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Motivating examples - crossing a discontinuity

Consider the ODE

ẋ = 2− sign(x)

More explicitly...

ẋ =

{
3, if x < 0

1, if x > 0
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Motivating examples - sliding mode (simpler)

Consider the ODE

ẋ = −sign(x)

And let

sign(x) =


−1, if x < 0

0, if x = 0

1, if x > 0

Then...

ẋ =


1, if x < 0

0, if x = 0

−1, if x > 0
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Motivating examples - sliding mode

Consider the ODE

ẋ = −sign(x) + 0.5 sin(t)

And let

sign(x) =


−1, if x < 0

0, if x = 0

1, if x > 0

We have for some t > t∗ that x(t) = 0
and ẋ(t) = 0

That is sign(0) = 0 = 0.5 sin(t)

Something went wrong...
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and ẋ(t) = 0

That is sign(0) = 0 = 0.5 sin(t)

Something went wrong...

0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

05. Modeling with Filippov Systems - Stewart and Step Formulation M. Diehl and A. Nurkanović 4/36
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Motivating examples - sliding mode - fixed

Consider the ODE

ẋ ∈ −sign(x) + 0.5 sin(t)

And let

sign(x) ∈


{−1}, if x < 0

[−1, 1], if x = 0

{1}, if x > 0

We have for some t > t∗ that x(t) = 0 and
ẋ(t) = 0

That is sign(0) = [−1, 1] ∋ 0.5 sin(t)

It works! Thanks to A.F. Filippov
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Filippov’s convexification for ODEs with discontinuous right-hand side

Filippov differential inclusion

Replace ODE with a discontinuous right-hand
side

ẋ(t) = f(x(t))

by

ẋ(t) ∈ FF(x(t))

where FF(x) : Rnx → P(Rnx) is defined as:

FF(x) :=
⋂
ϵ>0

⋂
µ(N)=0

convf(x+ ϵB(x) \N)

▶ f(x) continuous at x: FF(x)={f(x)}

▶ at discontinuity: convex combination of
neighboring vector fields and ignore what
is at the discontinuity
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Piecewise smooth systems (PSS)

Regard discontinuous right-hand side, piecewise smooth on disjoint open regions Ri ⊂ Rnx

Discontinuous ODE (NSD2)

ẋ = fi(x, u), if x ∈ Ri, i = 1, . . . , nf

R1 = {x ∈ Rnx | ψ1(x) > 0, ψ2(x) > 0, . . . ψnψ (x) > 0}
R2 = {x ∈ Rnx | ψ1(x) > 0, ψ2(x) > 0, . . . ψnψ (x) < 0}

...

Rnf = {x ∈ Rnx | ψ1(x) < 0, ψ2(x) < 0, . . . ψnψ (x) < 0}

▶ zero level sets of ψi(x) = 0 - region boundaries

▶ nψ smooth scalar switching functions define
2nf regions
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Filippov convexification for piecewise smooth systems

The ”structured” discontinuous right-hand side in PSS enables to define convex multipliers θi
to define the convex set FF(x, u)

Filippov Differential Inclusion

ẋ ∈ FF(x, u) :=
{ nf∑
i=1

fi(x, u) θi

∣∣∣ nf∑
i=1

θi = 1,

θi ≥ 0, i = 1, . . . nf ,

θi = 0, if x /∈ Ri

}
Aleksei F. Filippov
(1923-2006)

image source: wikipedia

▶ for interior points x ∈ Ri nothing changes: FF(x, u) = {fi(x, u)}
▶ Provides meaningful generalization on region boundaries

E.g. on R1 ∩R2 both θ1 and θ2 can be nonzero
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Filippov’s convexification for sums of discontinuous ODEs
[Stewart1996]

Sum of disc. functions

ẋ =

nsys∑
i=1

fi(x)

Sum of Filippov systems

ẋ ∈
nsys∑
i=1

FF,i(x)

Sum of piecewise smooth systems

ẋ =

nsys∑
i=1

fi(x), fi(x) = fi,j(x) if x ∈ Ri,j , j = 1, . . . , nf,i

Sum of Filippov systems

ẋ ∈
nsys∑
i=1

FF,i(x) =
{ nsys∑
i=1

nf,i∑
j=1

fi,j(x)θi,j | θi ≥ 0, e⊤i θi = 1
}

▶ We regard nsys independent subsystems and their Filippov convexification.

▶ Often reduces computational complexity.

▶ In fact, aggregated consideration often impossible.
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Illustrative example for sum of Filippov systems

Regard: x ∈ R2,

ẋ1 = −sign(x1), ẋ2 = −sign(x2)

ẋ =

[
−sign(x1)

0

]
+

[
0

−sign(x2)

]
=

[
−sign(x1)
−sign(x2)

]
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ẋ1 = −sign(x1), ẋ2 = −sign(x2)
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How to compute convex multipliers θ?
One answer in a remarkable paper by David E. Stewart from 1990
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Stewart’s representation

Assume sets Ri given by Ri =
{
x ∈ Rnx

∣∣gi(x) < minj ̸=i gj(x)
}

▶ How to obtain it from Ri = {x ∈ Rnx | ψ1(x) > 0, ψ2(x) > 0, . . . ψnψ (x) > 0}?
▶ How to find the functions gi(x)?

Definition of regions via switching functions

R1 = {x ∈ Rnx | ψ1(x) > 0, ψ2(x) > 0, . . . ψnψ (x) > 0}
R2 = {x ∈ Rnx | ψ1(x) > 0, ψ2(x) > 0, . . . ψnψ (x) < 0}

...

Rnf = {x ∈ Rnx | ψ1(x) < 0, ψ2(x) < 0, . . . ψnψ (x) < 0}

ψ(x) :=
[
ψ1(x) ψ2(x) . . . ψnψ (x)

]⊤ ∈ Rnψ

Sign matrix

S =


1 1 . . . 1
1 1 . . . −1
...

...
. . .

...
−1 −1 . . . −1


Definition via i-th row Si,•:

Ri = {x ∈ Rnx | Si,•ψ(x) > 0}

g(x) = −Sψ(x)
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Examples for finding switching function

▶ In Stewart’s representation sets Ri given by Ri =
{
x ∈ Rnx

∣∣gi(x) < minj ̸=i gj(x)
}

▶ From switching functions ψ(x) ∈ Rnψ obtain Stewart’s indicator functions g(x) ∈ Rnf via
g(x) = −Sψ(x)

Example 1 - single switching function

R1 = {x ∈ Rnx | ψ(x) > 0}
R2 = {x ∈ Rnx | ψ(x) < 0}

S =

[
1
−1

]
g(x) =

[
−ψ(x)
ψ(x)

]

Example 2 - two switching function

ψ(x) = (ψ1(x), ψ2(x))

S =


1 1
1 −1
−1 1
−1 −1



g(x) =


−ψ1(x)− ψ2(x)
−ψ1(x) + ψ2(x)
ψ1(x)− ψ2(x)
ψ1(x) + ψ2(x)
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How to compute convex multipliers θ?

Assume sets Ri given by [cf. Stewart, 1990]

Ri =
{
x ∈ Rn

∣∣gi(x) < minj ̸=i gj(x)
}

Linear program (LP) Representation

ẋ =

nf∑
i=1

fi(x, u) θi with

θ ∈ arg min
θ̃∈Rnf

nf∑
i=1

gi(x) θ̃i

s.t.

nf∑
i=1

θ̃i = 1

θ̃ ≥ 0

Note that the boundary between Ri and Rj is defined by {x ∈ Rn | 0 = gi(x)− gj(x)}.
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ẋ =

nf∑
i=1

fi(x, u) θi with

θ ∈ arg min
θ̃∈Rnf

nf∑
i=1

gi(x) θ̃i

s.t.

nf∑
i=1

θ̃i = 1

θ̃ ≥ 0

Note that the boundary between Ri and Rj is defined by {x ∈ Rn | 0 = gi(x)− gj(x)}.
05. Modeling with Filippov Systems - Stewart and Step Formulation M. Diehl and A. Nurkanović 14/36



From Filippov to dynamic complementarity systems
Using the KKT conditions of the parametric LP

LP representation

ẋ = F (x, u) θ

with θ ∈ argmin
θ̃∈Rnf

g(x)⊤θ̃

s.t. 0 ≤ θ̃

1 = e⊤θ̃

where

F (x, u) := [f1(x, u), . . . , fnf(x, u)] ∈ Rnx×nf

g(x) := [g1(x), . . . , gnf (x)]
⊤ ∈ Rnf

e := [1, 1, . . . , 1]⊤ ∈ Rnf

Express equivalently by optimality conditions:

Dynamic Complementarity System (DCS)

ẋ = F (x, u) θ (1a)

0 = g(x)− λ− eµ (1b)

0 ≤ θ ⊥ λ ≥ 0 (1c)

1 = e⊤θ (1d)

Compact notation

ẋ = F (x, u) θ

0 = GLP(x, θ, λ, µ),

▶ µ ∈ R and λ ∈ Rnf are Lagrange
multipliers

▶ (1c) ⇔ min{θ, λ} = 0 ∈ Rnf
▶ Together, (1b), (1c), (1d) determine the

(2nf + 1) variables θ, λ, µ uniquely
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Interpretation of the DCS multipliers

Dynamic complementarity system

ẋ = F (x, u) θ

0 = gi(x)− λi − µ, i = 1, . . . , nf

0 ≤ θ ⊥ λ ≥ 0

1 = e⊤θ

▶ If x ∈ Ri, then θi > 0, λi = 0 (from
complementarity)

▶ λi = gi(x)− µ (from ∇xL(x, λ, µ) = 0)

▶ µ = minj gj(x) (from definition of Ri)

▶ λi = gi(x)−minj gj(x) continuous functions!

▶ At switch λi = λj = 0 =⇒ gi(x)− gj(x) = 0
(region boundary)
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Example: continuity of multipliers in different switching cases

Different switching cases

1. Crossing a surface of discontinuity, ẋ(t) ∈ 2− sign(x(t)),

2. Sliding mode, ẋ(t) ∈ −sign(x(t)) + 0.2 sin(5t),

3. Leaving sliding mode ẋ(t) ∈ −sign(x(t)) + t.

4. Spontaneous switch, ẋ(t) ∈ sign(x(t)),
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The active set of the DCS

Dynamic complementarity system

ẋ = F (x, u) θ

0 = gi(x)− λi − µ, i = 1, . . . , nf

0 ≤ θ ⊥ λ ≥ 0

1 = e⊤θ

DAE with fixed I

ẋ = FI(x, u) θI

0 = gI(x)− µe,

1 = e⊤θI

▶ Locally well-behaved smooth
ODE or DAE

Active set

I(x) :=
{
i | gi(x) = min

j∈J
gj(x)

}
=

{
i | θi > 0

}

R1

R2

R3 R4

x1

x2

x3

x4

I(x1) = {2}, I(x2) = {1, 2}, I(x3) = {1, 3}
I(x4) = {1, 2, 3, 4}
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Properties of the DCS
Sufficient conditions for the uniqueness of the solution

DAE with fixed I

ẋ = FI(x, u) θI (2a)

0 = gI(x)− µe, (2b)

1 = e⊤θI (2c)

Given |I| ≥ 1, define the matrix

MI(x) = ∇gI(x)⊤FI(x, u) ∈ R|I|×|I|.

Proposition

Suppose that for a fixed active set I(x(t)) = I for t ∈ [0, T ], it holds that the matrix MI(x(t))
is invertible and e⊤MI(x(t))

−1e ̸= 0 for all t ∈ [0, T ]. Given the initial value x(0), then the
DAE (2) has a unique solution for all t ∈ [0, T ].

Proof. Index reduction and implicit function theorem.
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Outline of the lecture

1 Introduction to discontinuous ordinary differential equations

2 Filippov systems

3 Stewart’s reformulation of Filippov systems

4 Heaviside step reformulation of Filippov systems

5 Summary
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Heaviside step function

Set-valued step function

γ(ψ(x)) =


{1}, ψ(x) > 0,

[0, 1], ψ(x) = 0,

{0}, ψ(x) < 0.

LP representation

γ(ψ(x)) = argmin
α∈R

− ψ(x)α

s.t. 0 ≤ α ≤ 1.

-1 0 1

A(x)

0

0.2

0.4

0.6

0.8

1

.
(A

(x
))

-0.5 0 0.5 1 1.5

,
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Heaviside step function

Set-valued step function

γ(ψ(x)) =


{1}, ψ(x) > 0,

[0, 1], ψ(x) = 0,

{0}, ψ(x) < 0.

LP representation

γ(ψ(x)) = argmin
α∈R

− ψ(x)α

s.t. 0 ≤ α ≤ 1.
-1 0 1

A(x)

0

0.2

0.4

0.6

0.8

1

.
(A

(x
))

-0.5 0 0.5 1 1.5

,

A(x) > 0

ψ(x) > 0 =⇒ α = {1}

05. Modeling with Filippov Systems - Stewart and Step Formulation M. Diehl and A. Nurkanović 20/36
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Motivating example

Consider two switching functions ψ1(x) and ψ2(x) and four regions

Nonsmooth system

ẋ = α1α2f1(x)

+ α1(1− α2)f2(x)

+ (1− α1)α2f3(x) + (1− α1)(1− α2)f4(x)

Step representation

θi = 1 if x ∈ Ri:

ψ1(x) > 0, ψ2(x) > 0 =⇒
α1 = 1, α2 = 1, θ1 = α1α2 = 1

A1(x)

A
2
(x

)

R1

R2

R3

R4

x

R1 = {x ∈ Rnx | ψ1(x) > 0, ψ2(x) > 0}
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Motivating example
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Step representation
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A1(x)

A
2
(x

)

R1

R2

R3

R4
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Generalizing the observed pattern

Definition of regions via switching functions

R1 = {x ∈ Rnx | ψ1(x) > 0, ψ2(x) > 0, . . . ψnψ (x) > 0}
R2 = {x ∈ Rnx | ψ1(x) > 0, ψ2(x) > 0, . . . ψnψ (x) < 0}

...

Rnf = {x ∈ Rnx | ψ1(x) < 0, ψ2(x) < 0, . . . ψnψ (x) < 0}

ψ(x) :=
[
ψ1(x) ψ2(x) . . . ψnψ (x)

]⊤ ∈ Rnψ

Sign matrix

S =


1 1 . . . 1
1 1 . . . −1
...

...
. . .

...
−1 −1 . . . −1


Definition via i-th row Si,•:

Ri = {x ∈ Rnx | Si,•ψ(x) > 0}

We observe that

1− Si,j
2

+ Si,jαi =

{
αi, if Si,j = 1,

1− αi, if Si,j = −1.
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Filippov system via the step reformulation

If x ∈ Ri then θi = 1, hence all corresponding αj and 1− αk must be equal to one.

1− Si,j
2

+ Si,jαi =

{
αi, if Si,j = 1,

1− αi, if Si,j = −1.

Filippov system

ẋ ∈ FF(x) :=
{ 2nψ∑

i=1

θifi(x)
∣∣∣ θi = nψ∏

j=1

(1− Si,j
2

+ Si,jαj

)
, i = 1, . . . , 2nψ , αj ∈ γ(ψj(x))

}
.
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From differential inclusion to dynamic complementarity system

Regard the aggregated LP

min
α∈Rnψ

− ψ(x)⊤α

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , nψ

Using its KKT conditions we pass from the DI
to the DCS:

ψ(x) = λp − λn,

0 ≤ λn ⊥ α ≥ 0,

0 ≤ λp ⊥ e− α ≥ 0,

Heaviside step DCS

ẋ = F (x, u) θ,

θi =

nψ∏
j=1

(1− Si,j
2

+ Si,jαj

)
, i = 1, . . . , 2nψ

ψ(x) = λp − λn

0 ≤ λn ⊥ α ≥ 0

0 ≤ λp ⊥ e− α ≥ 0
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Continuity of multipliers in the Heaviside step formulation

Regard the aggregated LP

min
α∈Rnψ

− ψ(x)⊤α

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , nψ

Using its KKT conditions we pass from the DI
to the DCS:

ψ(x) = λp − λn,

0 ≤ λn ⊥ α ≥ 0,

0 ≤ λp ⊥ e− α ≥ 0,

▶ From the LP and its KKT conditions: ψj(x) > 0, we have αj = 1

▶ Upper bound is active: λnj = 0 and λp,j = ψj(x) > 0

▶ Likewise, for ψj(x) < 0, we obtain αj = 0, λpj = 0 and λnj = −ψj(x) > 0

▶ ψj(x) = 0 implies that αj ∈ [0, 1] and λpj = λnj = 0

Continuity of multipliers

λp = max(ψ(x), 0), (positive part of ψ(x))

λn = −min(ψ(x), 0), (negative part of ψ(x))
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Continuity of multipliers in the Heaviside step formulation

Regard the aggregated LP

min
α∈Rnψ

− ψ(x)⊤α

s.t. 0 ≤ αi ≤ 1, i = 1, . . . , nψ

Using its KKT conditions we pass from the DI
to the DCS:

ψ(x) = λp − λn,

0 ≤ λn ⊥ α ≥ 0,

0 ≤ λp ⊥ e− α ≥ 0,

▶ From the LP and its KKT conditions: ψj(x) > 0, we have αj = 1

▶ Upper bound is active: λnj = 0 and λp,j = ψj(x) > 0

▶ Likewise, for ψj(x) < 0, we obtain αj = 0, λpj = 0 and λnj = −ψj(x) > 0

▶ ψj(x) = 0 implies that αj ∈ [0, 1] and λpj = λnj = 0

Continuity of multipliers

λp = max(ψ(x), 0), (positive part of ψ(x))

λn = −min(ψ(x), 0), (negative part of ψ(x))

05. Modeling with Filippov Systems - Stewart and Step Formulation M. Diehl and A. Nurkanović 25/36



Example: continuity of multipliers in different switching cases

Different switching cases

1. Crossing a surface of discontinuity, ẋ(t) ∈ 2− sign(x(t)),

2. Sliding mode, ẋ(t) ∈ −sign(x(t)) + 0.2 sin(5t),

3. Leaving sliding mode ẋ(t) ∈ −sign(x(t)) + t.

4. Spontaneous switch, ẋ(t) ∈ sign(x(t)),
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Modeling with step functions
Expressions of θi for different definitions of Ri

Definition of Ri Expression for θi Sketch

Ri = A θi = αA

Ri = A ∪B θi = αA + αB

Ri = A ∩B θi = αAαB
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Modeling with step functions - continued
Expressions of θi for different definitions of Ri

Definition of Ri Expression for θi Sketch

Ri = int(Rnx\A) = {x | ψA(x) < 0} θi = 1− αA

Ri = A \B θi = αA − αB
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Stewart vs. Heaviside step

Dynamic complementarity system

ẋ = F (x, u) θ

0 = gi(x)− λi − µ, i = 1, . . . , 2nψ ,

0 ≤ θ ⊥ λ ≥ 0

1 = e⊤θ

Heaviside step DCS

ẋ = F (x, u) θ

θi =

nψ∏
j=1

(1− Si,j
2

+ Si,jαj

)
, i = 1, . . . , 2nψ

ψ(x) = λp − λn

0 ≤ λn ⊥ α ≥ 0

0 ≤ λp ⊥ e− α ≥ 0

Table: Comparisons of the problem sizes in Stewart’s and the step reformulation for a fixed nψ.

Method Number of systems nalg ncomp neq
Stewart 2nψ 2 · 2nψ+1 2nψ 2nψ+1
Heaviside step 2nψ 2nψ +3nψ 2nψ nψ+nf
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Stewart vs. Heaviside step - complexity
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Beyond Filippov systems via set-valued step functions

▶ The set-valued step functions may be related in a more complicated and different may
than in Filippov systems

▶ Such system are an instance of Aizerman–Pyatnitskii differential inclusions

ẋ(t) ∈ FAP(x(t),Γ(ψ(x(t))))
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Sensitivities w.r.t. parameters

Regard a bimodal system:

ẋ(t) =

{
f1(x(t)), ψ(x(t)) < 0,

f2(x(t)), ψ(x(t)) ≥ 0.
(3)

Regard the case of crossing a switchig surface, with e.g., ẋ = f1(x) for t ∈ [0, ts) and after
crossing at ts we have ẋ = f2(x) for t ∈ (ts, T ]. At ts it holds that

ψ(x(ts)) = 0.

We are interested in the exact sensitivity matrix Sx(t, 0;x0) of a solution of the system (3):

Sx(t, 0;x0) =
∂x(t;x0)

∂x0
∈ Rnx×nx
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Sensitivity jump formula

Before and after the switch the Sx(t, 0;x0) obey linear variational differential equation (VDE)

Ṡx(t, 0;x0) =
∂f(x)

∂x
Sx(t, 0;x0), S

x(0, 0;x0) = Inx

The function Sx(t, 0;x0) obeys smooth VDEs, on both sides of ts, but exhibits a jump at ts.

Proposition

Regard the system (3) with x(0) = x0 ∈ Ri on an interval [0, T ] with a switch at ts ∈ (0, T ).
Assume that the functions f1(x), f2(x), ψi,j(x) are continuously differentiable along
x(t), t ∈ [0, T ]. Assume the solution x(t) reaches the surface of discontinuity transversally, i.e.,
∇ψ(x(ts))⊤f1(x(ts)) > 0. Then the sensitivity Sx(T, 0;x0) of a solution x(t;x0) of the system
described by the ODE (3) is given by

Sx(T, 0;x0) = Sx(T, t+s ;x(ts))J(x(ts;x0))S
x(t−s , 0;x0) with

J(x(ts;x0)) := I +
(f2(x(ts;x0))− f1(x(ts;x0)))∇ψ(x(ts;x0))⊤

∇ψ(x(ts;x0))⊤f1(x(ts;x0))
.
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Conclusions and summary

▶ Filippov system provide a handy solution concept for ODEs with a discontinuous r.h.s.
(e.g., handling of sliding modes)

▶ For piece smooth systems, one can define multipliers θ for defining the convex Filippov set

▶ The multiplier θ can implicitly be computed by considering an equivalent dynamic
complementarity systems

▶ Two approaches Stewart’s and the Heaviside step formulation

▶ In both formulations, some algebraic variables are discontinuous, others are continuous -
key for switch detection in next lecture

▶ Step offers more flexibility in modeling, but might be more nonlinear than Stewart’s
reformulation
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