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1 Time-freezing for mechanical systems with elastic impacts

2 Time-freezing for finite automata with hysteresis
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Nonsmooth Dynamics (NSD) - a classification

Regard an ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).
Distinguish three cases:

NSD1: nondifferentiable RHS, e.g., ẋ = 1 + |x|

NSD2: state dependent switch of RHS, e.g., ẋ = 2− sign(x)

NSD3: state dependent jump, e.g., bouncing ball,
v(t+) = −0.9 v(t−)
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NSD3 state jump example: bouncing ball

Bouncing ball with state x = (q, v):

q̇ = v, mv̇ = −mg, if q > 0

v(t+) = −0.9 v(t−), if q(t−) = 0 and v(t−) < 0

Time plot of bouncing ball trajectory:

Phase plot of bouncing ball trajectory:

Question: could we transform NSD3 systems into (easier) NSD2 systems?
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Three ideas:

1. mimic state jump by auxiliary dynamic system ẋ = faux(x) on prohibited region

2. introduce a clock state t(τ) that stops counting when the auxiliary system is active

3. adapt speed of time, dt
dτ = s with s ≥ 1, and impose terminal constraint t(T ) = T
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The time-freezing reformulation

Augmented state (x, t) ∈ Rn+1 evolves in
numerical time τ . Augmented system is
nonsmooth, of NSD2 type:

d

dτ

[
x
t

]
=



s

[
f(x)

1

]
, if c(x) ≥ 0

[
sfaux(x)

0

]
, if c(x) < 0

▶ During normal times, system and clock
state evolve with adapted speed s ≥ 1.

▶ Auxiliary system dx
dτ = faux(x) mimics

state jump while time is frozen, dt
dτ = 0.
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Time-freezing for bouncing ball example

Evolution of physical time (clock state)
during augmented system simulation
(s = 1).

We can recover the true solution by plotting
x(τ) vs. t(τ) and disregarding ”frozen pieces”.
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A tracking OCP example with Time-Freezing and FESD in NOSNOC

Regard bouncing ball in two dimensions driven by bounded force: q̈ = u
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▶ augmented state
x = (q, q̇, t) ∈ R5

▶ nf = 9 regions (8 with auxiliary
dynamics for state jumps)

min
x(.),u(.),s(.),
θ(.),λ(.),µ(.)

∫ T

0

(q − qref(τ))
⊤(q − qref(τ)) s(τ) dτ

s.t. x(0) = x0, t(T ) = T,

x′(τ) =

nf∑
i=1

θi(τ)fi(x(τ), u(τ), s(τ)),

0 = g(x(τ))− λ(τ)− µ(τ)e,

0 ≤ λ(τ) ⊥ θ(τ) ≥ 0,

1 = e⊤θ(τ),

∥u(τ)∥22 ≤ u2max,

1 ≤ s(τ) ≤ smax, τ ∈ [0, T ].

qref(τ) = (R cos(ω t(τ)), R sin(ω t(τ))).
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Results with slowly moving reference
For ω = π, tracking is easy: no jumps occur in optimal solution.

▶ Regard time horizon of two periods

▶ N = 25 equidistant control intervals

▶ use FESD with NFE = 3 finite elements
with Radau IIA 3 on each control interval

▶ each FESD interval has one constant
control u and one speed of time s

▶ MPCC solved via ℓ∞ penalty
reformulation and homotopy

▶ For homotopy convergence: in total 4
NLPs solved with IPOPT via CasADi
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Results with slowly moving reference - movie
For ω = π, tracking is easy: no jumps occur in optimal solution.
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Results with fast reference
For ω = 2π, tracking is only possible if ball bounces against walls.
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Results with fast reference - movie
For ω = 2π, tracking is only possible if ball bounces against walls.
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Homotopy: first iteration vs converged solution
Geometric trajectory
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Physical vs. Numerical Time

for ω = π
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Hybrid systems and finite automaton

ẋ = fA(x)
w = 0

ẋ = fB(x)
w = 1

ψ(x) ≥ 1

ψ(x) ≤ 0

0 1

0

1

ψ(x)

w
∈

H
(ψ

(x
))

Hybrid system with hysteresis (incomplete description)

ẋ = f(x,w) = (1− w)fA(x) + wfB(x)
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Tutorial example: thermostat with hysteresis

ẋ = −0.2x
w = 0

ẋ = −0.2x+ uh
w = 1

x ≤ 18

x ≥ 20
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Hysteresis: a system with state jumps

Hybrid system with hysteresis

ẋ = f(x,w) = (1− w)fA(x) + wfB(x)

ẇ = 0

0 1

0

1

ψ(x)

w
∈

H
(ψ

(x
))

The State Jump Law

1. if w(t−s ) = 0 and ψ(x(t−s )) = 1, then x(t+s ) = x(t−s ) and w(t
+
s ) = 1

2. if w(t−s ) = 1 and ψ(x(t−s )) = 0, then x(t+s ) = x(t−s ) and w(t
+
s ) = 0

Remember: w(t) is now a discontinuous differential state!
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Hysteresis: a system with state jumps

Hybrid system with hysteresis
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Tutorial example: thermostat and time-freezing
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Time-freezing: the state space
A look at the (ψ(x), w)−plane

▶ Everything except the blue solid curve is prohibited in the (ψ,w)− space

▶ The evolution happens in a lower-dimensional space =⇒ sliding mode
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Voronoi regions

Voronoi regions/cells: each region contains a specific point zi and all points within that region
are closer to that specific point than to any other point in the space

▶ Given a set of points Z = {z1, z2, . . .} ⊂ Rn,
the regions Ri are defined as

▶ Naturally in Stewart’s form
Ri = {z | gi(z) < gj(z), ∀j, i ̸= j}

▶ Using the squared two norm =⇒ linear
inequalities:

Ri = {z ∈ Rn |(zj − zi)
⊤z <

1

2
(∥zj∥22 − ∥zi∥22),

∀zj ∈ Z, j ̸= i}
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Time-freezing: partitioning of the space
An efficient partition leads to less variables in FESD

▶ Partition the state space into Voronoi regions:
Ri = {z | ∥z − zi∥2 < ∥z − zj∥2, j = 1, . . . , 4, j ̸= i}, z = (ψ(x), w)

▶ Feasible region for initial hybrid system with hysteresis on the region boundaries
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Time-freezing: partitioning of the space
An efficient partition leads to less variables in FESD

▶ Partition the state space into Voronoi regions:
Ri = {z | ∥z − zi∥2 < ∥z − zj∥2, j = 1, . . . , 4, j ̸= i}, z = (ψ(x), w)

▶ Feasible region for initial hybrid system with hysteresis on the region boundaries

07. Time-Freezing I: Elastic impacts and hybrid automatons with hysteresis M. Diehl and A. Nurkanović 19/28



Time-freezing: auxiliary dynamics
To mimic state jumps in finite numerical time

▶ Use regions R2 and R3 to define auxiliary dynamics for the state jumps of w(·)

▶ Evolution in w−direction happens only for ψ ∈ {0, 1}
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Time-freezing: auxiliary dynamics

The new state space of the system is y = (x,w, t) ∈ Rnx+2

Auxiliary dynamics

f2(y) =

 0
−a
0

 , f3(y) =
0a
0


a > 0
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Time-freezing: DAE forming dynamics
Stop the state jump and construct suitable sliding mode

▶ Dynamics in R1 and R4 stops evolution of auxiliary ODE - similar to inelastic impacts

▶ Sliding modes on RA := ∂R1 ∩ ∂R2 and RB := ∂R3 ∩ ∂R4 match fA(y) and fB(y), resp.
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Time-freezing: summary

DAE-forming dynamics

y = (x,w, t)

dy

dτ
= f1(y) =

2fA(x)a
2


dy

dτ
= f4(y) =

2fB(x)−a
2



▶ In total four regions Ri , i = 1, 2, 3, 4 and evolution of
original system is the sliding mode

▶ Regions R2 and R3 equipped with aux. dynamics to
mimic state jump

▶ Regions R1 and R4 equipped with DAE-forming
dynamics to recover original dynamics in sliding mode

▶ E.g., w′ = 0 =⇒ θ1f1(y) + θ2f2(y) = fA(y) (sliding
mode)

▶ Conclusion: we have a PSS and can treat it with FESD
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Time-freezing: summary

DAE-forming dynamics

y = (x,w, t)

dy

dτ
= f1(y) =

2fA(x)a
2


dy

dτ
= f4(y) =

2fB(x)−a
2



▶ In total four regions Ri , i = 1, 2, 3, 4 and evolution of
original system is the sliding mode

▶ Regions R2 and R3 equipped with aux. dynamics to
mimic state jump

▶ Regions R1 and R4 equipped with DAE-forming
dynamics to recover original dynamics in sliding mode

▶ E.g., w′ = 0 =⇒ θ1f1(y) + θ2f2(y) = fA(y) (sliding
mode)

▶ Conclusion: we have a PSS and can treat it with FESD

07. Time-Freezing I: Elastic impacts and hybrid automatons with hysteresis M. Diehl and A. Nurkanović 23/28



Time-freezing: summary

DAE-forming dynamics

y = (x,w, t)

dy

dτ
= f1(y) =

2fA(x)a
2


dy

dτ
= f4(y) =

2fB(x)−a
2



▶ In total four regions Ri , i = 1, 2, 3, 4 and evolution of
original system is the sliding mode

▶ Regions R2 and R3 equipped with aux. dynamics to
mimic state jump

▶ Regions R1 and R4 equipped with DAE-forming
dynamics to recover original dynamics in sliding mode

▶ E.g., w′ = 0 =⇒ θ1f1(y) + θ2f2(y) = fA(y) (sliding
mode)

▶ Conclusion: we have a PSS and can treat it with FESD

07. Time-Freezing I: Elastic impacts and hybrid automatons with hysteresis M. Diehl and A. Nurkanović 23/28



Time optimal control of a car with a turbo accelerator
Example from [Avraam, 2000] solved with NOSNOC

q̇ = v
v̇ = u
L̇ = cN
w = 0

q̇ = v
v̇ = 3u
L̇ = cT
w = 1

v ≥ 15

v ≤ 10

Time optimal control problem

min
y(·),u(·),s(·)

t(τf) + L(τf)

s.t. y(0) = (z0, 0)

y′(τ)∈s(τ)FTF(y(τ), u(τ))

− ū ≤ u(τ) ≤ ū

s̄−1 ≤ s(τ) ≤ s̄

− v̄ ≤ v(τ) ≤ v̄, τ ∈ [0, τf ]

(q(τf), v(τf)) = (qf , vf)
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− ū ≤ u(τ) ≤ ū
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Scenario 1: turbo and nominal cost the same
cN = cT
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Scenario 2: Turbo is Expensive
cN < cT
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NOSNOC vs MILP/MINLP formulations
Benchmark on time-optimal control problem of a car with turbo

▶ compare CPU time as function of number of control intervals N (left) and solution
accuracy (right)

▶ MILP (Gurobi): solve problem with fixed T until infeasibility happens with grid search in T

▶ MILP/MINLP and NOSNOC-Std no switch detection = low accuracy
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Conclusions

▶ Time-freezing allows us to transform systems with state jumps of level NSD3 to the easier
level NSD2

▶ Finding auxiliary dynamics is in practice often easy

▶ Treat systems with state jumps as Filippov systems - provides a unified theoretical and
numerical treatment for many NSD2 and NSD3 systems

▶ Finite Elements with Switch Detection (FESD) allow highly accurate simulation and
optimal control for switched systems of level NSD2
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