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Systems Control and Optimization Laboratory (syscop)
Summer School on Direct Methods for Optimal Control of Nonsmooth Systems

September 11-15, 2023



Outline of the lecture

1 Time stepping and smoothing in nonsmooth optimal control

2 Finite Elements with Switch Detection (FESD)

3 Discretization optimal control problems with FESD

4 Conclusions and summary

06. Finite Elements with Switch Detection for Filippov Systems M. Diehl and A. Nurkanović 1/36



How to discretize optimal control problems subject to Filippov systems?

In direct optimal control, we first discretize, and then solve a finite-dimensional nonlinear
program.

Original optimal control problem
in continuous time

min
x(·),u(·)

∫ T

0

L(x, u)dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) ∈ FF(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Assume smooth (convex) L,E, h, r
Nonsmooth dynamics make problem
nonconvex.
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How to discretize optimal control problems subject to Filippov systems?

In direct optimal control, we first discretize, and then solve a finite-dimensional nonlinear
program.

Optimal control problem
with Stewart’s formulation

min
x(·),u(·),

θ(·),λ(·),µ(·)

∫ T

0

L(x, u)dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = F (x(t), u(t)) θ(t)

0 = GLP(x(t), θ(t), λ(t), µ(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Assume smooth (convex) L,E, h, r
Nonsmooth dynamics make problem
nonconvex.
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How to discretize optimal control problems subject to Filippov systems?

In direct optimal control, we first discretize, and then solve a finite-dimensional nonlinear
program.

Optimal control problem
with Stewart’s formulation

min
x(·),u(·),

θ(·),λ(·),µ(·)

∫ T

0

L(x, u)dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = F (x(t), u(t)) θ(t)

0 = GLP(x(t), θ(t), λ(t), µ(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Assume smooth (convex) L,E, h, r
Nonsmooth dynamics make problem
nonconvex.

Goal: discretized optimal control problem
(an NLP)

min
s,z,u

N−1∑
k=0

ΦL(sk, zk, uk) + E(sN )

s.t. s0 = x̄0

sk+1 = Φf (sk, zk, uk)

0 = Φint(sk, zk, uk)

0 ≥ h(sk, uk), k = 0, . . . , N−1

0 ≥ r(sN )

Variables s = (s0, . . .), z = (z0, . . .) and
u = (u0, . . . , uN−1)
Nonsmooth Φint
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What happens if we use time stepping methods
in direct optimal control?
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Direct optimal control with a time stepping IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

Continuous-time OCP

min
x(·)∈C0([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− sign(x(t)), t ∈ [0, 2]

Free initial value x(0) is the effective degree
of freedom.

Equivalent reduced problem

min
x0∈R

V (x0)
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Exact

▶ Denote by V (x0) the nonsmooth
objective value for the unique feasible
trajectory starting at x(0) = x0.
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Direct optimal control with a time stepping IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

Continuous-time OCP

min
x(·),λ(·),s(·)

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− s(t)

0 ≤ λ(t)− x(t) ⊥ 1 + s(t) ≥ 0

0 ≤ λ(t) ⊥ 1− s(t) ≥ 0, t ∈ [0, 2]

Free initial value x(0) is the effective degree
of freedom.

Equivalent reduced problem

min
x0∈R

V (x0)
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▶ Denote by V (x0) the nonsmooth
objective value for the unique feasible
trajectory starting at x(0) = x0.
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Direct optimal control with a time stepping IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

Continuous-time OCP

min
x(·),λ(·),s(·)

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− s(t)

0 ≤ λ(t)− x(t) ⊥ 1 + s(t) ≥ 0

0 ≤ λ(t) ⊥ 1− s(t) ≥ 0, t ∈ [0, 2]

▶ discretize the DCS with fixed step size
IRK methods

▶ e.g., midpoint rule, Gauss-Legendre IRK
with ns = 1, accuracy O(h2)
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Exact

Locally quadratic objective.
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Direct optimal control with a time stepping IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

Discrete-time OCP

min
x,z

N−1∑
n=0

ℓn(xn) + (xN − 5/3)2

s.t. xn+1 = ϕf (xn, zn)

0 = ϕint(xn, zn), n = 0, . . . N − 1

▶ discretize the DCS with fixed step size
IRK methods

▶ e.g., midpoint rule, Gauss-Legendre IRK
with ns = 1, accuracy O(h2)

▶ step size h = 0.2, i.e., N = 10
integration steps
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Exact
h = 0:2

Many artificial local minima and wrong
derivatives.
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Direct optimal control with a time stepping IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

Discrete-time OCP

min
x,z

N−1∑
n=0

ℓn(xn) + (xN − 5/3)2

s.t. xn+1 = ϕf (xn, zn)

0 = ϕint(xn, zn), n = 0, . . . N − 1

▶ discretize the DCS with fixed step size
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▶ e.g., midpoint rule, Gauss-Legendre IRK
with ns = 1, accuracy O(h2)

▶ step size h = 0.1, i.e., N = 20
integration steps
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Direct optimal control with a time stepping IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

Discrete-time OCP

min
x,z

N−1∑
n=0

ℓn(xn) + (xN − 5/3)2

s.t. xn+1 = ϕf (xn, zn)

0 = ϕint(xn, zn), n = 0, . . . N − 1

▶ discretize the DCS with fixed step size
IRK methods

▶ e.g., midpoint rule, Gauss-Legendre IRK
with ns = 1, accuracy O(h2)

▶ step size h = 0.04, i.e., N = 50
integration steps

-2 -1.8 -1.6 -1.4 -1.2 -1

x0

1.4

1.5

1.6

1.7

1.8

1.9

2

V
(x

0
)

Exact
h = 0:04

Many artificial local minima and wrong
derivatives.

06. Finite Elements with Switch Detection for Filippov Systems M. Diehl and A. Nurkanović 5/36



Direct optimal control with a time stepping IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

Discrete-time OCP

min
x,z

N−1∑
n=0

ℓn(xn) + (xN − 5/3)2

s.t. xn+1 = ϕf (xn, zn)

0 = ϕint(xn, zn), n = 0, . . . N − 1

▶ discretize the DCS with fixed step size
IRK methods

▶ e.g., midpoint rule, Gauss-Legendre IRK
with ns = 1, accuracy O(h2)

▶ step size h = 0.02, i.e., N = 100
integration steps
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Direct optimal control with a time stepping IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

Discrete-time OCP

min
x,z

N−1∑
n=0

ℓn(xn) + (xN − 5/3)2

s.t. xn+1 = ϕf (xn, zn)

0 = ϕint(xn, zn), n = 0, . . . N − 1

▶ discretize the DCS with fixed step size
IRK methods

▶ e.g., midpoint rule, Gauss-Legendre IRK
with ns = 1, accuracy O(h2)

▶ step size h = 0.01, i.e., N = 200
integration steps
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h = 0:01

Many artificial local minima and wrong
derivatives.
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Direct optimal control with a time stepping IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

Discrete-time OCP

min
x,z

N−1∑
n=0

ℓn(xn) + (xN − 5/3)2

s.t. xn+1 = ϕf (xn, zn)

0 = ϕint(xn, zn), n = 0, . . . N − 1

▶ discretize the DCS with fixed step size
IRK methods

▶ e.g., midpoint rule, Gauss-Legendre IRK
with ns = 1, accuracy O(h2)

▶ decreasing the step size might worsen
the situation
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Exact
h = 0:4
h = 0:2
h = 0:1
h = 0:04
h = 0:02

Many artificial local minima and wrong
derivatives.
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What happens if we use smoothed models in
direct optimal control?
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Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired by [Stewart & Anitescu, 2010]

Continuous-time OCP

min
x(·)∈C0([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− sign(x(t)), t ∈ [0, 2]

▶ midpoint rule, with h = 0.05; N = 40
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Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired by [Stewart & Anitescu, 2010]

Smoothed continuous-time OCP

min
x(·)∈C∞([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− tanh
(x(t)
σ

)
, t ∈ [0, 2]

Equivalent reduced problem

min
x0∈R

Vσ(x0)

▶ midpoint rule, with h = 0.05; N = 40

▶ solve smoothed OCP for different σ
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Exact
< = 0:5
< = 0:1
< = 0:05
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Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired by [Stewart & Anitescu, 2010]

Smoothed continuous-time OCP

min
x(·)∈C∞([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− tanh
(x(t)
σ

)
, t ∈ [0, 2]

Equivalent reduced problem

min
x0∈R

Vσ(x0)

▶ midpoint rule, with h = 0.05; N = 40

▶ solve smoothed OCP with σ = 0.1
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Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired by [Stewart & Anitescu, 2010]

Smoothed continuous-time OCP

min
x(·)∈C∞([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− tanh
(x(t)
σ

)
, t ∈ [0, 2]

Equivalent reduced problem

min
x0∈R

Vσ(x0)

▶ midpoint rule, with h = 0.05; N = 40

▶ solve smoothed OCP with σ = 0.05
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Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired by [Stewart & Anitescu, 2010]

Smoothed continuous-time OCP

min
x(·)∈C∞([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− tanh
(x(t)
σ

)
, t ∈ [0, 2]

Equivalent reduced problem

min
x0∈R

Vσ(x0)

▶ midpoint rule, with h = 0.05; N = 40

▶ solve smoothed OCP with σ = 0.025
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Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired by [Stewart & Anitescu, 2010]

Smoothed continuous-time OCP

min
x(·)∈C∞([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− tanh
(x(t)
σ

)
, t ∈ [0, 2]

Equivalent reduced problem

min
x0∈R

Vσ(x0)

▶ midpoint rule, with h = 0.05; N = 40

▶ solve smoothed OCP with σ = 0.0125
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< = 0:0125
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Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired by [Stewart & Anitescu, 2010]

Smoothed continuous-time OCP

min
x(·)∈C∞([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− tanh
(x(t)
σ

)
, t ∈ [0, 2]

Equivalent reduced problem

min
x0∈R

Vσ(x0)

▶ midpoint rule, with h = 0.05; N = 40

▶ solve smoothed OCP with σ = 0.00625
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Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired by [Stewart & Anitescu, 2010]

Smoothed continuous-time OCP

min
x(·)∈C∞([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− tanh
(x(t)
σ

)
, t ∈ [0, 2]

Equivalent reduced problem

min
x0∈R

Vσ(x0)

▶ midpoint rule, with h = 0.05; N = 40
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Exact
< = 0:1
< = 0:05
< = 0:025
< = 0:0125
< = 0:00625

If h≫ σ, then the smooth approximation
behaves the same as the nonsmooth

problem!
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Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired by [Stewart & Anitescu, 2010]

Smoothed continuous-time OCP

min
x(·)∈C∞([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− tanh
(x(t)
σ

)
, t ∈ [0, 2]

Equivalent reduced problem

min
x0∈R

Vσ(x0)

▶ midpoint rule, with h = 0.025; N = 80
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If h≫ σ, then the smooth approximation
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problem!
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Direct optimal control with a standard time-stepping IRK discretization
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Exact
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∗ 0

Time stepping - fixed small σ
Time stepping - homotopy
Analytic Solution

▶ spurious local minima, optimizer gets trapped close to initialization

▶ sensitivity only correct if step sizes are smaller than smoothing parameter [Stewart &
Anitescu, 2010]: homotopy improves convergence

▶ even for the best local minimizer, only O(h) accuracy can be expected
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Outline

1 Time stepping and smoothing in nonsmooth optimal control

2 Finite Elements with Switch Detection (FESD)

3 Discretization optimal control problems with FESD

4 Conclusions and summary
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Main ideas of FESD
Based on [Baumrucker & Biegler, 2009], [N. et. al, 2022, 2022a, 2023]

FESD overview

1. Transform Filippov DI into equivalent DCS - Stewart or Heaviside step (Lecture 5)

2. Consider at least two integration intervals = finite elements

3. Use general implicit Runge-Kutta methods (Lectures 2 and 3)

4. Let step sizes hn be degrees of freedom

(under-determined system)

5. Cross complementarity conditions - adapt hn for switch detection

6. Step equilibration - remove degrees of freedom if no switch

ẋ ∈ FF(x, u) ⇐⇒
ẋ = F (x, u)θ

0 = GDCS(x, z, θ)
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Main ideas of FESD
Based on [Baumrucker & Biegler, 2009], [N. et. al, 2022, 2022a, 2023]

FESD overview

1. Transform Filippov DI into equivalent DCS - Stewart or Heaviside step (Lecture 5)
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Recap on Filippov Convexification

Switched ODE not well-defined on region boundaries ∂Ri. Idea by A.F. Filippov (1923-2006):
replace ODE by differential inclusion, using convex combination of neighboring vector fields.

Filippov Differential Inclusion

ẋ ∈ FF(x, u) :=
{ nf∑

i=1

fi(x, u) θi

∣∣∣ nf∑
i=1

θi = 1,

θi ≥ 0, i = 1, . . . nf ,

θi = 0, if x /∈ Ri

}
Aleksei F. Filippov
(1923-2006)

image source: wikipedia

▶ for interior points x ∈ Ri nothing changes: FF(x, u) = {fi(x, u)}
▶ Provides meaningful generalization on region boundaries.

E.g. on R1 ∩R2 both θ1 and θ2 can be nonzero
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From Filippov to dynamic complementarity systems
Using the KKT conditions of the parametric LP

LP representation

ẋ = F (x, u) θ

with θ ∈ argmin
θ̃∈Rnf

g(x)⊤θ̃

s.t. 0 ≤ θ̃

1 = e⊤θ̃

where

F (x, u) := [f1(x, u), . . . , fnf
(x, u)] ∈ Rnx×nf

g(x) := [g1(x), . . . , gnf
(x)]⊤ ∈ Rnf

e := [1, 1, . . . , 1]⊤ ∈ Rnf

Express equivalently by optimality conditions:

Dynamic Complementarity System (DCS)

ẋ = F (x, u) θ (1a)

0 = g(x)− λ− eµ (1b)

0 ≤ θ ⊥ λ ≥ 0 (1c)

1 = e⊤θ (1d)

Compact notation

ẋ = F (x, u) θ

0 = GLP(x, θ, λ, µ),

▶ µ ∈ R and λ ∈ Rnf are Lagrange
multipliers

▶ (1c) ⇔ min{θ, λ} = 0 ∈ Rnf

▶ Together, (1b), (1c), (1d) determine the
(2nf + 1) variables (θ, λ, µ) uniquely
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Conventional discretization by Implicit Runge Kutta (IRK) method

Continuous time DCS

x(0) = x̄0,

ẋ(t) = v(t)

v(t) = F (x(t), u(t)) θ(t)

0 = g(x(t))− λ(t)− eµ(t)

0 ≤ θ(t) ⊥ λ(t) ≥ 0

1 = e⊤θ(t), t ∈ [0, T ]

Discrete time IRK-DCS equation

x0,0 = x̄0, xn+1,0 = xn,0 + h
∑ns

i=1 bivn,i

xn,i = xn,0 + h
∑ns

j=1 ai,jvn,j

vn,i = F (xn,i, un,i) θn,i

0 = g(xn,i)− λn,i − eµn,i

0 ≤ θn,i ⊥ λn,i ≥ 0

1 = e⊤θn,i, i = 1, . . . , ns, n = 0, . . . , N − 1

Notation: xn,i ∈ Rnx , θn,i ∈ Rm etc. RK stage values with:
▶ n ∈ {0, 1, . . . , N} - index of integration step; step length h := T/N
▶ i, j ∈ {0, 1, . . . , ns} - index of intermediate IRK stage / collocation point
▶ ai,j and bi - Butcher tableau entries of Implicit Runge Kutta method

t
t0

x0,0

t1

x1,0

t2

x2,0

t3

x3,0

t0,1 t0,2 . . . t0,ns

x1,1 x1,2 . . . x1,ns
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Conventional time stepping - illustrative example

Regard example with x ∈ R2 and
constants a, k, c > 0:

ẋ =

{
f1(x), x1 > 0,

f2(x), x1 < 0.

f1(x) =

x2

−a

 , f2(x) =

 x2

−kx1 − cx2


g1(x) = −x1,
g2(x) = x1,

x̄0 = [0.5 , 0]⊤.

Solve with IRK Radau IIA method of order 7
s = 4, N = 5, T = 0.5, h = 0.1

0 0.1 0.2 0.3 0.4 0.5
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
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Conventional time stepping - illustrative example
Zoom in

0 0.1 0.2 0.3 0.4 0.5
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42
-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

High integration accuracy of 7th order IRK method is lost in fourth time step.
Reason: we try to approximate a nonsmooth function by a (smooth) polynomial.

Question: could we ensure that switches happen only at element boundaries?
→ Finite Elements with Switch Detection (FESD)
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Finite Elements with Switch Detection (FESD)

FESD is a novel DCS discretization method based on three ideas:

▶ make stepsizes hn free, ensure
∑N−1

n=0 hn = T [cf. Baumrucker & Biegler, 2009]

▶ allow switches only at element boundaries, enforce via cross-complementarities

▶ remove spurious degrees of freedom via step equilibration
Example revisited: comparison of the two schemes 

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and Optimization

Standard collocation Variable finite elements 

Page 31

conventional
discretization

Not covered today: ensure piecewise equidistant gird 

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and Optimization

With step-size regularization Without step-size regularization

Page 34

variable stepsizes and
cross-complementarities

Not covered today: ensure piecewise equidistant gird 

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and Optimization

With step-size regularization Without step-size regularization

Page 34

FESD discretization
with step equilibration
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Conventional DCS and FESD discretization without step equilibration

Time-stepping discretization

x0,0 = x̄0, h = T/N

xn+1,0 = xn,0 + h
∑ns

i=1 bivn,i

xn,i = xn,0 + h
∑ns

j=1 ai,jvn,j

vn,i = F (xn,i, un,i) θn,i

0 = g(xn,i)− λn,i − eµn,i

0 ≤ θn,i ⊥ λn,i ≥ 0

1 = e⊤θn,i

for i = 1, . . . , ns

and n = 0, . . . , N − 1

FESD discretization without step equilibration

x0,0 = x̄0,
∑N−1

n=0 hn = T

xn+1,0 = xn,0 + hn
∑ns

i=1 bivn,i

xn,i = xn,0 + hn
∑ns

j=1 ai,jvn,j

vn,i = F (xn,i, un,i) θn,i

0 = g(xn,i′)− λn,i′ − eµn,i′

0≤ θn,i ⊥ λn,i′ ≥ 0 (cross-complementarities)

1 = e⊤θn,i

for i = 1, . . . , ns and n = 0, . . . , N−1

and i′ = 0, 1, . . . , ns

▶ N extra variables (h0, . . . , hN−1) restricted by one extra equality

▶ Additional multipliers λn,0, µn,0 are uniquely determined
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Conventional DCS and FESD discretization with step equilibration

Time-stepping discretization

x0,0 = x̄0, h = T/N

xn+1,0 = xn,0 + h
∑ns

i=1 bivn,i

xn,i = xn,0 + h
∑ns

j=1 ai,jvn,j

vn,i = F (xn,i, un,i) θn,i

0 = g(xn,i)− λn,i − eµn,i

0 ≤ θn,i ⊥ λn,i ≥ 0

1 = e⊤θn,i

for i = 1, . . . , ns

and n = 0, . . . , N − 1

FESD discretization with step equilibration

x0,0 = x̄0,
∑N−1

n=0 hn = T

xn+1,0 = xn,0 + hn
∑ns

i=1 bivn,i

xn,i = xn,0 + hn
∑ns

j=1 ai,jvn,j

vn,i = F (xn,i, un,i) θn,i

0 = g(xn,i′)− λn,ii′ − eµn,i′

0≤ θn,i ⊥ λn,i′ ≥ 0 (cross-complementarities)

1 = e⊤θn,i

0 = ν(θn′ , θn′+1, λn′ , λn′+1) · (hn′−hn′+1)

for i = 1, . . . , ns and n = 0, . . . , N−1

and i′ = 0, 1, . . . , ns and n′ = 0, . . . , N−2

▶ N extra variables (h0, . . . , hN−1) restricted by one extra equality

▶ Additional multipliers λn,0, µn,0 are uniquely determined

▶ Indicator function ν(θn′ , θn′+1, λk′ , λk′+1) only zero if a switch occurs
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Multipliers in conventional and FESD discretization

Time stepping discretization: FESD discretization:

Example revisited: comparison of the two schemes- algebraic variables

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and Optimization

Standard collocation Variable finite elements 

Page 33

Lemma (Cross complementarity)

If any θn,j,i with j = 1, . . . , ns is positive, then all λn,j′,i with j
′ = 0, . . . , ns must be zero.

Conversely, if any λn,j′,i is positive, then all θn,j,i are zero.

Notation λn,j,i - n - finite element, j - RK stage, i - component of vector
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Multipliers in conventional and FESD discretization

Time stepping discretization: FESD discretization:

Example revisited: comparison of the two schemes- algebraic variables

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and Optimization

Standard collocation Variable finite elements 

Page 33

FESD’s cross-complementarities exploit the fact that the multiplier λi(t) is continuous in time.
On boundary, λi(tn) must be zero if θi(t) > 0 for any t ∈ [tn−1, tn+1] on the adjacent intervals.
This implicitly imposes the constraint gi(xn)− gj(xn) = 0.
=⇒ hn adapts for exact switch detection
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Step equilibration

▶ if no switches happen, cross complementarity implied by standard complementarity

▶ spurious degrees of freedom in hn: more degrees of freedom than equations

▶ exploit complementarity of θn, λn to encode switching logic

▶ define (very complicated) switch indicator function ν (cf. PhD Nurkanović):

ν(θn, θn+1, λn, λn+1) :=

{
positive, if no switch at tn+1

0, if switch at tn+1

▶ step equilibration:

0 = ν(θn, θn+1, λn, λn+1) · (hn−hn+1), n = 0, . . . , N−2

▶ Summary:

▶ If switch happens, then hn is determined by cross complementarity.
▶ If no switch happens, then hn is determined by step equilibration.
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Step equilibration

▶ if no switches happen, cross complementarity implied by standard complementarity

▶ spurious degrees of freedom in hn: more degrees of freedom than equations

▶ exploit complementarity of θn, λn to encode switching logic

▶ define (very complicated) switch indicator function ν (cf. PhD Nurkanović):
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Step equilibration

▶ if no switches happen, cross complementarity implied by standard complementarity

▶ spurious degrees of freedom in hn: more degrees of freedom than equations

▶ exploit complementarity of θn, λn to encode switching logic

▶ define (very complicated) switch indicator function ν (cf. PhD Nurkanović):
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Numerical solution without equilibration
Example with four switches

Indicator function over time: Step size over time:Uniform grid reformulation 

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and OptimizationPage 58

The optimizer varies the step-size in random way
and plays too much with the accuracy

Optimizer varies step size randomly, potentially playing with integration errors.
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Numerical solution with equilibration
Example with four switches

Indicator function over time: Step size over time:
Uniform grid reformulation 

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and OptimizationPage 59

We have a step-size change only at switches if we add the 
step-size penalty term

Equidistant grid on each ”switching stage”. Jumps exactly at switching times.
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Summary of theoretical results

1. An FESD problem needs to solve a nonlinear complementarity problem (NCP) to advance
the integration. The solutions of these NCP are locally unique.
▶ For a given point determine which constraint cross comp. and step eq. are binding, and

which implicitly satisfied.
▶ Obtain square system and apply implicit function theorem.

2. Convergence of the FESD method to a Filippov solution of the underlying system with
accuracy O(hp) is proven. Here, p is the order of the underlying smooth IRK method.
▶ Solution approximation and true solution predict same active set.
▶ Switching time accuracy also O(hp).

3. Convergence of numerical sensitivities to the true value with O(hp) is given.
▶ Cross. comp. implicitly enforce switching condition and lead to correct sensitivities.
▶ The Stewart & Anitescu problem is solved.
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Integration order plots for FESD and IRK time stepping
Revisit example from Lecture 4

Tutorial example

ẋ =

{
A1x, ∥x∥22 < 1,

A2x, ∥x∥22 > 1,

with A1 =

 1 2π

−2π 1

 , A2 =

 1 −2π

2π 1


x(0) = (e−1, 0) for t ∈ [0, π2 ].

Compute global integration error E(T ) using different
strategies.
Compute solution approximation:

1. With fixed step size IRK methods (time-stepping).

2. FESD with same underlying IRK methods.

-1 0 1

x1

-1.5

-1

-0.5

0

0.5

1

1.5

x
2
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FESD recovers high integration order for switched systems

Standard vs. FESD
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Midpoint Rule 2
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Integration error E(T ) at time T = π/2 vs. step-size h, for different IRK methods.
FESD discretization recovers high integration order
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Outline

1 Time stepping and smoothing in nonsmooth optimal control

2 Finite Elements with Switch Detection (FESD)

3 Discretization optimal control problems with FESD

4 Conclusions and summary
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Discretizing optimal control problems with FESD

Discretized optimal control problem

min
s,z,u

N−1∑
k=0

ΦL(sk, zk, uk) + E(sN )

s.t. s0 = x̄0

sk+1 = Φf (sk, zk, uk)

0 = Φint(sk, zk, uk)

0 ≥ h(sk, uk), k = 0, . . . , N−1

0 ≥ r(sN )

Control horizon [0, T ] with N control stages

▶ States at control grid points
s = (s0, . . . , sN )

▶ Piecewise controls u = (u0, . . . , uN−1)

▶ FESD with NFE finite elements applied
on every control interval

▶ Φint summarizes all internal FESD
equations: RK, cross complementarity,
step equilibration,...

▶ z = (z0, . . . , zN−1) - all interval
variables: internal states, stage values of
states and multipliers, step sizes, ...
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min
s,z,u

N−1∑
k=0

ΦL(sk, zk, uk) + E(sN )

s.t. s0 = x̄0

sk+1 = Φf (sk, zk, uk)

0 = Φint(sk, zk, uk)

0 ≥ h(sk, uk), k = 0, . . . , N−1

0 ≥ r(sN )

Control horizon [0, T ] with N control stages

▶ States at control grid points
s = (s0, . . . , sN )

▶ Piecewise controls u = (u0, . . . , uN−1)

▶ FESD with NFE finite elements applied
on every control interval

▶ Φint summarizes all internal FESD
equations: RK, cross complementarity,
step equilibration,...

▶ z = (z0, . . . , zN−1) - all interval
variables: internal states, stage values of
states and multipliers, step sizes, ...
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FESD-discretized optimal control problems are MPCC

Discretized optimal control problem

min
s,z,u

N−1∑
k=0

ΦL(sk, zk, uk) + E(sN )

s.t. s0 = x̄0

sk+1 = Φf (sk, zk, uk)

0 = Φint(sk, zk, uk)

0 ≥ h(sk, uk), k = 0, . . . , N−1

0 ≥ r(sN )

Collect w = (s, z, u) ∈ Rnw

Mathematical programs with
complementarity constraints (MPCC) are
more difficult than standard NLPs

NLP with Complementarity Constraints

min
w∈Rnw

F (w)

s.t. 0 = G(w)

0 ≥ H(w)

0 ≤ G1(w) ⊥ G2(w) ≥ 0

Standard and cross complementarity
constraints summarized in

0 ≤ G1(w) ⊥ G2(w) ≥ 0
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Nonlinear Programs (NLP)

Newton-type methods generate a sequence w0, w1, w2, . . . by linearizing and solving convex
subproblems.

Summarized NLP

min
w∈Rnw

F (w)

s.t. 0 = G(w)

0 ≥ H(w)

Still assume smooth convex F,H.
Nonlinear G makes problem nonconvex.

NLP with complementarity constraints

min
w∈Rnw

F (w)

s.t. 0 = G(w)

0 ≥ H(w)

0 ≤ G1(w) ⊥ G2(w) ≥ 0

There is significant nonconvex and nonsmooth
structure in the NLP.

06. Finite Elements with Switch Detection for Filippov Systems M. Diehl and A. Nurkanović 27/36
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Mathematical Programs with Complementarity Constraints (MPCC)

NLP with additional constraints of complementarity type: x ⊥ y ⇔ x⊤y = 0

MPCC as an NLP

min
w∈Rnw

F (w)

s.t. 0 = G(w)

0 ≥ H(w)

0 ≤ G1(w)

0 ≤ G2(w)

0 ≥ G1(w)
⊤G2(w)

Convex J,H and smooth F .
Smooth G1, G2.

-0.5 0 0.5 1 1.5 2 2.5
-0.5

0

0.5

1

1.5

2

2.5

Due to complementarity
constraints, MPCC are
nonsmooth and nonconvex.

Toy MPCC example:

min
w∈R2

(w1 − 1)2 + (w2 − 1)2

s.t. 0 ≤ w1 ⊥ w2 ≥ 0

Two local minimizers.
One local maximizer
(without constraint
qualification).

MPCCs treated in detail in three lectures by C. Kirches.
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Revisiting the OCP example - now with FESD
Tutorial example inspired by [Stewart & Anitescu, 2010]

Continuous-time OCP

min
x(·)∈C0([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− sign(x(t)), t ∈ [0, 2]

Free initial value x(0) is the effective degree
of freedom.

Equivalent reduced problem

min
x0∈R

V (x0)

-2 -1.8 -1.6 -1.4 -1.2 -1

x0

1.4

1.5

1.6

1.7

1.8

1.9

2

V
(x

0
)

Exact

▶ Denote by V (x0) the nonsmooth
objective value for the unique feasible
trajectory starting at x(0) = x0.
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Revisiting the OCP example - now with FESD
Tutorial example inspired by [Stewart & Anitescu, 2010]
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VTS(x0)

VFESD(x0)
Exact
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−2
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−1
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x0

x
∗ 0

Time stepping - single NLP
Time stepping - homotopy
FESD - single NLP
FESD - homotopy
Analytic Solution

▶ no spurious local minima, correct sensitivities

▶ convergence to the ”true” local minimum, both with homotopy and without it

▶ accuracy of order O(hp), in contrast to standard approach with only O(h)

▶ FESD solves the accuracy and convergence issues
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OCP example
Benchmark example with entering/leaving sliding mode

OCP with sliding modes

min
x(·),u(·)

∫ 4

0

u(t)⊤u(t) + v(t)⊤v(t) dt

s.t. x(0) = (
2π

3
,
π

3
, 0, 0)

ẋ(t) =

−sign(c(x(t))) + v(t)

u(t)


− 2e ≤ v(t) ≤ 2e

− 10e ≤ u(t) ≤ 10e t ∈ [0, 4],

q(T ) = (−π
6
,−π

4
)

States q, v ∈ R2 and control u ∈ R2,
x = (q, v)

Switching functions c(x) =

q1 + 0.15q22

0.05q31 + q2



−2 −1 0 1 2

−1

0

1

q1
q
2

q(t)

c1(x) = 0

c2(x) = 0
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FESD vs standard IRK - number of function evaluations
Benchmark on an optimal control problem with nonlinear sliding modes

101 101.2 101.4 101.6 101.8 102 102.2
10−12

10−8

10−4

100

Total number of stage points
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Radau-IIA-FESD Radau-IIA-Std
Lobatto-IIIC-FESD Lobatto-IIIC-Std
Gauss-Legendre-FESD Gauss-Legendre-Std
Explicit-RK-FESD Explicit-RK-Std

Terminal constraint satisfaction vs. number of stage points
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FESD vs standard IRK - CPU Time
Benchmark on an optimal control problem with nonlinear sliding modes
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Radau-IIA-FESD Radau-IIA-Std
Lobatto-IIIC-FESD Lobatto-IIIC-Std
Gauss-Legendre-FESD Gauss-Legendre-Std
Explicit-RK-FESD Explicit-RK-Std

Terminal constraint satisfaction vs. CPU time
FESD one million times more accurate than Std. for CPU time of ≈ 2 s
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Conclusions and summary

▶ Finite Elements with Switch Detection (FESD) allow highly accurate simulation and
optimal control for nonsmooth systems of level NSD2

▶ Following similar lines, FESD can be derived for the Heaviside step reformulation

▶ Key ideas: make step sizes degrees of freedom and introduce implicit relations that locate
the switches

▶ Switch detection not only essential for high accuracy, but also for correct sensitivities
(no spurious solutions)

▶ FESD solves many of the issues that standard methods have: integration accuracy,
convergence of sensitivities

▶ Main practical difficulty: solving Mathematical Programs with Complementarity
Constraints (MPCC)
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▶ Armin Nurkanović and Moritz Diehl. NOSNOC: A software package for numerical optimal control
of nonsmooth systems. IEEE Control Systems Letters, 2022.
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Switch detection - example

Suppose that x(t) crosses from R1 to R2 and recall that µ = minj gj(x)
Continuous time:

▶ Before switch: θ1(t) > 0, λ1(t) = 0, and θ2(t) = 0, λ2 ≥ 0

▶ After switch: θ1(t) = 0, λ1(t) ≥ 0, and θ2(t) > 0, λ2 = 0
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Switch detection - example

Suppose that x(t) crosses from R1 to R2 and recall that µ = minj gj(x)
Discrete time (switch between the n-th and n+ 1-st finite element):

▶ Before switch: θn,j,1(t) > 0, λn,j,1(t) = 0, and θn,j,2(t) = 0, λn,j,2 ≥ 0

▶ After switch: θn,j,1(t) = 0, λn,j,1(t) > 0, and θn,j,2(t) > 0, λn,j,2 = 0
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Switch detection - example

Suppose that x(t) crosses from R1 to R2 and recall that µ = minj gj(x)
Discrete time (switch between the n-th and n+ 1-st finite element):

▶ Before switch: θn,j,1(t) > 0, λn,j,1(t) = 0, and θn,j,2(t) = 0, λn,j,2 ≥ 0

▶ After switch: θn,j,1(t) = 0, λn,j,1(t) > 0, and θn,j,2(t) > 0, λn,j,2 = 0

From Lemma 1 it follows that λn,ns,1 = λn,ns,2 = 0

Switch detection conditions

g1(xn+1) = λn,ns,1 − µn,ns
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Switch detection - example

Suppose that x(t) crosses from R1 to R2 and recall that µ = minj gj(x)
Discrete time (switch between the n-th and n+ 1-st finite element):
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▶ After switch: θn,j,1(t) = 0, λn,j,1(t) > 0, and θn,j,2(t) > 0, λn,j,2 = 0

From Lemma 1 it follows that λn,ns,1 = λn,ns,2 = 0

Switch detection condition

g1(xn+1) = 0− g2(xn+1)
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Switch detection - example

Suppose that x(t) crosses from R1 to R2 and recall that µ = minj gj(x)
Discrete time (switch between the n-th and n+ 1-st finite element):

▶ Before switch: θn,j,1(t) > 0, λn,j,1(t) = 0, and θn,j,2(t) = 0, λn,j,2 ≥ 0

▶ After switch: θn,j,1(t) = 0, λn,j,1(t) > 0, and θn,j,2(t) > 0, λn,j,2 = 0

From Lemma 1 it follows that λn,ns,1 = λn,ns,2 = 0

Switch detection conditions

0 = g1(xn+1)− g2(xn+1) = ψ12(xn+1)

Implies constraint such that hn must adapt for exact switch detection!
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