:0125
< = 0:00625

If h≫ σ, then the smooth approximation
behaves the same as the nonsmooth

problem!
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Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired by [Stewart & Anitescu, 2010]

Smoothed continuous-time OCP

min
x(·)∈C∞([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− tanh
(x(t)
σ

)
, t ∈ [0, 2]

Equivalent reduced problem

min
x0∈R

Vσ(x0)

▶ midpoint rule, with h = 0.05; N = 40
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Main ideas of FESD
Based on [Baumrucker & Biegler, 2009], [N. et. al, 2022, 2022a, 2023]

FESD overview

1. Transform Filippov DI into equivalent DCS - Stewart or Heaviside step (Lecture 5)

2. Consider at least two integration intervals = finite elements

3. Use general implicit Runge-Kutta methods (Lectures 2 and 3)

4. Let step sizes hn be degrees of freedom

5. Cross complementarity conditions - adapt hn for switch detection

6. Step equilibration - remove degrees of freedom if no switch

ẋ ∈ FF(x, u) ⇐⇒
ẋ = F (x, u)θ

0 = GDCS(x, z, θ)
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Discretize optimal control problem with FESD

Discretized optimal control problem

min
s,z,u

N−1∑
k=0

ΦL(sk, zk, uk) + E(sN )

s.t. s0 = x̄0

sk+1 = Φf (sk, zk, uk)

0 = Φint(sk, zk, uk)

0 ≥ h(sk, uk), k = 0, . . . , N−1

0 ≥ r(sN )

Control horizon [0, T ] with N control stages

▶ States at control grid points
s = (s0, . . . , sN )

▶ Piecewise controls u = (u0, . . . , uN−1)

▶ FESD with NFE finite elements applied
on every control interval

▶ Φint summarizes internal FESD
equations: RK, cross complementarity,
step equilibration,...

▶ z = (z0, . . . , zN−1) - all interval
variables: internal states, stage values of
states and algebraice, step sizes...
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Discretize optimal control problem with FESD lead to MPCCs

Discretized optimal control problem

min
s,z,u

N−1∑
k=0

ΦL(sk, zk, uk) + E(sN )

s.t. s0 = x̄0

sk+1 = Φf (sk, zk, uk)

0 = Φint(sk, zk, uk)

0 ≥ h(sk, uk), k = 0, . . . , N−1

0 ≥ r(sN )

Collect w = (s, z, u) ∈ Rnw
Mathematical programs with
complementarity constraints (MPCCs) are
more difficult than standard NLPs

NLP with Complementarity Constraints

min
w∈Rnw

F (w)

s.t. 0 = G(w)

0 ≥ H(w)

0 ≤ G1(w) ⊥ G2(w) ≥ 0

Standard and cross complementarity
constraints summarized in

0 ≤ G1(w) ⊥ G2(w) ≥ 0
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Three ideas:

1. mimic state jump by auxiliary dynamic system ẋ = faux(x) on prohibited region

2. introduce a clock state t(τ) that stops counting when the auxiliary system is active

3. adapt speed of time, dt
dτ = s with s ≥ 1, and impose terminal constraint t(T ) = T
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The time-freezing reformulation

Augmented state (x, t) ∈ Rn+1 evolves in
numerical time τ . Augmented system is
nonsmooth, of NSD2 type:

d

dτ

x
t

 =



s

[
f(x)

1

]
, if c(x) ≥ 0

[
sfaux(x)

0

]
, if c(x) < 0

▶ During normal times, system and clock
state evolve with adapted speed s ≥ 1.

▶ Auxiliary system dx
dτ = faux(x) mimics

state jump while time is frozen, dt
dτ = 0.
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Time-freezing for bouncing ball example

Evolution of physical time (clock state)
during augmented system simulation
(s = 1).

We can recover the true solution by plotting
x(τ) vs. t(τ) and disregarding ”frozen pieces”.
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Conclusions and summary

▶ There exist many mathematical formalisms to model switches in jumps in dynamical
systems.

▶ Nonsmoothness leads to occurrences and difficulties not seen in nonsmooth systems.

▶ Filippov systems and dynamic complementarity systems have nice practical and theoretical
properties.

▶ Naive discretization and smoothing can lead to non-obvious and severe failures.

▶ Dedicated discretization methods, such as FESD, detect the switches and lead to high
accuracy.

▶ Switch detection not only important for accuracy, but also for correct sensitivities = avoid
convergence at spurious solutions.

▶ Time-freezing enables enables to transform systems with jumps into systems with switches.

▶ In nonsmooth optimal control one needs to solve mathematical programs with
complementarity constraints (MPCC).

▶ Solving MPCCs can be significantly more difficult than solving smooth nonlinear programs.
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Outlook - possible research directions

▶ High-performance and open-source nonlinear complementarity problem solvers, e.g., for
FESD problems.

▶ Reuse FESD ideas for similar problem classes not treated in this course, e.g. project
dynamical systems.

▶ Generalizing time-freezing to further systems classes with state jumps.

▶ Good implementations of MPCC methods.

▶ Model predictive control algorithms based on inaccurate solves of the nonsmooth OCPs -
nonsmooth real-time iterations?

▶ What else?
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