Lecture 5: Modeling with Filippov Systems Stewart and Step Formulation

Moritz Diehl and Armin Nurkanović

Systems Control and Optimization Laboratory (syscop)
Summer School on Direct Methods for Optimal Control of Nonsmooth Systems
September 11-15, 2023

universitätfreiburg

Outline of the lecture

1 Introduction to discontinuous ordinary differential equations

2 Filippov systems

3 Stewart's reformulation of Filippov systems

4 Heaviside step reformulation of Filippov systems

5 Summary

Motivating examples - crossing a discontinuity

Consider the ODE

$$
\dot{x}=2-\operatorname{sign}(x)
$$

Motivating examples - crossing a discontinuity

Consider the ODE

$$
\dot{x}=2-\operatorname{sign}(x)
$$

More explicitly...

$$
\dot{x}= \begin{cases}3, & \text { if } x<0 \\ 1, & \text { if } x>0\end{cases}
$$

Motivating examples - sliding mode (simpler)

Consider the ODE

$$
\dot{x}=-\operatorname{sign}(x)
$$

And let

$$
\operatorname{sign}(x)= \begin{cases}-1, & \text { if } x<0 \\ 0, & \text { if } x=0 \\ 1, & \text { if } x>0\end{cases}
$$

Then...

$$
\dot{x}= \begin{cases}1, & \text { if } x<0 \\ 0, & \text { if } x=0 \\ -1, & \text { if } x>0\end{cases}
$$

Motivating examples - sliding mode (simpler)

Consider the ODE

$$
\dot{x}=-\operatorname{sign}(x)
$$

And let

$$
\operatorname{sign}(x)= \begin{cases}-1, & \text { if } x<0 \\ 0, & \text { if } x=0 \\ 1, & \text { if } x>0\end{cases}
$$

Then...

$$
\dot{x}= \begin{cases}1, & \text { if } x<0 \\ 0, & \text { if } x=0 \\ -1, & \text { if } x>0\end{cases}
$$

Motivating examples - sliding mode

Consider the ODE

$$
\dot{x}=-\operatorname{sign}(x)+0.5 \sin (t)
$$

And let

$$
\operatorname{sign}(x)= \begin{cases}-1, & \text { if } x<0 \\ 0, & \text { if } x=0 \\ 1, & \text { if } x>0\end{cases}
$$

Motivating examples - sliding mode

Consider the ODE

$$
\dot{x}=-\operatorname{sign}(x)+0.5 \sin (t)
$$

And let

$$
\operatorname{sign}(x)= \begin{cases}-1, & \text { if } x<0 \\ 0, & \text { if } x=0 \\ 1, & \text { if } x>0\end{cases}
$$

Motivating examples - sliding mode

Consider the ODE

$$
\dot{x}=-\operatorname{sign}(x)+0.5 \sin (t)
$$

And let

$$
\operatorname{sign}(x)= \begin{cases}-1, & \text { if } x<0 \\ 0, & \text { if } x=0 \\ 1, & \text { if } x>0\end{cases}
$$

We have for some $t>t^{*}$ that $x(t)=0$ and $\dot{x}(t)=0$

Motivating examples - sliding mode

Consider the ODE

$$
\dot{x}=-\operatorname{sign}(x)+0.5 \sin (t)
$$

And let

$$
\operatorname{sign}(x)= \begin{cases}-1, & \text { if } x<0 \\ 0, & \text { if } x=0 \\ 1, & \text { if } x>0\end{cases}
$$

We have for some $t>t^{*}$ that $x(t)=0$ and $\dot{x}(t)=0$
That is $\operatorname{sign}(0)=0=0.5 \sin (t)$

Motivating examples - sliding mode

Consider the ODE

$$
\dot{x}=-\operatorname{sign}(x)+0.5 \sin (t)
$$

And let

$$
\operatorname{sign}(x)= \begin{cases}-1, & \text { if } x<0 \\ 0, & \text { if } x=0 \\ 1, & \text { if } x>0\end{cases}
$$

We have for some $t>t^{*}$ that $x(t)=0$ and $\dot{x}(t)=0$
That is $\operatorname{sign}(0)=0=0.5 \sin (t)$

Something went wrong...

Motivating examples - sliding mode - fixed

Consider the ODE

$$
\dot{x} \in-\operatorname{sign}(x)+0.5 \sin (t)
$$

And let

$$
\operatorname{sign}(x) \in \begin{cases}\{-1\}, & \text { if } x<0 \\ {[-1,1],} & \text { if } x=0 \\ \{1\}, & \text { if } x>0\end{cases}
$$

We have for some $t>t^{*}$ that $x(t)=0$ and $\dot{x}(t)=0$

Motivating examples - sliding mode - fixed

Consider the ODE

$$
\dot{x} \in-\operatorname{sign}(x)+0.5 \sin (t)
$$

And let

$$
\operatorname{sign}(x) \in \begin{cases}\{-1\}, & \text { if } x<0 \\ {[-1,1],} & \text { if } x=0 \\ \{1\}, & \text { if } x>0\end{cases}
$$

We have for some $t>t^{*}$ that $x(t)=0$ and $\dot{x}(t)=0$
That is $\operatorname{sign}(0)=[-1,1] \ni 0.5 \sin (t)$

Motivating examples - sliding mode - fixed

Consider the ODE

$$
\dot{x} \in-\operatorname{sign}(x)+0.5 \sin (t)
$$

And let

$$
\operatorname{sign}(x) \in \begin{cases}\{-1\}, & \text { if } x<0 \\ {[-1,1],} & \text { if } x=0 \\ \{1\}, & \text { if } x>0\end{cases}
$$

We have for some $t>t^{*}$ that $x(t)=0$ and $\dot{x}(t)=0$
That is $\operatorname{sign}(0)=[-1,1] \ni 0.5 \sin (t)$ It works! Thanks to A.F. Filippov

Outline of the lecture

1 Introduction to discontinuous ordinary differential equations

2 Filippov systems

3 Stewart's reformulation of Filippov systems

4 Heaviside step reformulation of Filippov systems

5 Summary

Filippov's convexification for ODEs with discontinuous right-hand side

Filippov differential inclusion

Replace ODE with a discontinuous right-hand side

$$
\dot{x}(t)=f(x(t))
$$

by

$$
\dot{x}(t) \in F_{\mathrm{F}}(x(t))
$$

where $F_{F}(x): \mathbb{R}^{n_{x}} \rightarrow \mathcal{P}\left(\mathbb{R}^{n_{x}}\right)$ is defined as:

$$
F_{\mathrm{F}}(x):=\bigcap_{\epsilon>0} \bigcap_{\mu(N)=0} \overline{\operatorname{conv}} f(x+\epsilon \mathcal{B}(x) \backslash N)
$$

- $f(x)$ continuous at $x: F_{\mathrm{F}}(x)=\{f(x)\}$

Filippov's convexification for ODEs with discontinuous right-hand side

Filippov differential inclusion

Replace ODE with a discontinuous right-hand side

$$
\dot{x}(t)=f(x(t))
$$

by

$$
\dot{x}(t) \in F_{\mathrm{F}}(x(t))
$$

where $F_{\mathrm{F}}(x): \mathbb{R}^{n_{x}} \rightarrow \mathcal{P}\left(\mathbb{R}^{n_{x}}\right)$ is defined as:

$$
F_{\mathrm{F}}(x):=\bigcap_{\epsilon>0} \bigcap_{\mu(N)=0} \overline{\operatorname{conv}} f(x+\epsilon \mathcal{B}(x) \backslash N)
$$

- $f(x)$ continuous at $x: F_{\mathrm{F}}(x)=\{f(x)\}$

- at discontinuity: convex combination of neighboring vector fields and ignore what is at the discontinuity

Piecewise smooth systems (PSS)

Regard discontinuous right-hand side, piecewise smooth on disjoint open regions $R_{i} \subset \mathbb{R}^{n_{x}}$

Discontinuous ODE (NSD2)

$$
\dot{x}=f_{i}(x, u), \text { if } x \in R_{i}, i=1, \ldots, n_{f}
$$

$$
\begin{aligned}
& R_{1}=\left\{x \in \mathbb{R}^{n_{x}} \mid \psi_{1}(x)>0, \psi_{2}(x)>0, \ldots \psi_{n_{\psi}}(x)>0\right\} \\
& R_{2}=\left\{x \in \mathbb{R}^{n_{x}} \mid \psi_{1}(x)>0, \psi_{2}(x)>0, \ldots \psi_{n_{\psi}}(x)<0\right\}
\end{aligned}
$$

$$
R_{n_{f}}=\left\{x \in \mathbb{R}^{n_{x}} \mid \psi_{1}(x)<0, \psi_{2}(x)<0, \ldots \psi_{n_{\psi}}(x)<0\right\}
$$

- zero level sets of $\psi_{i}(x)=0$ - region boundaries
- n_{ψ} smooth scalar switching functions define $2^{n_{f}}$ regions

Filippov convexification for piecewise smooth systems

The "structured" discontinuous right-hand side in PSS enables to define convex multipliers θ_{i} to define the convex set $F_{\mathrm{F}}(x, u)$

Filippov Differential Inclusion

$$
\begin{gathered}
\dot{x} \in F_{\mathrm{F}}(x, u):=\left\{\sum_{i=1}^{n_{f}} f_{i}(x, u) \theta_{i} \mid \sum_{i=1}^{n_{f}} \theta_{i}=1,\right. \\
\theta_{i} \geq 0, \quad i=1, \ldots n_{f} \\
\left.\theta_{i}=0, \quad \text { if } x \notin \overline{R_{i}}\right\}
\end{gathered}
$$

Aleksei F. Filippov (1923-2006) image source: wikipedia

Filippov convexification for piecewise smooth systems

The "structured" discontinuous right-hand side in PSS enables to define convex multipliers θ_{i} to define the convex set $F_{\mathrm{F}}(x, u)$

Filippov Differential Inclusion

$$
\begin{gathered}
\dot{x} \in F_{\mathrm{F}}(x, u):=\left\{\sum_{i=1}^{n_{f}} f_{i}(x, u) \theta_{i} \mid \sum_{i=1}^{n_{f}} \theta_{i}=1,\right. \\
\theta_{i} \geq 0, \quad i=1, \ldots n_{f}, \\
\left.\theta_{i}=0, \quad \text { if } x \notin \overline{R_{i}}\right\}
\end{gathered}
$$

Aleksei F. Filippov (1923-2006) image source: wikipedia

- for interior points $x \in R_{i}$ nothing changes: $F_{\mathrm{F}}(x, u)=\left\{f_{i}(x, u)\right\}$
- Provides meaningful generalization on region boundaries E.g. on $\overline{R_{1}} \cap \overline{R_{2}}$ both θ_{1} and θ_{2} can be nonzero

Filippov's convexification for sums of discontinuous ODEs

Sum of disc. functions

$$
\dot{x}=\sum_{i=1}^{n_{\mathrm{sys}}} f_{i}(x)
$$

Sum of Filippov systems

$$
\dot{x} \in \sum_{i=1}^{n_{\mathrm{sys}}} F_{\mathrm{F}, \mathrm{i}}(x)
$$

Sum of piecewise smooth systems

$$
\dot{x}=\sum_{i=1}^{n_{\mathrm{sys}}} f_{i}(x), f_{i}(x)=f_{i, j}(x) \text { if } x \in R_{i, j}, j=1, \ldots, n_{f, i}
$$

Sum of Filippov systems

$$
\dot{x} \in \sum_{i=1}^{n_{\mathrm{sys}}} F_{\mathrm{F}, \mathrm{i}}(x)=\left\{\sum_{i=1}^{n_{\mathrm{sys}}} \sum_{j=1}^{n_{f, i}} f_{i, j}(x) \theta_{i, j} \mid \theta_{i} \geq 0, e_{i}^{\top} \theta_{i}=1\right\}
$$

- We regard $n_{\text {sys }}$ independent subsystems and their Filippov convexification.
- Often reduces computational complexity.
- In fact, aggregated consideration often impossible.

Illustrative example for sum of Filippov systems

Regard: $x \in \mathbb{R}^{2}$,

$$
\begin{gathered}
\dot{x}_{1}=-\operatorname{sign}\left(x_{1}\right), \dot{x}_{2}=-\operatorname{sign}\left(x_{2}\right) \\
\dot{x}=\left[\begin{array}{c}
-\operatorname{sign}\left(x_{1}\right) \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
-\operatorname{sign}\left(x_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
-\operatorname{sign}\left(x_{1}\right) \\
-\operatorname{sign}\left(x_{2}\right)
\end{array}\right]
\end{gathered}
$$

Illustrative example for sum of Filippov systems

Regard: $x \in \mathbb{R}^{2}$,

$$
\begin{gathered}
\dot{x}_{1}=-\operatorname{sign}\left(x_{1}\right), \dot{x}_{2}=-\operatorname{sign}\left(x_{2}\right) \\
\dot{x}=\left[\begin{array}{c}
-\operatorname{sign}\left(x_{1}\right) \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
-\operatorname{sign}\left(x_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
-\operatorname{sign}\left(x_{1}\right) \\
-\operatorname{sign}\left(x_{2}\right)
\end{array}\right]
\end{gathered}
$$

Outline of the lecture

1 Introduction to discontinuous ordinary differential equations

2 Filippov systems

3 Stewart's reformulation of Filippov systems

4 Heaviside step reformulation of Filippov systems

5 Summary

How to compute convex multipliers θ ?

One answer in a remarkable paper by David E. Stewart from 1990

A high accuracy method for solving ODEs with discontinuous right-hand side

David Stewart

Department of Mathematics, University of Queensland, St. Lucia, Australia 4067
Received August 1, 1987/January 16, 1990

Summary. Ordinary Differential Equations with discontinuities in the state variables require a differential inclusion formulation to guarantee existence [8]. From this formulation a high accuracy method for solving such initial value problems is developed which can give any order of accuracy and "tracks" the discontinuities. The method uses an "active set" approach, and determines appropriate active sets from solutions to Linear Complementarity Problems. Convergence results are established under some non-degeneracy assumptions. The method has been implemented, and results compare favourably with previously published methods [7, 21].

Stewart's representation

$$
\text { Assume sets } R_{i} \text { given by } R_{i}=\left\{x \in \mathbb{R}^{n_{x}} \mid g_{i}(x)<\min _{j \neq i} g_{j}(x)\right\}
$$

- How to obtain it from $R_{i}=\left\{x \in \mathbb{R}^{n_{x}} \mid \psi_{1}(x)>0, \psi_{2}(x)>0, \ldots \psi_{n_{\psi}}(x)>0\right\}$?
- How to find the functions $g_{i}(x)$?

Stewart's representation

Assume sets R_{i} given by $R_{i}=\left\{x \in \mathbb{R}^{n_{x}} \mid g_{i}(x)<\min _{j \neq i} g_{j}(x)\right\}$

- How to obtain it from $R_{i}=\left\{x \in \mathbb{R}^{n_{x}} \mid \psi_{1}(x)>0, \psi_{2}(x)>0, \ldots \psi_{n_{\psi}}(x)>0\right\}$?
- How to find the functions $g_{i}(x)$?

Definition of regions via switching functions

$$
\begin{aligned}
& R_{1}=\left\{x \in \mathbb{R}^{n_{x}} \mid \psi_{1}(x)>0, \psi_{2}(x)>0, \ldots \psi_{n_{\psi}}(x)>0\right\} \\
& R_{2}=\left\{x \in \mathbb{R}^{n_{x}} \mid \psi_{1}(x)>0, \psi_{2}(x)>0, \ldots \psi_{n_{\psi}}(x)<0\right\}
\end{aligned}
$$

$$
R_{n_{f}}=\left\{x \in \mathbb{R}^{n_{x}} \mid \psi_{1}(x)<0, \psi_{2}(x)<0, \ldots \psi_{n_{\psi}}(x)<0\right\}
$$

$$
\psi(x):=\left[\begin{array}{llll}
\psi_{1}(x) & \psi_{2}(x) & \ldots & \psi_{n_{\psi}}(x)
\end{array}\right]^{\top} \in \mathbb{R}^{n_{\psi}}
$$

Sign matrix

$$
S=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \ldots & -1
\end{array}\right]
$$

Definition via i-th row $S_{i, \bullet}$:

$$
R_{i}=\left\{x \in \mathbb{R}^{n_{x}} \mid S_{i, \bullet} \psi(x)>0\right\}
$$

$$
g(x)=-S \psi(x)
$$

Examples for finding switching function

- In Stewart's representation sets R_{i} given by $R_{i}=\left\{x \in \mathbb{R}^{n_{x}} \mid g_{i}(x)<\min _{j \neq i} g_{j}(x)\right\}$
- From switching functions $\psi(x) \in \mathbb{R}^{n_{\psi}}$ obtain Stewart's indicator functions $g(x) \in \mathbb{R}^{n_{f}}$ via $g(x)=-S \psi(x)$

Example 1 - single switching function

$$
\begin{aligned}
R_{1} & =\left\{x \in \mathbb{R}^{n_{x}} \mid \psi(x)>0\right\} \\
R_{2} & =\left\{x \in \mathbb{R}^{n_{x}} \mid \psi(x)<0\right\} \\
S & =\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
g(x) & =\left[\begin{array}{c}
-\psi(x) \\
\psi(x)
\end{array}\right]
\end{aligned}
$$

Examples for finding switching function

- In Stewart's representation sets R_{i} given by $R_{i}=\left\{x \in \mathbb{R}^{n_{x}} \mid g_{i}(x)<\min _{j \neq i} g_{j}(x)\right\}$
- From switching functions $\psi(x) \in \mathbb{R}^{n_{\psi}}$ obtain Stewart's indicator functions $g(x) \in \mathbb{R}^{n_{f}}$ via $g(x)=-S \psi(x)$

Example 2 - two switching function

$$
\begin{aligned}
\psi(x) & =\left(\psi_{1}(x), \psi_{2}(x)\right) \\
S & =\left[\begin{array}{cc}
1 & 1 \\
1 & -1 \\
-1 & 1 \\
-1 & -1
\end{array}\right] \\
g(x) & =\left[\begin{array}{c}
-\psi_{1}(x)-\psi_{2}(x) \\
-\psi_{1}(x)+\psi_{2}(x) \\
\psi_{1}(x)-\psi_{2}(x) \\
\psi_{1}(x)+\psi_{2}(x)
\end{array}\right]
\end{aligned}
$$

How to compute convex multipliers θ ?

Assume sets R_{i} given by [cf. Stewart, 1990] $R_{i}=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x)<\min _{j \neq i} g_{j}(x)\right\}$

How to compute convex multipliers θ ?

Assume sets R_{i} given by [cf. Stewart, 1990]

$$
R_{i}=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x)<\min _{j \neq i} g_{j}(x)\right\}
$$

Linear program (LP) Representation

$$
\begin{aligned}
& \dot{x}=\sum_{i=1}^{n_{f}} f_{i}(x, u) \theta_{i} \text { with } \\
& \theta \in \arg \min _{\tilde{\theta} \in \mathbb{R}^{n_{f}}} \sum_{i=1}^{n_{f}} g_{i}(x) \tilde{\theta}_{i} \\
& \text { s.t. } \sum_{i=1}^{n_{f}} \tilde{\theta}_{i}=1 \\
& \tilde{\theta} \geq 0
\end{aligned}
$$

Note that the boundary between R_{i} and R_{j} is defined by $\left\{x \in \mathbb{R}^{n} \mid 0=g_{i}(x)-g_{j}(x)\right\}$.

From Filippov to dynamic complementarity systems

Using the KKT conditions of the parametric LP

LP representation

$$
\begin{aligned}
& \dot{x}=F(x, u) \theta \\
& \text { with } \theta \in \underset{\tilde{\theta} \in \mathbb{R}^{n_{f}}}{\operatorname{argmin}} \\
& g(x)^{\top} \tilde{\theta} \\
& \text { s.t. } \\
& 0 \leq \tilde{\theta} \\
& 1=e^{\top} \tilde{\theta}
\end{aligned}
$$

where

$$
\begin{aligned}
F(x, u) & :=\left[f_{1}(x, u), \ldots, f_{n_{f}}(x, u)\right] \in \mathbb{R}^{n_{x} \times n_{f}} \\
g(x) & :=\left[g_{1}(x), \ldots, g_{n_{f}}(x)\right]^{\top} \in \mathbb{R}^{n_{f}} \\
e & :=[1,1, \ldots, 1]^{\top} \in \mathbb{R}^{n_{f}}
\end{aligned}
$$

From Filippov to dynamic complementarity systems

Using the KKT conditions of the parametric LP
Express equivalently by optimality conditions:
Dynamic Complementarity System (DCS)

LP representation

$$
\dot{x}=F(x, u) \theta
$$

$$
\begin{aligned}
\text { with } \quad \theta \in \underset{\tilde{\theta} \in \mathbb{R}^{n_{f}}}{\operatorname{argmin}} & g(x)^{\top} \tilde{\theta} \\
\text { s.t. } & 0 \leq \tilde{\theta} \\
& 1=e^{\top} \tilde{\theta}
\end{aligned}
$$

where

$$
\begin{aligned}
F(x, u) & :=\left[f_{1}(x, u), \ldots, f_{n_{f}}(x, u)\right] \in \mathbb{R}^{n_{x} \times n_{f}} \\
g(x) & :=\left[g_{1}(x), \ldots, g_{n_{f}}(x)\right]^{\top} \in \mathbb{R}^{n_{f}} \\
e & :=[1,1, \ldots, 1]^{\top} \in \mathbb{R}^{n_{f}}
\end{aligned}
$$

$$
\begin{align*}
& \dot{x}=F(x, u) \theta \tag{1a}\\
& 0=g(x)-\lambda-e \mu \tag{1b}\\
& 0 \leq \theta \perp \lambda \geq 0 \tag{1c}\\
& 1=e^{\top} \theta \tag{1d}
\end{align*}
$$

Compact notation

$$
\begin{aligned}
\dot{x} & =F(x, u) \theta \\
0 & =G_{\mathrm{LP}}(x, \theta, \lambda, \mu),
\end{aligned}
$$

- $\mu \in \mathbb{R}$ and $\lambda \in \mathbb{R}^{n_{f}}$ are Lagrange multipliers
- $(1 \mathrm{c}) \Leftrightarrow \min \{\theta, \lambda\}=0 \in \mathbb{R}^{n_{f}}$
- Together, (1b), (1c), (1d) determine the $\left(2 n_{f}+1\right)$ variables θ, λ, μ uniquely

Interpretation of the DCS multipliers

Dynamic complementarity system
$\dot{x}=F(x, u) \theta$
$0=g_{i}(x)-\lambda_{i}-\mu, i=1, \ldots, n_{f}$
$0 \leq \theta \perp \lambda \geq 0$
$1=e^{\top} \theta$

- If $x \in R_{i}$, then $\theta_{i}>0, \lambda_{i}=0$ (from complementarity)
- $\lambda_{i}=g_{i}(x)-\mu\left(\right.$ from $\left.\nabla_{x} \mathcal{L}(x, \lambda, \mu)=0\right)$

Interpretation of the DCS multipliers

Dynamic complementarity system
$\dot{x}=F(x, u) \theta$
$0=g_{i}(x)-\lambda_{i}-\mu, i=1, \ldots, n_{f}$
$0 \leq \theta \perp \lambda \geq 0$
$1=e^{\top} \theta$

- If $x \in R_{i}$, then $\theta_{i}>0, \lambda_{i}=0$ (from complementarity)
- $\lambda_{i}=g_{i}(x)-\mu\left(\right.$ from $\left.\nabla_{x} \mathcal{L}(x, \lambda, \mu)=0\right)$

Interpretation of the DCS multipliers

Dynamic complementarity system
$\dot{x}=F(x, u) \theta$
$0=g_{i}(x)-\lambda_{i}-\mu, i=1, \ldots, n_{f}$
$0 \leq \theta \perp \lambda \geq 0$
$1=e^{\top} \theta$

- If $x \in R_{i}$, then $\theta_{i}>0, \lambda_{i}=0$ (from complementarity)
- $\lambda_{i}=g_{i}(x)-\mu\left(\right.$ from $\left.\nabla_{x} \mathcal{L}(x, \lambda, \mu)=0\right)$
- $\mu=\min _{j} g_{j}(x)$ (from definition of R_{i})
- $\lambda_{i}=g_{i}(x)-\min _{j} g_{j}(x)$ continuous functions!

Interpretation of the DCS multipliers

Dynamic complementarity system

$$
\begin{aligned}
& \dot{x}=F(x, u) \theta \\
& 0=g_{i}(x)-\lambda_{i}-\mu, i=1, \ldots, n_{f} \\
& 0 \leq \theta \perp \lambda \geq 0 \\
& 1=e^{\top} \theta
\end{aligned}
$$

- If $x \in R_{i}$, then $\theta_{i}>0, \lambda_{i}=0$ (from complementarity)
- $\lambda_{i}=g_{i}(x)-\mu\left(\right.$ from $\left.\nabla_{x} \mathcal{L}(x, \lambda, \mu)=0\right)$
- $\mu=\min _{j} g_{j}(x)$ (from definition of R_{i})
- $\lambda_{i}=g_{i}(x)-\min _{j} g_{j}(x)$ continuous functions!
- At switch $\lambda_{i}=\lambda_{j}=0 \Longrightarrow g_{i}(x)-g_{j}(x)=0$ (region boundary)

Example: continuity of multipliers in different switching cases

Different switching cases

1. Crossing a surface of discontinuity, $\dot{x}(t) \in 2-\operatorname{sign}(x(t))$,

Example: continuity of multipliers in different switching cases

Different switching cases

2. Sliding mode, $\dot{x}(t) \in-\operatorname{sign}(x(t))+0.2 \sin (5 t)$,

Example: continuity of multipliers in different switching cases

Different switching cases

3. Leaving sliding mode $\dot{x}(t) \in-\operatorname{sign}(x(t))+t$.

Example: continuity of multipliers in different switching cases

Different switching cases

4. Spontaneous switch, $\dot{x}(t) \in \operatorname{sign}(x(t))$,

Example: continuity of multipliers in different switching cases

Different switching cases

1. Crossing a surface of discontinuity, $\dot{x}(t) \in 2-\operatorname{sign}(x(t))$,
2. Sliding mode, $\dot{x}(t) \in-\operatorname{sign}(x(t))+0.2 \sin (5 t)$,
3. Leaving sliding mode $\dot{x}(t) \in-\operatorname{sign}(x(t))+t$.
4. Spontaneous switch, $\dot{x}(t) \in \operatorname{sign}(x(t))$,

The active set of the DCS

Dynamic complementarity system

$\dot{x}=F(x, u) \theta$
$0=g_{i}(x)-\lambda_{i}-\mu, i=1, \ldots, n_{f}$
$0 \leq \theta \perp \lambda \geq 0$
$1=e^{\top} \theta$

DAE with fixed \mathcal{I}

$$
\begin{aligned}
\dot{x} & =F_{\mathcal{I}}(x, u) \theta_{\mathcal{I}} \\
0 & =g_{\mathcal{I}}(x)-\mu e \\
1 & =e^{\top} \theta_{\mathcal{I}}
\end{aligned}
$$

- Locally well-behaved smooth ODE or DAE

Active set

$$
\mathcal{I}(x):=\left\{i \mid g_{i}(x)=\min _{j \in \mathcal{J}} g_{j}(x)\right\}=\left\{i \mid \theta_{i}>0\right\}
$$

$$
\begin{gathered}
\mathcal{I}\left(x_{1}\right)=\{2\}, \mathcal{I}\left(x_{2}\right)=\{1,2\}, \mathcal{I}\left(x_{3}\right)=\{1,3\} \\
\mathcal{I}\left(x_{4}\right)=\{1,2,3,4\}
\end{gathered}
$$

Properties of the DCS

Sufficient conditions for the uniqueness of the solution

DAE with fixed \mathcal{I}

$$
\begin{align*}
\dot{x} & =F_{\mathcal{I}}(x, u) \theta_{\mathcal{I}} \tag{2a}\\
0 & =g_{\mathcal{I}}(x)-\mu e, \tag{2b}\\
1 & =e^{\top} \theta_{\mathcal{I}} \tag{2c}
\end{align*}
$$

Given $|\mathcal{I}| \geq 1$, define the matrix

$$
M_{\mathcal{I}}(x)=\nabla g_{\mathcal{I}}(x)^{\top} F_{\mathcal{I}}(x, u) \in \mathbb{R}^{|\mathcal{I}| \times|\mathcal{I}|}
$$

Proposition

Suppose that for a fixed active set $\mathcal{I}(x(t))=\mathcal{I}$ for $t \in[0, T]$, it holds that the matrix $M_{\mathcal{I}}(x(t))$ is invertible and $e^{\top} M_{\mathcal{I}}(x(t))^{-1} e \neq 0$ for all $t \in[0, T]$. Given the initial value $x(0)$, then the $D A E$ (2) has a unique solution for all $t \in[0, T]$.

Proof. Index reduction and implicit function theorem.

Outline of the lecture

1 Introduction to discontinuous ordinary differential equations

2 Filippov systems

3 Stewart's reformulation of Filippov systems

4 Heaviside step reformulation of Filippov systems

5 Summary

Heaviside step function

Set-valued step function

$$
\gamma(\psi(x))= \begin{cases}\{1\}, & \psi(x)>0 \\ {[0,1],} & \psi(x)=0 \\ \{0\}, & \psi(x)<0\end{cases}
$$

LP representation

$$
\begin{aligned}
\gamma(\psi(x))=\arg \min _{\alpha \in \mathbb{R}} & -\psi(x) \alpha \\
\text { s.t. } & 0 \leq \alpha \leq 1
\end{aligned}
$$

Heaviside step function

Set-valued step function

$$
\gamma(\psi(x))= \begin{cases}\{1\}, & \psi(x)>0 \\ {[0,1],} & \psi(x)=0 \\ \{0\}, & \psi(x)<0\end{cases}
$$

LP representation

$$
\begin{aligned}
\gamma(\psi(x))=\arg \min _{\alpha \in \mathbb{R}} & -\psi(x) \alpha \\
\text { s.t. } & 0 \leq \alpha \leq 1 .
\end{aligned}
$$

$$
\psi(x)<0 \Longrightarrow \alpha=\{0\}
$$

Heaviside step function

Set-valued step function

$$
\gamma(\psi(x))= \begin{cases}\{1\}, & \psi(x)>0 \\ {[0,1],} & \psi(x)=0 \\ \{0\}, & \psi(x)<0\end{cases}
$$

LP representation

$$
\begin{aligned}
\gamma(\psi(x))=\arg \min _{\alpha \in \mathbb{R}} & -\psi(x) \alpha \\
\text { s.t. } & 0 \leq \alpha \leq 1 .
\end{aligned}
$$

$$
\psi(x)>0 \Longrightarrow \alpha=\{1\}
$$

Heaviside step function

Set-valued step function

$$
\gamma(\psi(x))= \begin{cases}\{1\}, & \psi(x)>0 \\ {[0,1],} & \psi(x)=0 \\ \{0\}, & \psi(x)<0\end{cases}
$$

LP representation

$$
\begin{aligned}
\gamma(\psi(x))=\arg \min _{\alpha \in \mathbb{R}} & -\psi(x) \alpha \\
\text { s.t. } & 0 \leq \alpha \leq 1 .
\end{aligned}
$$

$$
\psi(x)=0 \Longrightarrow \alpha=[0,1]
$$

Motivating example

Consider two switching functions $\psi_{1}(x)$ and $\psi_{2}(x)$ and four regions

Nonsmooth system

$$
\dot{x}=\alpha_{1} \alpha_{2} f_{1}(x)
$$

Step representation

$\theta_{i}=1$ if $x \in R_{i}$:

$$
\begin{aligned}
& \psi_{1}(x)>0, \psi_{2}(x)>0 \Longrightarrow \\
& \alpha_{1}=1, \alpha_{2}=1, \theta_{1}=\alpha_{1} \alpha_{2}=1
\end{aligned}
$$

Motivating example

Consider two switching functions $\psi_{1}(x)$ and $\psi_{2}(x)$ and four regions

Nonsmooth system

$$
\dot{x}=\alpha_{1} \alpha_{2} f_{1}(x)+\alpha_{1}\left(1-\alpha_{2}\right) f_{2}(x)
$$

Step representation

$\theta_{i}=1$ if $x \in R_{i}$:

$$
\begin{aligned}
& \psi_{1}(x)>0, \psi_{2}(x)<0 \Longrightarrow \\
& \alpha_{1}=1, \alpha_{2}=0, \theta_{2}=\alpha_{1}\left(1-\alpha_{2}\right)=1
\end{aligned}
$$

$$
R_{2}=\left\{x \in \mathbb{R}^{n_{x}} \mid \psi_{1}(x)>0, \psi_{2}(x)<0\right\}
$$

Motivating example

Consider two switching functions $\psi_{1}(x)$ and $\psi_{2}(x)$ and four regions

Nonsmooth system

$$
\begin{aligned}
\dot{x} & =\alpha_{1} \alpha_{2} f_{1}(x)+\alpha_{1}\left(1-\alpha_{2}\right) f_{2}(x) \\
& +\left(1-\alpha_{1}\right) \alpha_{2} f_{3}(x)
\end{aligned}
$$

Step representation

$\theta_{i}=1$ if $x \in R_{i}$:

$$
\begin{aligned}
& \psi_{1}(x)<0, \psi_{2}(x)>0 \Longrightarrow \\
& \alpha_{1}=0, \alpha_{2}=1, \theta_{3}=\left(1-\alpha_{1}\right) \alpha_{2}=1
\end{aligned}
$$

$$
R_{3}=\left\{x \in \mathbb{R}^{n_{x}} \mid \psi_{1}(x)<0, \psi_{2}(x)>0\right\}
$$

Motivating example

Consider two switching functions $\psi_{1}(x)$ and $\psi_{2}(x)$ and four regions

Nonsmooth system

$$
\begin{aligned}
\dot{x} & =\alpha_{1} \alpha_{2} f_{1}(x)+\alpha_{1}\left(1-\alpha_{2}\right) f_{2}(x) \\
& +\left(1-\alpha_{1}\right) \alpha_{2} f_{3}(x)+\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) f_{4}(x)
\end{aligned}
$$

Step representation

$\theta_{i}=1$ if $x \in R_{i}$:

$$
\begin{aligned}
& \psi_{1}(x)<0, \psi_{2}(x)<0 \Longrightarrow \\
& \alpha_{1}=0, \alpha_{2}=0, \theta_{4}=\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)=1
\end{aligned}
$$

$$
R_{4}=\left\{x \in \mathbb{R}^{n_{x}} \mid \psi_{1}(x)<0, \psi_{2}(x)<0\right\}
$$

Motivating example

Consider two switching functions $\psi_{1}(x)$ and $\psi_{2}(x)$ and four regions

Nonsmooth system

$$
\begin{aligned}
\dot{x} & =\alpha_{1} \alpha_{2} f_{1}(x)+\alpha_{1}\left(1-\alpha_{2}\right) f_{2}(x) \\
& +\left(1-\alpha_{1}\right) \alpha_{2} f_{3}(x)+\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right) f_{4}(x)
\end{aligned}
$$

Step representation

$$
\theta_{i}=1 \text { if } x \in R_{i}:
$$

$$
\begin{aligned}
& \theta_{1}=\alpha_{1} \alpha_{2} \\
& \theta_{2}=\alpha_{1}\left(1-\alpha_{2}\right) \\
& \theta_{3}=\left(1-\alpha_{1}\right) \alpha_{2} \\
& \theta_{4}=\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)
\end{aligned}
$$

$$
R_{4}=\left\{x \in \mathbb{R}^{n_{x}} \mid \psi_{1}(x)<0, \psi_{2}(x)<0\right\}
$$

Generalizing the observed pattern

Definition of regions via switching functions

$$
\begin{aligned}
R_{1} & =\left\{x \in \mathbb{R}^{n_{x}} \mid \psi_{1}(x)>0, \psi_{2}(x)>0, \ldots \psi_{n_{\psi}}(x)>0\right\} \\
R_{2} & =\left\{x \in \mathbb{R}^{n_{x}} \mid \psi_{1}(x)>0, \psi_{2}(x)>0, \ldots \psi_{n_{\psi}}(x)<0\right\} \\
& \vdots \\
R_{n_{f}} & =\left\{x \in \mathbb{R}^{n_{x}} \mid \psi_{1}(x)<0, \psi_{2}(x)<0, \ldots \psi_{n_{\psi}}(x)<0\right\} \\
& \psi(x):=\left[\begin{array}{llll}
\psi_{1}(x) & \psi_{2}(x) & \ldots & \psi_{n_{\psi}}(x)
\end{array}\right]^{\top} \in \mathbb{R}^{n_{\psi}}
\end{aligned}
$$

Sign matrix

$$
S=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \ldots & -1
\end{array}\right]
$$

Definition via i-th row $S_{i, \bullet}$:

$$
R_{i}=\left\{x \in \mathbb{R}^{n_{x}} \mid S_{i, \bullet} \psi(x)>0\right\}
$$

We observe that

$$
\frac{1-S_{i, j}}{2}+S_{i, j} \alpha_{i}= \begin{cases}\alpha_{i}, & \text { if } S_{i, j}=1 \\ 1-\alpha_{i}, & \text { if } S_{i, j}=-1\end{cases}
$$

Filippov system via the step reformulation

If $x \in R_{i}$ then $\theta_{i}=1$, hence all corresponding α_{j} and $1-\alpha_{k}$ must be equal to one.

$$
\frac{1-S_{i, j}}{2}+S_{i, j} \alpha_{i}= \begin{cases}\alpha_{i}, & \text { if } S_{i, j}=1 \\ 1-\alpha_{i}, & \text { if } S_{i, j}=-1\end{cases}
$$

Filippov system

$$
\dot{x} \in F_{\mathrm{F}}(x):=\left\{\sum_{i=1}^{2^{n_{\psi}}} \theta_{i} f_{i}(x) \left\lvert\, \theta_{i}=\prod_{j=1}^{n_{\psi}}\left(\frac{1-S_{i, j}}{2}+S_{i, j} \alpha_{j}\right)\right., i=1, \ldots, 2^{n_{\psi}}, \alpha_{j} \in \gamma\left(\psi_{j}(x)\right)\right\} .
$$

From differential inclusion to dynamic complementarity system

Regard the aggregated LP

$$
\begin{aligned}
\min _{\alpha \in \mathbb{R}^{n} \psi} & -\psi(x)^{\top} \alpha \\
\text { s.t. } & 0 \leq \alpha_{i} \leq 1, i=1, \ldots, n_{\psi}
\end{aligned}
$$

Using its KKT conditions we pass from the DI to the DCS:

$$
\begin{aligned}
& \psi(x)=\lambda^{\mathrm{p}}-\lambda^{\mathrm{n}} \\
& 0 \leq \lambda^{\mathrm{n}} \perp \alpha \geq 0 \\
& 0 \leq \lambda^{\mathrm{p}} \perp e-\alpha \geq 0
\end{aligned}
$$

Heaviside step DCS

$$
\begin{aligned}
& \dot{x}=F(x, u) \theta \\
& \theta_{i}=\prod_{j=1}^{n_{\psi}}\left(\frac{1-S_{i, j}}{2}+S_{i, j} \alpha_{j}\right), i=1, \ldots, 2^{n_{\psi}} \\
& \psi(x)=\lambda^{\mathrm{p}}-\lambda^{\mathrm{n}} \\
& 0 \leq \lambda^{\mathrm{n}} \perp \alpha \geq 0 \\
& 0 \leq \lambda^{\mathrm{p}} \perp e-\alpha \geq 0
\end{aligned}
$$

Continuity of multipliers in the Heaviside step formulation

Regard the aggregated LP

$$
\begin{aligned}
\min _{\alpha \in \mathbb{R}^{n} \psi} & -\psi(x)^{\top} \alpha \\
\text { s.t. } & 0 \leq \alpha_{i} \leq 1, i=1, \ldots, n_{\psi}
\end{aligned}
$$

Using its KKT conditions we pass from the DI to the DCS:

$$
\begin{aligned}
& \psi(x)=\lambda^{\mathrm{p}}-\lambda^{\mathrm{n}}, \\
& 0 \leq \lambda^{\mathrm{n}} \perp \alpha \geq 0, \\
& 0 \leq \lambda^{\mathrm{p}} \perp e-\alpha \geq 0,
\end{aligned}
$$

- From the LP and its KKT conditions: $\psi_{j}(x)>0$, we have $\alpha_{j}=1$
- Upper bound is active: $\lambda_{j}^{\mathrm{n}}=0$ and $\lambda_{\mathrm{p}, j}=\psi_{j}(x)>0$

Continuity of multipliers in the Heaviside step formulation

Using its KKT conditions we pass from the DI to the DCS:

$$
\begin{aligned}
& \psi(x)=\lambda^{\mathrm{p}}-\lambda^{\mathrm{n}}, \\
& 0 \leq \lambda^{\mathrm{n}} \perp \alpha \geq 0, \\
& 0 \leq \lambda^{\mathrm{p}} \perp e-\alpha \geq 0,
\end{aligned}
$$

- From the LP and its KKT conditions: $\psi_{j}(x)>0$, we have $\alpha_{j}=1$
- Upper bound is active: $\lambda_{j}^{\mathrm{n}}=0$ and $\lambda_{\mathrm{p}, j}=\psi_{j}(x)>0$
- Likewise, for $\psi_{j}(x)<0$, we obtain $\alpha_{j}=0, \lambda_{j}^{\mathrm{p}}=0$ and $\lambda_{j}^{\mathrm{n}}=-\psi_{j}(x)>0$

Continuity of multipliers in the Heaviside step formulation

Using its KKT conditions we pass from the DI to the DCS:

$$
\begin{aligned}
& \psi(x)=\lambda^{\mathrm{p}}-\lambda^{\mathrm{n}}, \\
& 0 \leq \lambda^{\mathrm{n}} \perp \alpha \geq 0, \\
& 0 \leq \lambda^{\mathrm{p}} \perp e-\alpha \geq 0,
\end{aligned}
$$

- From the LP and its KKT conditions: $\psi_{j}(x)>0$, we have $\alpha_{j}=1$
- Upper bound is active: $\lambda_{j}^{\mathrm{n}}=0$ and $\lambda_{\mathrm{p}, j}=\psi_{j}(x)>0$
- Likewise, for $\psi_{j}(x)<0$, we obtain $\alpha_{j}=0, \lambda_{j}^{\mathrm{p}}=0$ and $\lambda_{j}^{\mathrm{n}}=-\psi_{j}(x)>0$
- $\psi_{j}(x)=0$ implies that $\alpha_{j} \in[0,1]$ and $\lambda_{j}^{\mathrm{p}}=\lambda_{j}^{\mathrm{n}}=0$

Continuity of multipliers in the Heaviside step formulation

Regard the aggregated LP

$$
\begin{aligned}
\min _{\alpha \in \mathbb{R}^{n} \psi} & -\psi(x)^{\top} \alpha \\
\text { s.t. } & 0 \leq \alpha_{i} \leq 1, i=1, \ldots, n_{\psi}
\end{aligned}
$$

Using its KKT conditions we pass from the DI to the DCS:

$$
\begin{aligned}
& \psi(x)=\lambda^{\mathrm{p}}-\lambda^{\mathrm{n}}, \\
& 0 \leq \lambda^{\mathrm{n}} \perp \alpha \geq 0, \\
& 0 \leq \lambda^{\mathrm{p}} \perp e-\alpha \geq 0,
\end{aligned}
$$

- From the LP and its KKT conditions: $\psi_{j}(x)>0$, we have $\alpha_{j}=1$
- Upper bound is active: $\lambda_{j}^{\mathrm{n}}=0$ and $\lambda_{\mathrm{p}, j}=\psi_{j}(x)>0$
- Likewise, for $\psi_{j}(x)<0$, we obtain $\alpha_{j}=0, \lambda_{j}^{\mathrm{p}}=0$ and $\lambda_{j}^{\mathrm{n}}=-\psi_{j}(x)>0$
- $\psi_{j}(x)=0$ implies that $\alpha_{j} \in[0,1]$ and $\lambda_{j}^{\mathrm{p}}=\lambda_{j}^{\mathrm{n}}=0$

Continuity of multipliers

$$
\begin{array}{ll}
\lambda^{\mathrm{p}}=\max (\psi(x), 0), & \text { (positive part of } \psi(x) \text {) } \\
\lambda^{\mathrm{n}}=-\min (\psi(x), 0), & \text { (negative part of } \psi(x) \text {) }
\end{array}
$$

Example: continuity of multipliers in different switching cases

Different switching cases

1. Crossing a surface of discontinuity, $\dot{x}(t) \in 2-\operatorname{sign}(x(t))$,

Example: continuity of multipliers in different switching cases

Different switching cases

2. Sliding mode, $\dot{x}(t) \in-\operatorname{sign}(x(t))+0.2 \sin (5 t)$,

Example: continuity of multipliers in different switching cases

Different switching cases

3. Leaving sliding mode $\dot{x}(t) \in-\operatorname{sign}(x(t))+t$.

Example: continuity of multipliers in different switching cases

Different switching cases

4. Spontaneous switch, $\dot{x}(t) \in \operatorname{sign}(x(t))$,

Example: continuity of multipliers in different switching cases

Different switching cases

1. Crossing a surface of discontinuity, $\dot{x}(t) \in 2-\operatorname{sign}(x(t))$,
2. Sliding mode, $\dot{x}(t) \in-\operatorname{sign}(x(t))+0.2 \sin (5 t)$,
3. Leaving sliding mode $\dot{x}(t) \in-\operatorname{sign}(x(t))+t$.
4. Spontaneous switch, $\dot{x}(t) \in \operatorname{sign}(x(t))$,

Modeling with step functions

Expressions of θ_{i} for different definitions of R_{i}

Definition of R_{i}	Expression for θ_{i}	Sketch
$R_{i}=A$	$\theta_{i}=\alpha_{A}$	

Modeling with step functions - continued

Expressions of θ_{i} for different definitions of R_{i}

Definition of R_{i}	Expression for θ_{i}	Sketch

Stewart vs. Heaviside step

Heaviside step DCS

Dynamic complementarity system

$$
\dot{x}=F(x, u) \theta
$$

$$
0=g_{i}(x)-\lambda_{i}-\mu, i=1, \ldots, 2^{n_{\psi}}
$$

$$
0 \leq \theta \perp \lambda \geq 0
$$

$$
1=e^{\top} \theta
$$

$$
\begin{aligned}
& \dot{x}=F(x, u) \theta \\
& \theta_{i}=\prod_{j=1}^{n_{\psi}}\left(\frac{1-S_{i, j}}{2}+S_{i, j} \alpha_{j}\right), i=1, \ldots, 2^{n_{\psi}} \\
& \psi(x)=\lambda^{\mathrm{p}}-\lambda^{\mathrm{n}} \\
& 0 \leq \lambda^{\mathrm{n}} \perp \alpha \geq 0 \\
& 0 \leq \lambda^{\mathrm{p}} \perp e-\alpha \geq 0
\end{aligned}
$$

Table: Comparisons of the problem sizes in Stewart's and the step reformulation for a fixed n_{ψ}.

Method	Number of systems	$n_{\text {alg }}$	$n_{\text {comp }}$	$n_{\text {eq }}$
Stewart	$2^{n_{\psi}}$	$2 \cdot 2^{n_{\psi}}+1$	$2^{n_{\psi}}$	$2^{n_{\psi}+1}$
Heaviside step	$2^{n_{\psi}}$	$2^{n_{\psi}}+3 n_{\psi}$	$2 n_{\psi}$	$n_{\psi}+n_{f}$

Stewart vs. Heaviside step - complexity

Table: Comparisons of the problem sizes in Stewart's and the step reformulation for a fixed n_{ψ}.

Method	Number of systems	$n_{\text {alg }}$	$n_{\text {comp }}$	n_{eq}
Stewart	$2^{n_{\psi}}$	$2 \cdot 2^{n_{\psi}}+1$	$2^{n_{\psi}}$	$2^{n_{\psi}+1}$
Heaviside step	$2^{n_{\psi}}$	$2^{n_{\psi}}+3 n_{\psi}$	$2 n_{\psi}$	$n_{\psi}+n_{f}$

Stewart vs. Heaviside step - complexity

Table: Comparisons of the problem sizes in Stewart's and the step reformulation for a fixed n_{ψ}.

Method	Number of systems	$n_{\text {alg }}$	$n_{\text {comp }}$	$n_{\text {eq }}$
Stewart	$2^{n_{\psi}}$	$2 \cdot 2^{n_{\psi}}+1$	$2^{n_{\psi}}$	$2^{n_{\psi}}+1$
Heaviside step	$2^{n_{\psi}}$	$2^{n_{\psi}}+3 n_{\psi}$	$2 n_{\psi}$	$n_{\psi}+n_{f}$

Beyond Filippov systems via set-valued step functions

- The set-valued step functions may be related in a more complicated and different may than in Filippov systems
- Such system are an instance of Aizerman-Pyatnitskii differential inclusions

$$
\dot{x}(t) \in F_{\mathrm{AP}}(x(t), \Gamma(\psi(x(t))))
$$

Sensitivities w.r.t. parameters

Regard a bimodal system:

$$
\dot{x}(t)= \begin{cases}f_{1}(x(t)), & \psi(x(t))<0 \tag{3}\\ f_{2}(x(t)), & \psi(x(t)) \geq 0\end{cases}
$$

Regard the case of crossing a switchig surface, with e.g., $\dot{x}=f_{1}(x)$ for $t \in\left[0, t_{\mathrm{s}}\right)$ and after crossing at t_{s} we have $\dot{x}=f_{2}(x)$ for $t \in\left(t_{\mathrm{s}}, T\right]$. At t_{s} it holds that

$$
\psi\left(x\left(t_{\mathrm{s}}\right)\right)=0 .
$$

We are interested in the exact sensitivity matrix $S^{x}\left(t, 0 ; x_{0}\right)$ of a solution of the system (3):

$$
S^{x}\left(t, 0 ; x_{0}\right)=\frac{\partial x\left(t ; x_{0}\right)}{\partial x_{0}} \in \mathbb{R}^{n_{x} \times n_{x}}
$$

Sensitivity jump formula

Before and after the switch the $S^{x}\left(t, 0 ; x_{0}\right)$ obey linear variational differential equation (VDE)

$$
\dot{S}^{x}\left(t, 0 ; x_{0}\right)=\frac{\partial f(x)}{\partial x} S^{x}\left(t, 0 ; x_{0}\right), S^{x}\left(0,0 ; x_{0}\right)=I_{n_{x}}
$$

The function $S^{x}\left(t, 0 ; x_{0}\right)$ obeys smooth VDEs, on both sides of t_{s}, but exhibits a jump at t_{s}.

Proposition

Regard the system (3) with $x(0)=x_{0} \in R_{i}$ on an interval $[0, T]$ with a switch at $t_{\mathrm{s}} \in(0, T)$. Assume that the functions $f_{1}(x), f_{2}(x), \psi_{i, j}(x)$ are continuously differentiable along $x(t), t \in[0, T]$. Assume the solution $x(t)$ reaches the surface of discontinuity transversally, i.e., $\nabla \psi\left(x\left(t_{\mathrm{s}}\right)\right)^{\top} f_{1}\left(x\left(t_{\mathrm{s}}\right)\right)>0$. Then the sensitivity $S^{x}\left(T, 0 ; x_{0}\right)$ of a solution $x\left(t ; x_{0}\right)$ of the system described by the ODE (3) is given by

$$
\begin{aligned}
& S^{x}\left(T, 0 ; x_{0}\right)=S^{x}\left(T, t_{\mathrm{s}}^{+} ; x\left(t_{\mathrm{s}}\right)\right) J\left(x\left(t_{\mathrm{s}} ; x_{0}\right)\right) S^{x}\left(t_{\mathrm{s}}^{-}, 0 ; x_{0}\right) \text { with } \\
& J\left(x\left(t_{\mathrm{s}} ; x_{0}\right)\right):=I+\frac{\left(f_{2}\left(x\left(t_{\mathrm{s}} ; x_{0}\right)\right)-f_{1}\left(x\left(t_{\mathrm{s}} ; x_{0}\right)\right)\right) \nabla \psi\left(x\left(t_{\mathrm{s}} ; x_{0}\right)\right)^{\top}}{\nabla \psi\left(x\left(t_{\mathrm{s}} ; x_{0}\right)\right)^{\top} f_{1}\left(x\left(t_{\mathrm{s}} ; x_{0}\right)\right)} .
\end{aligned}
$$

Conclusions and summary

- Filippov system provide a handy solution concept for ODEs with a discontinuous r.h.s. (e.g., handling of sliding modes)
- For piece smooth systems, one can define multipliers θ for defining the convex Filippov set
- The multiplier θ can implicitly be computed by considering an equivalent dynamic complementarity systems
- Two approaches Stewart's and the Heaviside step formulation
- In both formulations, some algebraic variables are discontinuous, others are continuous key for switch detection in next lecture
- Step offers more flexibility in modeling, but might be more nonlinear than Stewart's reformulation

References

- Aleksei F. Filippov. Differential Equations with Discontinuous Righthand Sides: Control Systems, volume 18. Springer Science \& Business Media, 1988.
- Jorge Cortes. Discontinuous dynamical systems. IEEE Control systems magazine, 28(3):36-73, 2008.
- David Stewart. A high accuracy method for solving odes with discontinuous right-hand side. Numerische Mathematik, 58(1):299-328, 1990
- David Stewart. A numerical method for friction problems with multiple contacts. The ANZIAM Journal, 37(3):288-308, 1996.
- Luca Dieci and Luciano Lopez. Sliding motion on discontinuity surfaces of high co-dimension. a construction for selecting a Filippov vector field. Numerische Mathematik, 117(4):779-811, 2011.

References

- Vincent Acary, Hidde De Jong, and Bernard Brogliato. Numerical simulation of piecewise-linear models of gene regulatory networks using complementarity systems. Physica D: Nonlinear Phenomena, 269:103-119, 2014.
- Armin Nurkanović, Mario Sperl, Sebastian Albrecht, and Moritz Diehl. Finite Elements with Switch Detection for Direct Optimal Control of Nonsmooth Systems. Submitted to Numerische Mathematik 2022.
- Armin Nurkanović, Jonathan Frey, Anton Pozharskiy, and Moritz Diehl. Finite elements with switched detection for direct optimal control of nonsmooth systems with set-valued step functions. In Conference on Decision on Control, 2023.

