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Nonsmooth Dynamics (NSD) - a classification

Regard an ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).
Distinguish three cases:

NSD1: non-differentiable RHS, e.g., ẋ = 1 + |x|

NSD2: state dependent switch of RHS, e.g., ẋ = 2− sign(x)

NSD3: state dependent jump, e.g., bouncing ball, v(t+) = −0.9 v(t−)
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Controlled complementarity Lagrangian systems

Controlled CLS

q̇ = v

M(q)v̇ = fv(q, v) +Bu(q)u

+

nc∑
ℓ=1

(Jℓ
n(q)λ

ℓ
n

+ Jℓ
t (q)λ

ℓ
t

)

0 ≤ λℓ
n ⊥ f ℓ

c (q) ≥ 0, ∀ℓ ∈ C

λℓ
t ∈ arg min

λ̃ℓ
t∈Rnt

−v⊤Jℓ
t (q)λ̃

ℓ
t

s.t. ∥λ̃ℓ
t∥2 ≤ µℓλℓ

n, ∀ℓ ∈ C

▶ C = {1, . . . , nc} - number of contact, Jℓ
n(q) - contact normal, ϵℓr - coeff. of restitution

▶ blue terms: impact model f ℓ
c (q) = 0 becomes active, triggers state jump

▶ green terms: Coulomb’s friction model (maximum dissipation principle)

▶ Jℓ
t (q) ∈ Rnq×nt , nt ∈ {1, 2} spans the tangent plane
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Controlled complementarity Lagrangian systems - single contact

Controlled CLS

q̇ = v

M(q)v̇ = fv(q, v) +Bu(q)u+ Jn(q)λn + Jt(q)λt

0 ≤ λn ⊥ fc(q) ≥ 0

if fc(q(ts)) ≤ 0 then

Jn(q(ts))
⊤v(t+s ) ≥ 0

λt ∈ arg min
λ̃t∈Rnt

−v⊤Jt(q)λ̃t

s.t. ∥λ̃t∥2 ≤ µλn

▶ Jn(q) - contact normal

▶ blue terms: impact model fc(q) = 0 becomes active, triggers state jump

▶ green terms: Coulomb’s friction model (maximum dissipation principle)
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The friction cone

M(q)v̇ = fv(q, v) +Bu(q)u+ Jn(q)λn + Jt(q)λt

Solution map of friction model

λt ∈

{
{−µλn

vt
∥vt∥2

}, if ∥vt∥2>0

{λ̃t | ∥λ̃t∥2 ≤ µλn}, if ∥vt∥2 =0

▶ Tangential velocity defined as vt := Jt(q)
⊤v

▶ In 2D solution map reduces to λt ∈ −µλnsign(vt)

▶ Set of all possible contact forces

FC(q) = {Jn(q)λn + Jt(q)λt | λn ≥ 0, ∥λt∥2 ≤ µλn}
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Controlled complementarity Lagrangian systems - single contact

Controlled CLS
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▶ Jn(q) - contact normal

▶ blue terms: impact model fc(q) = 0 becomes active, triggers state jump

▶ For a moment let us study the CLS without friction (no green terms)

▶ We consider the two modes when fc(q) > 0 (free flight) and fc(q) = 0 (active contact)
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CLS modes and the contact LCP
When should an active constraint become inactive?

Unconstrained ODE mode (free flight)

q̇ = v

M(q)v̇ = fv(q, v) +Bu(q)u

Contact mode - DAE of index 3

q̇ = v

M(q)v̇ = fv(q, v) +Bu(q)u+ Jn(q)λn

0 = fc(q)

The contact LCP tells us if the system will stay in contact mode or switch to the ODE mode:

0 ≤ d2

dt2
fc(q(t)) ⊥ λn(t) ≥ 0

0 ≤ D(q)λn + φ(x) ⊥ λn ≥ 0,

λn = max(0,−D(q)−1φ(x))

▶ If φ(x) < 0 contact stays closed with λn > 0

▶ If φ(x) > 0 contact becomes inactive with
λn = 0

where D(q) is the Delassus’ matrix (scalar in single contact case) and

D(q) := ∇qfc(q)
⊤M(q)−1∇qfc(q) ≻ 0, φ(x) := ∇qfc(q)

⊤fv(q, v, u) +∇q(∇qfc(q)
⊤v)⊤v.
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Summary od CLS modes and switches

▶ Summarized state x = (q, v)

▶ The free flight ODE :

d

dt
x = fODE(x, u) :=

 v

M(q)−1f̂v(q, v, u)

 , f̂v(q, v, u) := fv(q, v) +Bu(q)u

▶ The ODE during persistent contact obtained after index reduction:

d

dt
x = fDAE(x, u) :=

 v

M(q)−1(f̂v(q, v, u)− Jn(q)D(q)−1φ(x))


The possible transitions are:

1. From ODE to DAE - with a state jump in the normal contact velocity

2. From DAE to ODE - solution continious, conditions given by contact LCP
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Warm up example
A 2D particle without friction

2D frictionless particle with an inelastic impact

q̇ = v,

mv̇ =

 0

−mg

+

0
1

λn +

u1

u2

 ,

0 ≤ λn ⊥ q2 ≥ 0,

v2(t
+
s )=0, if q2(ts)=0 and v2(t

−
s )<0.

Trajectory with u(t) = 0:
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Warm up example
Phase plots: elastic vs. inelastic impact

elastic impact inelastic impact
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Time-freezing for inelastic impacts
Back to the more general setting

▶ State space in numerical time τ : y = (q, v, t) ∈ Rny , ny = nx + 1 and x = (q, v)

Switching functions

c1(y) := fc(q)

c2(y) := ∇qfc(q)
⊤v

(
=

dfc
dt

(q)

)

Regions

Ra
1 = {y ∈ Rny | c1(y) > 0}

Rb
1 = {y ∈ Rny | c1(y) < 0, c2(y) > 0}

R1 = Ra
1 ∪R2

b

R2 = {y ∈ Rny | c1(y) < 0, c2(y) < 0}

▶ R1 - unconstrained dynamics

▶ R2 - auxiliary dynamics

▶ After impact: c1(y) = c2(y) = 0

▶ sliding mode on Σ={y | c1(y) = 0, c2(y) = 0}
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Unconstrained and auxiliary dynamics

Unconstrained free-flight ODE in R1

y′ = fODE(y, u) :=


v

f̂v(q, v, u)

1


Auxiliary ODE in R2

y′(τ) = faux,n(y) :=


0

M(q)−1Jn(q)an

0


with an > 0.

▶ fODE(y, u) stops y(τ) on Σ!

▶ dynamics on Σ is y′ ∈ conv{fODE(y)faux,n(y)}
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Contact breaking
The contact LCP function φ(x) tells us about the vector field in R1

▶ φ(x) determines stability of Σ (remember the contact LCP)
▶ staying in sliding mode (persistent contact) or leaving sliding mode (contact breaking) is

possible

Sliding mode if φ(x) ≤ 0

Breaking contact if φ(x) > 0
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Illustration of leaving a sliding mode - contact breaking

Warm up example: a linearly increasing vertical force beats gravity
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Why is the time slowed-down?

Time-freezing system

y′ ∈ FTF(y, u) = {θ1fODE(y, u) + θ2faux,n(y) | θ⊤e = 1, θ ≥ 0}

▶ fractional θ1, θ2 ∈ (0, 1) ensures sliding on Σ

▶ speed of time dt
dτ = θ1 · 1 + θ2 · 0 < 1 - slow

down

▶ resulting dynamics equal to reduced DAE
index 3 dynamics fDAE(x, u) (contact mode)

▶ auxiliary dynamics plays role of contact force
(keeps v = 0 and avoids penetration)
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The sliding mode is unique

Time-freezing system

y′ ∈ FTF(y, u) = {θ1fODE(y, u) + θ2faux,n(y) | θ⊤e = 1, θ ≥ 0} (1)

Theorem

Let y(τ) be a solution of the dyn. system (1) with
y(0) ∈ Σ = {y ∈ Rny | c1(y) = 0, c2(y) = 0} and τ ∈ [0, τf ]. Suppose that φ(x(τ), u(τ)) ≤ 0
for all τ ∈ [0, τf ] (persistent contact), then the following statements are true:

(i) the convex multipliers θ1, θ2 ≥ 0 are unique,

(ii) the dynamics of the sliding mode are given by y′ = β(x, u)

fDAE(x, u)

1

, where
β(x, u) ∈ (0, 1] is a time-rescaling factor given by

β(x, u) :=
D(q)an

D(q)an − φ(x, u)
. (2)
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Obtaining a Filippov system in Stewart’s or Step form

Time-freezing system

y′ ∈ FTF(y, u) ={θ1fODE(y, u) + θ2faux,n(y)

| θ1 + θ2 = 1, θ ≥ 0}

Regions

Ra
1 = {y ∈ Rny | c1(y) > 0}

Rb
1 = {y ∈ Rny | c1(y) < 0, c2(y) > 0}

R1 = Ra
1 ∪R2

b

R2 = {y ∈ Rny | c1(y) < 0, c2(y) < 0}

Switching functions and sign matrix

c(y) =

 fc(q)

∇qfc(q)
⊤v

 , S =


1 1

1 −1

−1 1

−1 −1


R1

R1

R1

R2

g(y) = −S⊤c(y)
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R1
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g(y) = −S⊤c(y)

Step representation

y′ = θ1fODE(y, u) + θ2faux,n(y)

θ1 = α1 + (1− α1)α2

θ2 = (1− α1)(1− α2)

α1 ∈ γ(c1(y)), α2 ∈ γ(c2(y))
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R2

g(y) = −S⊤c(y)

Stewart’s representation

y′ = (θ1 + θ2 + θ3)fODE(y, u) + θ4faux,n(y)

θ = arg min
θ̃∈R4

g(y)⊤θ̃

s.t θ̃ ≥ 0, e⊤θ̃ = 1
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Outline of the lecture

1 Complementarity Lagrangian systems

2 Time-freezing for inelastic impacts

3 Time-freezing with friction

4 Optimal control with time-freezing

5 Conclusions and outlook

08. Time-freezing II: Rigid bodies with friction and inelastic impacts M. Diehl and A. Nurkanović 17/38



Complementarity Lagrangian systems with impact and friction

Controlled CLS with friction

q̇ = v

M(q)v̇ = fv(q, v) +Bu(q)u+ Jn(q)λn + Jt(q)λt

0 ≤ λn ⊥ fc(q) ≥ 0

if fc(q(ts)) ≤ 0 then Jn(q(ts))
⊤v(t+s ) ≥ 0

λt ∈ arg min
λ̃t∈Rnt

−v⊤Jt(q)λ̃t

s.t. ∥λ̃t∥2 ≤ µλn

▶ we regard fc(x) ∈ R (single unilateral constraint)

▶ Jt(q) ∈ Rnq×nt spans the tangent plane at contact points C(q) := {q ∈ Rnq | fc(q) = 0},
nt ∈ {1, 2}, tang. velocity vt = Jt(q)

⊤v

▶ We derive time-freezing for the friction terms
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Coulomb’s friction
Solution map for a given λn

Coulomb’s friction law

λt ∈ arg min
λ̃t∈Rnt

−v⊤t λ̃t

s.t. ∥λ̃t∥2 ≤ µλn.

Friction solution map

λt ∈

{
{−µλn

vt

∥vt∥2
}, if ∥vt∥2 > 0,

{λ̃t | ∥λ̃t∥2 ≤ µλn}, if ∥vt∥2 = 0.

▶ reduces to λt ∈ −µλnsign(vt) in planar case

▶ the normal impulse is anτjump =⇒ the tangential impulse should be −µanτjumpsign(vt)

▶ tangential state jumps happens simultaneously with normal impulse

▶ Conclusion: define aux. dyn. in tangential directions Jt(q) ”proportional” to faux,n and
let them evolve simultaneously
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Regions with tangential auxiliary dynamics
Refine the definitions for c1(y) < 0 and c2(y) < 0 to account for the sign of vt

New additional switching function c3(y) = vt
The “old R2“ where the jumps were happening split into two regions to account for sign of vt

Regions

Q = {y ∈ Rny | c1(y) < 0, c2(y) < 0}
R1 = Ra

1 ∪Rb
1

R2 = Q ∩ {y ∈ Rny | c3(y) > 0}
R3 = Q ∩ {y ∈ Rny | c3(y) < 0}

Time-freezing system with friction

y′ ∈ FTF(y, u) =
{ 3∑

i=1

fi(y, u) | θ ≥ 0, e⊤θ = 1
}

(3)
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Time-freezing with friction in the planar case

PSS modes

f1(y, u) = (fODE(x, u), 1)

f2(y) = faux,n(y)− faux,t(y)

f3(y) = faux,n(y) + faux,t(y)

Auxiliary ODE for tangential directions

faux,t(y) :=


0nq,1

M(q)−1Jt(q)µ an

0



faux,n(y) :=


0nq,1

M(q)−1Jn(q)an

0


▶ Simply sum the auxiliary dynamics in normal and tangential directions (recall that

Jt(q) ∈ Rnq×1 and Jn(q) ⊥ Jt(q))

▶ State jump is over when Jn(q)
⊤v = 0

▶ With vt = 0 sliding mode on Γ = {y | c1(y) = 0, c2(y) = 0, c3(y) = 0}
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Time-freezing with friction - sliding mode dynamics

▶ ẋ = fSlip(x, u) reduced DAE in slip mode, vt ̸= 0

▶ ẋ = fStick(x, u) reduced DAE in stick mode, vt = 0

Theorem (Slip-stick sliding mode)

Let y(τ) be a solution of time freezing system (3) with y(0) ∈ Σ and τ ∈ [0, τf ]. Let
Jn(q)

⊤M(q)−1Jt(q) = 0 (orthogonality in kinetic metric). Suppose that φ(x(τ), u(τ)) ≤ 0 for
all τ ∈ [0, τf ] (persistent contact), then the following statements are true:

(i) If vt ̸= 0 (slip motion), then the sliding mode dynamics are given by

y′ = β(x, u)

fSlip(x, u)
1


(ii) If vt = 0 (stick motion), then the sliding mode dynamics are given by

y′ = β(x, u)

fStick(x, u)
1


where β(x, u) ∈ (0, 1] is a time-rescaling factor defined in Eq. (2).
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Simulation example - slip/stick
Increasing µ = 0 to µ = 0.5 with ∆µ = 0.1.

External force ux = 2
µ = 0

No friction
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Simulation example - slip/stick
Increasing µ = 0 to µ = 0.5 with ∆µ = 0.1.

External force ux = 2
µ = 0.1

External force stronger than friction
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Simulation example - slip/stick
Increasing µ = 0 to µ = 0.5 with ∆µ = 0.1.

External force ux = 2
µ = 0.2

External force equal to friction
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Simulation example - slip/stick
Increasing µ = 0 to µ = 0.5 with ∆µ = 0.1.

External force ux = 2
µ = 0.3

External force weaker than friction
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Simulation example - slip/stick
Increasing µ = 0 to µ = 0.5 with ∆µ = 0.1.

External force ux = 2
µ = 0.4

External force weaker than friction
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Simulation example - slip/stick
Increasing µ = 0 to µ = 0.5 with ∆µ = 0.1.

External force ux = 2
µ = 0.5

Tangential velocity zero after impact
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Friction for 3D contacts

Friction solution map

λt ∈

{
{−µλn

vt
∥vt∥2

}, if ∥vt∥2 > 0,

{λ̃t | ∥λ̃t∥2 ≤ µλn}, if ∥vt∥2 = 0.

▶ The set {vt | vt = 0} has an empty
interior

▶ Problematic for defining Filippov system
via θ multipliers

▶ Problem not present with polyhedral
approximations Jt;1(q)

J
t;
2
(q

)
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Friction for 3D contacts - relaxed solution

Relaxed riction solution map

λt =

{
−µλn

vt
∥vt∥2

, if ∥vt∥2 > ϵt,

vt, if ∥vt∥2 < ϵt,

▶ ϵt > 0 can be arbitrarily small

▶ Obtain set with nonempty interior

▶ Slip mode: approximation is exact

▶ Stick mode: sliding mode on ∥vt∥2 = ϵt
▶ Approximation can be made arbitrarily

accurate Jt;1(q)

J
t;
2
(q

)

0t
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Friction for 3D contacts - the time-freezing system

Time-freezing system with friction

y′ ∈ FTF(y, u) =
{ 3∑

i=1

fi(y, u) | θ ≥ 0, e⊤θ = 1
}

PSS modes

f1(y, u) = (fODE(x, u), 1)

f2(y) = faux,n(y)− faux,t,2(y)

f3(y) = faux,n(y) + faux,t,3(y)

▶ Use same definition of regions R1, R2

and R3

▶ Switching function c3(y) = ∥vt∥2 − ϵt

Auxiliary ODEs for 3D friction

faux,t,2(y)=


0nq,1

−M(q)−1Jt(q)µan
vt

∥vt∥

0



faux,t,3(y)=


0nq,1

M(q)−1Jt(q)vt

0


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Obtaining a Filippov system in Stewart’s or Step form

y′ ∈
{ 3∑

i=1

θifi(y, u) | e⊤θ = 1, θ ≥ 0
}

Switching functions and sign matrix

c(y) =


fc(q)

Jn(q)
⊤v

Jt(q)
⊤v

 , S =



1 1 1

1 1 −1

1 −1 1

1 −1 −1

−1 1 1

−1 1 −1

−1 −1 1

−1 −1 −1



R1

R1

R1

R1

R1

R1

R2

R3

g(y) = −S⊤c(y)

Regions

Q = {y ∈ Rny | c1(y) < 0, c2(y) < 0}
R1 = Ra

1 ∪Rb
1

R2 = Q ∩ {y ∈ Rny | c3(y) > 0}
R3 = Q ∩ {y ∈ Rny | c3(y) < 0}

Step representation

y′ = θ1fODE(y, u) + θ2f2(y) + θ3f3(y)

θ1 = α1 + (1− α1)α2

θ2 = (1− α1)(1− α2)α3

θ3 = (1− α1)(1− α2)(1− α3)

α1∈γ(c1(y)), α2∈γ(c2(y)), α3∈γ(c3(y))
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1

R2 = Q ∩ {y ∈ Rny | c3(y) > 0}
R3 = Q ∩ {y ∈ Rny | c3(y) < 0}

Stewart’s representation

y′ =

6∑
i=1

θifODE(y, u)

+ θ7faux,1(y) + θ8faux,2(y)

θ = arg min
θ̃∈R8

g(y)⊤θ̃

s.t θ̃ ≥ 0, e⊤θ̃ = 1
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Time-transformations for ODEs

▶ ODE in physical time

dx(t)

dt
= f(x(t)), t ∈ [0, 1]

x(0) = x0

▶ Introduce time scaling t = sτ

▶ Rescaled dynamics in numerical time:

dx(τ)

dτ
=

dx(t)

dt

dt

dτ
= s f(x)

dt

dτ
= s

x(0) = x0, t(0) = 0

▶ s can be an optimization variable,
e.g., in time optimal control
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=

dx(t)

dt

dt

dτ
= s f(x)

dt

dτ
= s

x(0) = x0, t(0) = 0

▶ s can be an optimization variable,
e.g., in time optimal control
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Optimal control with time-freezing

OCP with CLS

min
x(·),u(·),λ(·)

∫ T

0

L(x, u)dt+ E(x(T ))

s.t. x(0) = x̄0

CLS

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Integrate stage costs together with
dynamics.
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Optimal control with time-freezing

OCP with qudrature state

min
x(·),u(·),λ(·)

ℓ(T ) + E(x(T )) =: Φ(x(T ))

s.t. x(0) = x̄0, ℓ(0) = 0

CLS

ℓ̇(t) = L(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Integrate stage costs together with
dynamics.
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Optimal control with time-freezing

OCP with qudrature state

min
x(·),u(·),λ(·)

ℓ(T ) + E(x(T )) =: Φ(x(T ))

s.t. x(0) = x̄0, ℓ(0) = 0

CLS

ℓ̇(t) = L(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Integrate stage costs together with
dynamics.

▶ In time-freezing OCP redefine quadrature
state

d

dτ
ℓ(τ) =

{
L(x(τ), u(τ)), if y ∈ R1,

0, otherwise.

▶ On which time domains are the problems
defined?
▶ initial OCP on t ∈ [0, T ]
▶ time-freezing OCP τ ∈ [0, T̃ ]

▶ If time freezes, then T ̸= t(T̃ )

▶ Need time transformation to catch up
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Optimal control with time-freezing

OCP with qudrature state

min
x(·),u(·),λ(·)

ℓ(T ) + E(x(T )) =: Φ(x(T ))

s.t. x(0) = x̄0, ℓ(0) = 0

CLS

ℓ̇(t) = L(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Integrate stage costs together with
dynamics.

Time-freezing OCP with step reformulation

min
y(·),z(·),u(·),s(·)

Ψ(x(T̃ ))

s.t. x(0) = x̄0, t(0) = 0,

y′(τ)=s(τ)F (y(τ), u(τ))θ(τ)

0 = gStep(θ(τ), α(τ))

0=c(y(τ))− λp(τ) + λn(τ)

0 ≤ α(τ) ⊥ λn(τ) ≥ 0

0≤e−α(τ)⊥λp(τ)≥0

0 ≤ h(x(τ), u(τ)), τ ∈ [0, T̃ ]

0 ≤ r(x(T̃ ))

t(T̃ ) = T
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A guiding example of solving an OCP

Example

A 2D ball with friction and impacts

min
x(·),z(·),u(·)

∫ T

0

u(t)⊤u(t) dt

s.t. x(0) = (0, 1, 0, 0)

q̇ = v, t ∈ [0,T ]

mv̇ =

 0

−mg

+

0
1

λn +

1
0

λt +

u1

u2

 , t ∈ [0,T ]

0 ≤ λn ⊥ q2 ≥ 0, t ∈ [0,T ]

v2(t
+
s ) = 0, if q2(ts) = 0 and v2(t

−
s ) < 0

λt ∈ −µλnsign(v1), t ∈ [0,T ]

umin ≤ u(t) ≤ umax, t ∈ [0,T ]

x(T ) = (3, 0, 0, 0)

08. Time-freezing II: Rigid bodies with friction and inelastic impacts M. Diehl and A. Nurkanović 30/38



Understanding the dynamics of time-freezing systems with state jumps
A simulation problem with fixed control and without friction

Control input

u1(t) = 7

u2(t) =

{
0, if t < 1

2g(t− 1), if t ≥ 1

▶ state jumps only in vertical
direction (v2)

▶ decreased speed of time in
contact phases

▶ lift off when u2 beats gravity g
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Understanding the dynamics of time-freezing systems with state jumps
A simulation problem with fixed control and with friction (µ = 0.6)

Control input

u1(t) = 7

u2(t) =

{
0, if t < 1

2g(t− 1), if t ≥ 1

▶ state jumps horizontal (v1) and
in vertical direction (v2)

▶ decreased speed of time in
contact phases

▶ lift off when u2 beats gravity g
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Understanding the dynamics of time-freezing systems with state jumps
How to reach the goal?

Control input

u1(t) = 7

u2(t) = 0

▶ state jumps horizontal (v1) and
in vertical direction (v2)

▶ decreased speed of time in
contact phases

▶ we miss the goal
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Understanding the dynamics of time-freezing systems with state jumps
How to reach the goal? Decrease the thrust force?

Control input

u1(t) = 5

u2(t) = 0

▶ state jumps horizontal (v1) and
in vertical direction (v2)

▶ decreased speed of time in
contact phases

▶ we miss the goal
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Understanding the dynamics of time-freezing systems with state jumps
How to reach the goal? Increase the thrust force?

Control input

u1(t) = 10

u2(t) = 0

▶ state jumps horizontal (v1) and
in vertical direction (v2)

▶ decreased speed of time in
contact phases

▶ we miss the goal
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Understanding the dynamics of time-freezing systems with state jumps
How to reach the goal? Solve an optimal control problem!

Control input

u1(t) = u∗
1(t)

u2(t) = 0

▶ state jumps horizontal (v1) and
in vertical direction (v2)

▶ speed of time control variable
s(t) compensates slow downs

▶ the goal is reached!
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Conclusions and outlook

Conclusions

▶ Optimal control problems with state jumps are very difficult.

▶ Time-freezing allows us to transform systems with state jumps of level NSD3 to the easier
level NSD2.

▶ Finite Elements with Switch Detection (FESD) allow highly accurate simulation and
optimal control for switched systems of level NSD2.

▶ The time-freezing Filippov system can be treated both in Stewart’s and the Heaviside step
form.

▶ Alternative: FESD for NSD3 system = FESD-J, but time-freezing + FESD seems to
converge better.

Outlook

▶ Time-freezing for multiple and simultaneous impacts with friction (preprint in preparation)

▶ Time-freezing for more general hybrid automaton

▶ Do generic time-freezing principles, easily applicable to any system with state jumps, exist?
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